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Abstract
Posterior distribution approximation is a central
task in Bayesian inference. Stochastic gradient
Langevin dynamics (SGLD) and its extensions
have been practically used and theoretically stud-
ied. While SGLD updates a single particle at
a time, ensemble methods that update multiple
particles simultaneously have been recently gath-
ering attention. Compared with the naive parallel-
chain SGLD that updates multiple particles in-
dependently, ensemble methods update particles
with their interactions. Thus, these methods are
expected to be more particle-efficient than the
naive parallel-chain SGLD because particles can
be aware of other particles’ behavior through
their interactions. Although ensemble methods
numerically demonstrated their superior perfor-
mance, no theoretical guarantee exists to assure
such particle-efficiency and it is unclear whether
those ensemble methods are really superior to the
naive parallel-chain SGLD in the non-asymptotic
settings. To cope with this problem, we pro-
pose a novel ensemble method that uses a non-
reversible Markov chain for the interaction, and
we present a non-asymptotic theoretical analysis
for our method. Our analysis shows that, for the
first time, the interaction causes a faster conver-
gence rate than the naive parallel-chain SGLD in
the non-asymptotic setting if the discretization er-
ror is appropriately controlled. Numerical experi-
ments show that we can control the discretization
error by tuning the interaction appropriately.

1. Introduction
In Bayesian inference, a central task is to accurately and
efficiently evaluate the posterior distribution (Bishop, 2006;
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Murphy, 2012). For many practical models, we cannot ob-
tain an analytical expression of the normalizing constant;
thus, we need to approximate the posterior. One of the most
successfully used methods to approximate the posterior is
stochastic gradient Langevin dynamics (SGLD)(Welling &
Teh, 2011) and its variants (Ma et al., 2015; Chen et al.,
2016; 2014). These are diffusion-based sampling meth-
ods and suitable for large-scale data by using not the full
gradient but a stochastic version obtained through a ran-
domly chosen subset of data. Each sample in SGLD moves
toward the gradient direction with added Gaussian noise
(hereinafter, we refer to a sample as a particle). Exten-
sions of SGLD have been extensively developed (Ma et al.,
2015; Chen et al., 2014) to focus on improving the sampling
scheme, which updates one particle at a time, by extending
its associated phase space.

On the other hand, ensemble methods that update multiple
particles simultaneously have recently been gathering at-
tention (Nusken & Pavliotis, 2019). Compared with naive
parallel-chain SGLD, which also updates multiple parti-
cles independently at each step, recent ensemble methods
introduced some interaction between particles. The advan-
tage of these methods is that the multiple particles interact
with each other while moving simultaneously; thus, they
have correlations with each other. Because of these correla-
tions, these particles can be aware of each other’s behavior
and can be more particle-efficient than naive parallel-chain
SGLD, in which the particles are independent of each other
(Liu et al., 2019a). Also, recent development of parallel-
processing computation schemes has further encouraged
the ensemble methods (Nusken & Pavliotis, 2019). Repre-
sentative examples of diffusion-based ensemble methods
include Stein variational gradient descent (SVGD) (Liu &
Wang, 2016) and stochastic particle-optimization sampling
(SPOS)(Zhang et al., 2018).

Although the ensemble methods showed superior perfor-
mance numerically, no theoretical analysis has been con-
ducted to clarify the theoretical advantage of introducing
such “interactions” into diffusion-based sampling in a non-
asymptotic setting and no work has clarified such improved
“particle efficiency”. To be more precise, the theoretical
advantage of updating multiple particles simultaneously
through their interactions compared to naive parallel-chain
SGLD, which updates multiple particles independently at
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each step, has not been clarified yet.

It is difficult to theoretically compare SVGD and SPOS with
naive parallel-chain SGLD because SVGD and SPOS are
Vlasov processes (Veretennikov, 2006; Bolley et al., 2010),
which are nonlinear Markov processes. Thus, we raise a
different, related question: Is it possible to construct an
ensemble sampling that is theoretically superior to naive
parallel-chain SGLD in a non-asymptotic setting ? We an-
swer this question affirmatively by using the technique of
a non-reversible Markov chain (Hwang et al., 2005; Kaiser
et al., 2017; Hwang et al., 2015; Duncan et al., 2016; 2017).
Although non-reversible methods introduce an additional
drift function into the stochastic differential equation (SDE),
the introduced drift never changes the stationary distribu-
tion of the original SDE and accelerates the convergence.
Thus, we propose constructing the interaction between par-
ticles with the technique of such non-reversible methods.
Then, we theoretically analyze the 2-Wasserstein (W2) dis-
tance and the bias of the given target function in the non-
asymptotic setting and compare it with the case of naive
parallel-chain SGLD.

Our contributions: The major contributions of this work
are as follows.

1. We propose a new ensemble sampling method based on
the non-reversible Markov chain technique. Then, we
theoretically analyze the proposed sampling scheme in
terms of the W2 distance. To obtain an upper bound
on the W2 distