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Abstract

Posterior distribution approximation is a central
task in Bayesian inference. Stochastic gradient
Langevin dynamics (SGLD) and its extensions
have been practically used and theoretically stud-
ied. While SGLD updates a single particle at
a time, ensemble methods that update multiple
particles simultaneously have been recently gath-
ering attention. Compared with the naive parallel-
chain SGLD that updates multiple particles in-
dependently, ensemble methods update particles
with their interactions. Thus, these methods are
expected to be more particle-efficient than the
naive parallel-chain SGLD because particles can
be aware of other particles’ behavior through
their interactions. Although ensemble methods
numerically demonstrated their superior perfor-
mance, no theoretical guarantee exists to assure
such particle-efficiency and it is unclear whether
those ensemble methods are really superior to the
naive parallel-chain SGLD in the non-asymptotic
settings. To cope with this problem, we pro-
pose a novel ensemble method that uses a non-
reversible Markov chain for the interaction, and
we present a non-asymptotic theoretical analysis
for our method. Our analysis shows that, for the
first time, the interaction causes a faster conver-
gence rate than the naive parallel-chain SGLD in
the non-asymptotic setting if the discretization er-
ror is appropriately controlled. Numerical experi-
ments show that we can control the discretization
error by tuning the interaction appropriately.

1. Introduction

In Bayesian inference, a central task is to accurately and
efficiently evaluate the posterior distribution (Bishop, 2006;
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Murphy, 2012). For many practical models, we cannot ob-
tain an analytical expression of the normalizing constant;
thus, we need to approximate the posterior. One of the most
successfully used methods to approximate the posterior is
stochastic gradient Langevin dynamics (SGLD)(Welling &
Teh, 2011) and its variants (Ma et al., 2015; Chen et al.,
2016; 2014). These are diffusion-based sampling meth-
ods and suitable for large-scale data by using not the full
gradient but a stochastic version obtained through a ran-
domly chosen subset of data. Each sample in SGLD moves
toward the gradient direction with added Gaussian noise
(hereinafter, we refer to a sample as a particle). Exten-
sions of SGLD have been extensively developed (Ma et al.,
2015; Chen et al., 2014) to focus on improving the sampling
scheme, which updates one particle at a time, by extending
its associated phase space.

On the other hand, ensemble methods that update multiple
particles simultaneously have recently been gathering at-
tention (Nusken & Pavliotis, 2019). Compared with naive
parallel-chain SGLD, which also updates multiple parti-
cles independently at each step, recent ensemble methods
introduced some interaction between particles. The advan-
tage of these methods is that the multiple particles interact
with each other while moving simultaneously; thus, they
have correlations with each other. Because of these correla-
tions, these particles can be aware of each other’s behavior
and can be more particle-efficient than naive parallel-chain
SGLD, in which the particles are independent of each other
(Liu et al., 2019a). Also, recent development of parallel-
processing computation schemes has further encouraged
the ensemble methods (Nusken & Pavliotis, 2019). Repre-
sentative examples of diffusion-based ensemble methods
include Stein variational gradient descent (SVGD) (Liu &
Wang, 2016) and stochastic particle-optimization sampling
(SPOS)(Zhang et al., 2018).

Although the ensemble methods showed superior perfor-
mance numerically, no theoretical analysis has been con-
ducted to clarify the theoretical advantage of introducing
such “interactions” into diffusion-based sampling in a non-
asymptotic setting and no work has clarified such improved
“particle efficiency”. To be more precise, the theoretical
advantage of updating multiple particles simultaneously
through their interactions compared to naive parallel-chain
SGLD, which updates multiple particles independently at
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each step, has not been clarified yet.

It is difficult to theoretically compare SVGD and SPOS with
naive parallel-chain SGLD because SVGD and SPOS are
Vlasov processes (Veretennikov, 2006; Bolley et al., 2010),
which are nonlinear Markov processes. Thus, we raise a
different, related question: Is it possible to construct an
ensemble sampling that is theoretically superior to naive
parallel-chain SGLD in a non-asymptotic setting ? We an-
swer this question affirmatively by using the technique of
a non-reversible Markov chain (Hwang et al., 2005; Kaiser
etal., 2017; Hwang et al., 2015; Duncan et al., 2016; 2017).
Although non-reversible methods introduce an additional
drift function into the stochastic differential equation (SDE),
the introduced drift never changes the stationary distribu-
tion of the original SDE and accelerates the convergence.
Thus, we propose constructing the interaction between par-
ticles with the technique of such non-reversible methods.
Then, we theoretically analyze the 2-Wasserstein (W2) dis-
tance and the bias of the given target function in the non-
asymptotic setting and compare it with the case of naive
parallel-chain SGLD.

Our contributions:
are as follows.

The major contributions of this work

1. We propose a new ensemble sampling method based on
the non-reversible Markov chain technique. Then, we
theoretically analyze the proposed sampling scheme in
terms of the W, distance. To obtain an upper bound
on the W; distance for our proposed method, we first
improve the existing upper bound for standard SGLD,
given in Raginsky et al. (2017). Our new bound for
standard SGLD shows a tighter upper bound on the
constant of the logarithmic Sobolev inequality.

2. To clarify the advantage of using particle interaction,
we compare theoretical properties of the proposed sam-
pling method with those of naive parallel-chain SGLD
(Chen et al., 2016; Ahn et al., 2014). We find that
the interaction causes a trade-off between a larger dis-
cretization error and faster convergence to the station-
ary distribution.

3. We conduct numerical experiments to confirm that we
can control the trade-off by tuning the interaction ap-
propriately. Experiments on standard Bayesian models
support our theoretical findings and show the superior
performance of our method compared to SGLD and
other ensemble methods.

Notations: The last page of Appendix gives a summary of
the notations used in this paper. Note that - and || - || denote
the Euclidean inner product and distance, respectively, and
| - | is the absolute value. Capital letters such as X represent
random variables, and lowercase letters such as = represent
usual real values.

2. Preliminary

In this section, we briefly introduce the basic settings of
SGLD and its theoretical behavior.

2.1. SGLD and its non-asymptotic behavior

First, we introduce the notations and basic settings of SGLD.
Appendix B gives detailed explanations. Our aim is to
approximate the target distribution with density dm(z)
e BU@) dx, where the potential function U (x) is the sum-

mation of u : R4 xZ — R, thus U (z) = % Zlill u(z, ;).
Here, z; denotes the data point in some space Z, | Z| denotes
the total number of data points and we express the tuple of
data points as Z = (z1, .. .,z‘z‘). z € X C R% denotes a

parameter of the given model.

The SGLD algorithm (Welling & Teh, 2011; Raginsky et al.,
2017) is given as the recursion

Xit1 = X — hg(Xp, Q2 k) + V2037 Ley, (1)

where h € R is a step size, €5, € R? is a standard Gaussian
random vector, g(X}, @, x) is an conditionally unbiased es-
timator of the true gradient VU (X},), and @ is a random
variable following the probability P,(Q) ) that expresses
the stochastic access to the subset of data points {z; } and sat-
isfies Ep_ (. ) [9(Xk, Q= )] = VU(X}) (see Appendix B
for the detail). We assume that X, e, () are independent
of each other.

The discrete time Markov process Eq.(1) can be regareded as
the discretization of the continuous-time Langevin dynamics
(Raginsky et al., 2017)

dXt = —VU(Xt) + vV 26—1dw(t), (2)

where w(t) denotes standard Brownian motion in R?. The
stationary measure of Eq.(2) is drr(x) oc e~ #V(*)dg.

We denote the law of X}, induced by Eq.(1) as u, and the
law of X induced by Eq.(2) as v;. Our goal is to sample
from the true target measure 7. This goal can be naively
achieved by taking samples from Eq.(2) according to the
ergodic theory. However, Eq.(2) represents a continuous
dynamics and we cannot simulate it exactly. Instead, we
take samples from the discretized dynamics of Eq.(1). Thus,
our interests are in how much puyy, differs from 7 and in
how much pp, differs from vgp,. In this work, we measure
this by the W5 distance and the bias given a target function.
The W, distance is expressed by Wa (g, 7), where the
cost function is Euclidean distance (see Appendix A for the
definition). The bias of a given test function f is expressed
by [Ef(Xx) — fyu Fdr].

We review the result of Raginsky et al. (2017), which estab-
lished the convergence of the SGLD algorithm in terms of
the W, distance. Although there are already sharper results
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e.g., Xu et al. (2018), in terms of the dimension, our anal-
ysis relies on the result of convergence via the logarithmic
Sobolev inequality (LSI) (see Appendix C). Thus, we follow
the approach in Raginsky et al. (2017), which also used the
LSL

Assumptions: Before proceeding to the result, we intro-
duce the assumptions used in this work, which are the same
as those in Raginsky et al. (2017).

Assumption 1. (Upper bound of the potential function at
the origin) The function u takes nonnegative real values
and is continuously differentiable on R?, and there exist
constants A, B such that, for all z € 7,

[u(0,2)[ < A, [[Vu(0,2)[| < B. 3)

Assumption 2. (Smoothness) The function u has Lipschitz
continuous gradients; that is, for all z € Z, there exists a
positive constant M for all z,y € R?,

IVu(z, z) = Vu(y, 2)|| < M|z —y]. )

Assumption 3. (Dissipative condition) The function u sat-
isfies the (m,b)-dissipative condition for all z € 7, that is,
for all z, € RY, there exist m > 0,b > 0, such that

—x - Vu(z,z) < —ml|z||* +b. ®)

Assumption 4. (Initial condition) The initial probability
distribution 1o of Xo has a bounded and strictly positive
density po and for all x € R?,

Ko 1= log/ e”’szpo(x)da: < 0. (6)
]Rd

Assumption 5. (Stochastic gradient) There exists a con-

stant § € [0,1) such that
Ep. nll9(z, Q:p) — VU (@)[IP] < 26 (M?|z]* + B?). (7)
The motivation to use the same assumptions as in Raginsky
et al. (2017) is that we want to clarify the advantage of intro-
ducing interactions in terms of the W5 distance compared

to standard SGLD. Under the above assumptions, the error
is bounded in the following way.

Theorem 1. (Proposition 10 in Raginsky et al. (2017))
Under Assumptions 1 to 5, for any k € N and any
he(0,1A #) obeying kh > 1 and fm > 2, we have

Walpns ) < Chh+ /200Ce ™76, (8)
Co= (M2 (ko +2(1v 2) (b+2B2+ 4)) + B?),

Cy = 6M2(5C, + d),

C3 = (12+8 (ko + 20+ H)) (8Co + VBT),

Ct = (1248 (ko + 20+ %)) (C1 + V1),

¢ —\[Cave+ Cavh,

O = log lpoll + §log 35 + 5 (M2 + Bry/* 4+ 4+ L2,

and \q is the constant of LSI shown in Eq.(11); see Sec-
tion 2.2 for details.

In Eq.(8), the first term corresponds to the error due to the
discretization and stochastic gradient, i.e., Wo(ugh, Vin)
(hereinafter, we refer to this term as the discretization error
for simplicity), and the second term corresponds to the
convergence to the stationary measure, i.e., Wa(vgp, 7).

2.2. Logarithmic Sobolev inequality

The constant of LSI, A\ plays an important role to analyze
the SDEs including our non-reversible SGLD. Here, we
introduce basic concepts (see Appendix C and Bakry et al.
(2013) for more details). First, we introduce the generator
associated to SDE of Eq.(2) as

LF(X,) : = lim, g+ B X0)=F(X0)
= (-VU(Xy)-V+B7A) f(Xe), (9

where A denotes a standard Laplacian on RY, f € D(L)
and D(L) C L2(r) denotes the domain of £. This —£ is
a self-adjoint operator, which has only discrete spectrums
(eigenvalues). We say that m with £ has a spectral gap if
the smallest eigenvalue of —L other than 0 is positive. We
refer to it as po(> 0) (see Appendix C). We say that 7 with
L satisfies the (tight) logarithmic Sobolev inequality (LSI)
with constant \g (we call this LSI()\g)) if for any f that is
integrable (f]Rd fllog fldm < o00), m with L satisfies,

Ent.(f?) < —2Xg / fLfdr, (10)
]Rd

Entr(f) := [ga flog fdm — [oa fdmlog ([ga fd).

Then, Raginsky et al. (2017) clarified that under the con-
ditions of Theorem 1, 7 with £ of Eq.(9) satisfies LSI(\g)
and an upper bound of )\ is given as

Xo < A= Dy + py (D2 +2), (11)

Dy = 28I p, < SMUEE), (12)

pot < UM exy (2(M + B)(bB + d) + B(A + B))
- (13)

This constant \y controls the convergence speed in Theorem
1. The smaller Ay means faster convergence. From D, and
p, larger d means larger \o (see Propositions 13 and 15,
Appendix B in Raginsky et al. (2017) or Theorem 1.2 (2) in
Cattiaux et al. (2010) for details).

3. Proposed ensemble sampling

As we mentioned in the introduction, we update N particles
simultaneously. First, we introduce the notations to treat
the multiple particles. We express the n-th particle at time
t as Xt(") € R We express the joint state of all the N
particles at time ¢ as X2V .= (X", ... x™)T e RV,
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We express the joint stationary measure as 7%V = 7 ®

@7 ox e VXD —UXE) = (X))

3.1. Naive parallel-chain SGLD

First, we introduce naive parallel-chain SGLD. The N-
parallel and independent chain is written as

dX®N = —vUON(XEN)dt + /28~ Ldwy, (14)
T
VUSN (XON) .= (VU(XS)),...NU(XfN’)) . (15)

and w; is the dN-dimensional Wiener process. The dis-
cretized dynamics with the stochastic gradient is given as
®N _ y®N
X=X,

P — g9V h + /2B e, (16)
92N = (X, Qen)r . 9 XV, Q.) T, A7)

where each g(X ,g"), Q. k) is an unbiased estimator of the

gradient VU (X t(n)) and for simplicity, we assume the same
random access to the data points for all n. Intuitively, this
means we use the same subset of data for all n. ¢, € R
is a standard Gaussian random vector. Eq.(16) is the base-
line method of the ensemble sampling since there is no
interaction among particles. This dynamics is just the con-

catenation of the d-dimensional single chain introduced in
Eq.(2). We assume that all the initial measures {Xé") N
are the same. Then, all the marginal probability at any time
t > 0 will be the same. We study theoretical properties of

the dynamics in Eq.(16) in Section 4.2.
3.2. Proposed algorithm

Building on naive parallel-chain SGLD, we propose our
sampling scheme. Motivated by existing ensemble methods,
including SVGD and SPOS, we introduce an interaction
term into naive parallel-chain SGLD. Specifically, we intro-
duce the additional drift term + in the following way:

dXPN = —vUSNXEN)dt+ay(XEN)dt++/28 Ldw;, (18)

where a € R expresses the strength of the interaction term.
Since the stationary measure should not be changed by the
interaction, we assume that the interaction +y satisfies the
divergence-free condition: V - (y7®") = 0. Then, we
can easily confirm that the interaction never changes the
stationary measure (see Appendix H.1). This type of drift
term has been studied in Hwang et al. (2005), Kaiser et al.
(2017), Hwang et al. (2015), Duncan et al. (2016), Duncan
et al. (2017), Hu et al. (2020). There are multiple ways to
construct such . Our strategy is using a skew-symmetric

matrix J as
Y XEN) = —JgvUeN (X2, J=-JT. (19

This surely satisfies the divergence-free condition. This is
motivated by SVGD and SPOS, which use the derivative of a

kernel function as the interaction. Note that the derivative of
the kernel Gram matrix is a skew-symmetric matrix. Then,
we introduce a discretized dynamics as

XEN = XPN — g2V h 4 aygenh + /28 e, (20)
VgON = —Jg,?N. (21)

We denote the law of X" induced by Eq.(20) as x5 and
the law of X,5®N induced by Eq.(18) as l/f?hN. We discuss
theoretical properties of this dynamics in Section 4.3.

4. Theoretical properties

In this section, we first improve the bound of standard
SGLD, Eq.(1) and then, analyze our proposed method.

4.1. Standard SGLD

First, we present our bound for standard SGLD, then discuss
its difference from the Theorem 1 of Raginsky et al. (2017).
Theorem 2. Under Assumptions I to 5, for any k € N and
any h € (0,1 A\ ;i) obeying kh > 1 and 3m > 2, jigp,
which is induced by Eq.(1), satisfies

Wa (s, 7) < \/Cs (kh + Ca) kh + V2ACTe 5% (22)
Cg = % (Clh + 5005),

Cy = (6M2)~ ( 2 (3M2)Texp (#(khﬁ) - kh),

where Cy, C1, and C' are given in Eq.(8). X is the LSI
constant.

We can obtain a tighter bound for the LSI constant than that
of Raginsky et al. (2017).

Theorem 3. Under the same conditions as Theorem 2 and
the additional condition (4d + 9)me? > fm > 16me? /3,
the LSI constant is upper-bounded by \.:

A< A= ((1+pC)2me) ™ +3(2p0) ", (23)
~C = inf, {gHVU(x)Hzf%VQU(I)fﬂ'er(l’)}, (24)

where pg is given in Eq.(13) and C'is bounded by
pB?

bre? Md
<B4 4+ —.
0<C 9 log 3 5 (25)

Moreover, \¢ is always smaller than \; of Eq.(11) estimated
by Raginsky et al. (2017).

The proof of Theorem 2 is shown in Appendix E.1 and the
proof of Theorem 3 is shown in Appendix K.1. We may
further eliminate the additional assumption of Theorem 2.
See Theorem 14 in Appendix L for details.

Outline of the proof: Our proof is similar to that of Ra-
ginsky et al. (2017). First, we decompose the Ws distance
in the following way:

Woprn, ) < Wa(ttkh, Vih) + Wa(Vgh, ). (26)
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Then, we bound the convergence to the stationary,
Wo(vgn, ), in the same way as Raginsky et al. (2017)
using the property of LSI (see Appendix E.1). The dif-
ference is the discretization error, Wa(pigh, vkr). Simi-
larly to Chen et al. (2019), we consider the continuous-
time interpolation of Eq.(1) and denote by V}, of which
measure is the same as pgp. Then, we use the relation
W3 (Vkn, pen) < E||X) — Vi ||?, and upper-bound the right-
hand side of this inequality and applied Gronwall’s inequal-
ity to it.

As for the estimation of the LSI constant, we use the method
of Carlen & Loss (2004), which relies on a restricted LSI
and a spectral gap. If —C, which is defined in Eq.(24), is
lower-bounded, then, = admits an LSI and its constant is
upper-bounded by A < ((1+ p~*|C|)2me?) ™! + 3(2p)~*
where p is a spectral gap. See Appendix K.1 for the proof.

Comparison with Theorem 1: The W, distance of our
Theorem 2 shows better dependency on N compared to
Theorem 1, especially for the discretization error and the
LSI constant. First, we discuss the discretization error.
In Theorem 1, the discretization error is C’kh, which de-
pends on d linearly due to the weighted CKP inequal-
ity in the derivation. On the other hand, our discretiza-
tion error shows d'/2-dependency. This gap is impor-
tant when we consider ensemble sampling. Let us con-
sider the bias of an ensemble sampling; that is, with N-
particles, we approximate the integral of a test function f
by + 30 F(X ™). 1f a test function f is L -lipschitz in
R4, the bias ‘E% SN LAY = fdw‘ can be upper-

bounded by the W distance multiplied by L;/ VN. Ad-
ditionally, when we assume the W5 distance of this en-
semble sampling can be upper-bounded by the same ap-
proach as Theorem 1, then since the N-particle system is
dN-dimensonal, its discretization error linearly depends on
dN. Thus, the bias is O(v/N). This means that the more
particles we use, the larger bias we suffer. This is an unde-
sirable property as the ensemble sampling. Our approach
in Theorem 2 does not suffer from this problem, since the
discretization error depends on VAN ; thus, the bias of ours
has the constant order with respect to N. However, our
discretization error is crude which entails vkhe** . See
Appendix E.2 for more details. We may further improve the
discretization error based on Vempala & Wibisono (2019).
See Theorem 9 in Appendix F for details.

Next, we discuss the upper-bound of the LSI constant. In
Raginsky et al. (2017), the LSI constant is estimated via the
Lyapunov condition-based approach (Cattiaux et al., 2010).
Its estimate is given by A < a + py ' (¢’ + a” [ ||z||*dn),
where a, a’, a”’ are some positive constants and independent
of d. Thus, if we consider the d/N-dimensional particle sys-
tem, the estimated LSI constant becomes significantly larger

than the single-particle system due to the second-moment
term. Since the larger LSI constant means the slower conver-
gence to the stationary measure, the convergence speed of
the N-particle system is much slower than that of standard
SGLD. Thus, this results in a larger bias. On the other hand,
our estimation in Theorem 3 does not show such behavior.
Moreover, as we will see in Section 4.3, we can show that
our estimate of the LSI constant for the proposed ensemble
sampling is smaller than that of standard SGLD. However,
we need the stronger condition of 3m > 16me? than that of
Raginsky et al. (2017), which is Sm > 2. See Appendix K.1
for more details.

4.2. Naive parallel-chain SGLD

We analyze naive parallel-chain SGLD with N particles.
Since naive parallel-chain SGLD is just the /V concatenation
of standard SGLD, its W5 distance is N 1/2 times larger than
Eq.(8). In addition to the W5 distance, we consider bias
here additionally. Our goal is to approximate the integral of
the test function f with L ¢-lipschitzness by the ensemble

average Zi:;l f(X ,En)) Then we obtain,

Corollary 1. Under the same conditions as Theorem 2,
X,?N of Eq.(16) satisfies

B4 S0, £OX) = Jr Sn|

<Ly (VO Rh+CiRh+ VAT 5, @)

where the constants Cy,C1,C’" and \ are given in Theo-
rem 2.

The proof is shown in Appendix G. Note that this bias does
not depend on /N, which means that using multiple chains
will not contribute to reducing the bias.

4.3. Proposed method

Here, we analyze our proposed method. Since we control the
magnitude of the interaction by «, we impose the additional
condition about the norm of J:

Assumption 6. A skew-symmetric matrix J is bounded as
[ 7]lr <1, (28)
where || - || is the Frobenius norm.

Then, we have our main theorem,

Theorem 4. Under the same conditions as Theorem 3 and
Assumption 6, u%fv , which is induced by Eq.(20), satisfies

Wa (/j/l;@}fvaW@N)

< NV2(,/C(a) (kh + C}(a)) kh-+V2XC7e ™ #),  (29)

where C4(«), Cy(«) are the positive constants, which are
obtained by replacing M — (1+«a)M, B? — (1+ «)?B?
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in Cs and Cy of Eq.(22) (see Appendix H for details) and A
is the LSI constant bounded by A(a, N ):

<A
=\

ifaz0

ifa=0" (30)

/\</\(a,N){

The proof is shown in Appendix H. It is clear that when we
substitute N = 1 and o« = 0 in Theorem 4, the bound will
be equal to standard SGLD, Eq.(22). This is natural since
these conditions means that there is no interaction.

From the above theorem, we can easily find that the bias of
our proposed method is

B S0 SO = fya S|

< Ly (V/Ci{o) (Wi + i) B + VAT ), (1)

which never increases as N increases. N only appears
through the upper-bound of the LSI constant. See Ap-
pendix H.7 for this proof. We may further improve the
discretization error based on Vempala & Wibisono (2019).
See Theorem 11 in Appendix I for details.

Outline of the proof of Theorem 4

Modified dissipative condition: First, we study how the
parameters in the dissipative and smoothness assumptions
are modified by the interaction. We define the drift func-
tion Ve, (29, 2) := Vu®N (2%, 2) + aJVu®N (28N 2)
and VUZYN =3 Vu,(z®V,2)/|Z|. Then, we have

Lemma 1. Let 2@V y®N € RN forall z,

— 2N Vo (x®V, 2) < —m||2®V > + bN, (32)
[Vt (2%N2) = Vua (y®N,2) | < M1+ o) [N =y @] (33)

Here the dot - and || - || are the inner product and norm in
RN, Because of the skew-symmetric property of .J, the
dissipative constant m does not change. This is a crucial
property in our analysis. The proofs and other conditions
are discussed in Appendix H.

Based on these modified conditions, we bound the W5 dis-
tance in a similar way to standard SGLD in Section 4.1. We
just change the constants in the assumptions.

Smaller upper-bound of the LSI constant: Next, we
discuss the estimation of the LSI constant. Note that the
generator of Eq.(18) is

Loi= (-VUSN(XEY). V4 518). (4

Then, under the same conditions as Theorem 2, 7® with
L, satisfies the LSI and there exists a spectral gap p(a, N)
(see Appendix C). Then, our interest is how the upper-bound
of the LSI constant A(«, V) and p(a, N) depend on N, «.
We answer this in the following lemma:

Lemma 2. Under the same conditions as Theorem 4, we
have

Ao, N) < Ma=0,N) =X < A (35)

This means that the upper-bound of the LSI constant of the
proposed method can be smaller than that of naive parallel-
chain SGLD. Moreover, it is bounded by that of standard
SGLD. The proof is shown in Appendix K.2. Here, we
briefly describe the outline of the proof. First, note that
Eq.(260) is monotonically increasing function about p—!
if C is fixed. This means that the larger the spectral gap
p is, the smaller the upper-bound of the LSI constant is.
Thus, we need to evaluate the spectral gaps. We can prove
p(a, N) > p(0,N) by the spectral decomposition of L.
Then, since L£,— is the generator of naive parallel-chain
SGLD, we can apply this tensorization property of a spectral
gap. This results in p(0, N) = pg. Next, we prove the
constant C of Eq.(260) for L, L,—o and L are the same.
Finally, combined with the inequality of spectral gaps and
the equality of C', we get the lemma. See Appendix K.2 for
more details.

We cannot obtain this lemma in the approach of Raginsky
et al. (2017) because we cannot conclude that the larger
the spectral gap py is, the smaller the LSI constant is. This
is because, when we use the Lyapunov condition-based
approach, its estimation includes the term: py 'E, || X||?
and this second moment of the N-particle system can be N
times larger than that of the single-particle system.

4.4. Comparison with naive parallel-chain SGLD

In Eq.(31), the first term is dominated by the discretiza-
tion error and the second term is the convergence to the
stationary. Compared to the naive parallel-chain bound in
Eq.(27), the discretization error becomes larger due to the
additional interaction term. On the other hand, since the
upper-bound of the LSI constant becomes small, the conver-
gence speed is improved. In conclusion, when we use the
non-reversible interaction term, there is a trade-off between
the larger discretization error and faster convergence speed.

From Theorem 4, we should set « to be small enough so that
the discretization error will not become so large. Under the
assumption that « is sufficiently small, we can evaluate how
much the spectral gap is improved in the following way:

Theorem 5. Let us denote the pairs of the eigenvalues and
eigenvectors of —Lq=o as {(pk, ex) }32 o , which satisfies
0 < po < p1 < ---. Then, the spectral gap is p(0, N) = py.
Let V := Loxo — La—o. Under the same conditions as
Theorem 4, we have

QN |2

= Veod
s N) = p(0,N) +a* Y W eVeodr®TF | 043
b1 Pk — Po

The proof is shown in Appendix J.3. This is the perturbation
of the operator £,,. Note that the first-order of « is zero due
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to the skew-symmetric property of J. The second term of
the above equation is always positive since for all k£ > 1,
pr > po. Thus, up to the second-order of «, the spectral gap
becomes large. In practice, since it is difficult to calculate
the eigenvectors and eigenvalues of £, evaluation of the
second term is difficult numerically.

5. Related work

In this section, we discuss the relation of our proposed
method to other ensemble sampling methods and non-
reversible Markov chain methods.

5.1. Comparison with other ensemble samplings

Although Stochastic particle-optimization sampling (SPOS)
(Zhang et al., 2018) is the most closely related method to
ours, it is a Vlasov process, of which drift function depends
on the probability law at each time steps. Since we do not
know the explicit expression of this law in practice, we
need the empirical approximation for it by particles. This
introduces an additional bias. To reduce this bias, we need a
large number of particles, which causes high computational
costs.

Another difference between SPOS and the proposed method
is that we upper-bound the W5 distance, while the bound of
SPOS is upper-bounded in terms of the W; distance. Then,
for the discretization error, they obtained the bound follow-
ing the approach in Raginsky et al. (2017). Thus, the bias
is O(VN ). On the other hand, as shown in Theorem 4,
our bound does not depends on N explicitly and /N only
affects the LSI constant. As for the convergence rate, they
showed the exponential convergence and its exponent de-
pends on p?V, where p is the positive constant, p € [0,1).
This means that as we increase the number of particles, the
convergence speed drops significantly. Thus, it is hard to
recognize the advantage of the ensemble method.

Another famous ensemble method is Nusken & Pavliotis
(2019). While our method correlates particles by using the
divergence-free drift, Nusken & Pavliotis (2019) correlates
particles by the coupling technique, such as synchronous
coupling, mirror coupling. Another difference is that we
focused on non-asymptotic behavior, on the other hand, they
focused on asymptotic behavior.

The existing parallel-chain SGLD methods, e.g. Chen et al.
(2016); Ahn et al. (2014), focus on reducing the compu-
tational cost of calculating the gradient by the distributed
framework. On the other hand, our method focuses on
accelerating the sampling.

Other than sampling, Stein variational gradient descent
(SVGD) (Liu & Wang, 2016) is the most widely used ensem-
ble method. However, SVGD is not a valid sampling, which
is pointed out in Zhang et al. (2018). Moreover, because it is

a Vlasov process, it is hard to assure the theoretical guaran-
tee under the non-asymptotic settings. Thus, the theoretical
advantage as the ensemble method is unclear.

5.2. Comparison with the non-reversible drift work

Compared to existing non-reversible Markov chain work
(Hwang et al., 2005; 2015; Duncan et al., 2016; 2017; Kaiser
et al., 2017), our work has both theoretical and numerical
contributions in this field. We believe that this work is the
first step to clarify the non-asymptotic behavior of the non-
reversible Markov chain with the non-convex potential func-
tion, which is widely used in the field of SGLD, while the
existing work of non-reversible Markov chain has focused
on the asymptotic settings. Although some work also fo-
cused on the convergence speed, they only took into account
the Ornstein-Uhlenbeck (OU) processes, which have the
convex potential functions and are limited. As for the con-
vergence, we focused on the LSI under the non-reversible
drift settings and derived the explicit formula (Theorem 5)
about the improvement of a spectral gap.

As for the numerical contributions, we believe that this work
is the first attempt to apply the divergence-free drift method
to the standard Bayesian models. Most existing work only
took into account OU processes. In the next section, we
numerically clarify that the divergence-free drift methods
are promising for sampling in Bayesian inference.

6. Numerical experiments

Detailed experimental settings are shown in Appendix M.
From the theoretical analysis, we confirmed that there is a
trade-off between discretization error and the convergence
speed. Thus, it is natural to consider that if we tune the
interaction o and J appropriately, we can improve the con-
vergence speed while regulating the discretization error. We
confirm this numerically since theoretical analysis does not
tell us what is the optimal « and J.

Thus, the primal purpose of the numerical experiments is to
confirm that our proposed ensemble methods enjoy better
and faster performance compared to naive parallel-chain
SGLD. Additionary, we compared the proposed method
with other ensemble methods; SPOS, SVGD. We also
changed the value of « so that how « affects the discretiza-
tion error and the convergence rate. The models we used
are simple and widely used Bayesian models including
the Ornstein-Uhlenbeck process (OU), Bayesian logistic
regression (BLR), Latent Dirichlet Allocation (LDA) and
Bayesian neural net (BNN).

Another purpose of the experiments is to study the effect
of the choice of .J since it is unknown how to construct the
skew-symmetric matrix J for the smaller bias theoretically.
Thus, we prepared three types of J. We generated .J in the
following way: First, generated an upper triangular matrix
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Figure 1. OU experiments (Averaged over 10 trials)

J' randomly and then calculated .J’ — J'T. We generated
two types of J’, of which each entry follows the Bernoulli
distribution and the Gaussian distribution. Then, we nor-
malized them to satisfy Assumption 6. We refer to this
matrix multiplied o as skew-B(«) that is generated from
the Bernoulli distribution and skew-N(«) that is generated
from the Gaussian distribution in the followings. Another
skew-symmetric matrix is that before taking the normaliza-
tion in skew-N, we multiplied the kernel Gram matrix of
RBF kernel, of which elements are X from both left and
right-hand side. This is expressed as skew-k(a).

We used 20 particles for all the experiments except for OU.
We repeated 10 trials for OU, BLR and LDA experiments,
and 20 trials for BNN experiments. The following values
and error bars are the mean and the standard deviation of
these trials.

Ornstein-Ohlenbeck process: This process is given by

dX, = 27X, — p)dt + V2dw(t) (36)
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Figure 2. BLR experiments (Averaged over 10 trials)

for the standard SGLD. Its stationary distribution is m =
N(p,X). Theoretical properties of this dynamics and its
discretized version have been widely studied (Wibisono,
2018). An important property is that there is a formula
for Wo (14, ) if the initial distribution is Gaussian (see Ap-
pendix M for the details). Thus, by studying the convergence
behavior of OU, we can understand our proposed method
more clearly.

In our experiments, we used 100 particles. Since calculating
the W5 distance is computationally demanding, we used the
energy distance (Székely et al., 2004) and the maximum
mean discrepancy (MMD) (Gretton et al., 2007) between
,u,?N and the stationary distribution as indicators to observe
the convergence. The results are shown in Figure 1.

We can see that if « is set to be very small, its performance
is close to naive parallel-chain SGLD, while if « is set to
too large, it suffers from the large discretization error. This
shows that there is a trade-off between the larger discretiza-
tion error and faster convergence by the interaction, as our
analysis clarified.

Bayesian logistic regression experiment: Following Liu
& Wang (2016), we test on BLR using Covertype dataset
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Table 1. Holdout perplexity (Averaged over 10 trials)
Method Test perplexity
SGLD 1034.86 £+ 1.46
SVGD 1029.97 £1.02
SPOS 1031.42 £ 1.15

Skew-k(0.01)
Skew-N(0.02)
Skew-B(0.01)

1029.12 £ 1.35
1026.47 + 1.72
1024.33 + 1.85
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Figure 3. LDA experiments (Averaged over 10 trials)

(Dua & Graff, 2017) and the result is shown in Fig.2. In
Fig.2(a), we can see that by the interaction, the conver-
gence speed and performance is improved compared to
naive parallel-chain SGLD. In Fig.2(b), we changed « in
skew-N. We can see a trade-off between the larger discretiza-
tion error and faster convergence, which is similar to the re-
sults of OU. The results of skew-B is shown in Appendix M.

Latent Dirichlet allocation experiment: We test on
LDA model using the ICML dataset (Ding et al., 2014)
following the same setting as Patterson & Teh (2013). The
result is shown in Table.1 and Fig.3. From the left-figure
of Fig.3 and Table.1, the proposed method shows faster
and superiror performance compared to naive parallel-chain
SGLD, and competitive performance with SVGD and SPOS.
In the left-figure of Fig.3, we did the experiments with dif-
ferent «, and found that the result is robust to the choice of
.

Bayesian neural net regression: We test on the BNN re-
gression task using Kin8nm dataset of UCI (Dua & Graff,
2017), following the same setting as Liu & Wang (2016).
The results are shown in Table 2. We found that the pro-
posed methods shows competitive performance with other
ensemble methods. We show an additional Figure in Ap-
pendix M.

Bayesian neural net classification: We test on the BNN
classification task using MNIST (LeCun & Cortes, 2010)
dataset. We used a fully connected two-layer neural network

Table 2. Results of BNN experiments (Averaged over 20 trials)

Method Test RMSE (x10~?) Test LL

SGLD 6.92 + 0.08 1.20+ 0.01
SVGD 7.24 4+ 0.07 1.16 £ 0.01
SPOS 6.88+ 0.07 1.21 £ 0.01
Skew-N(0.05) 6.86 &= 0.08 1.214+0.01
Skew-B(0.05) 6.90 £ 0.07 1.21 £0.01

MNIST classification
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Figure 4. Mnist classification (Averaged over 10 trials)

with 100 and 50 hidden units. The detailed settings are
shown in Appendix M. The result is shown in Figure 4. We
found that proposed methods show competitive performance
with other ensemble methods.

7. Conclusion

In this work, we proposed the new diffusion-based ensem-
ble sampling, which updates many particles simultaneously
with interaction by using the non-reversible drift term. We
also derive the non-asymptotic bound and compare it with
that of the naive parallel-chain SGLD. Introducing the in-
teractions have resulted in the larger discretization error
and faster convergence, which is a trade-off. Numerical
experiments on standard Bayesian models clarified that by
choosing the interaction carefully, we can enjoy faster con-
vergence compared to naive parallel-chain SGLD.

Our work can be extended in various ways. Theoretically, it
is still unclear how much the convergence speed is improved
when « is not small and the discretization error is crude,
and we leave them to the future work. It is still unclear
how to choose an appropriate skew-symmetric matrix and o
theoretically, although it is important in practice. This also
should be clarified in future work.
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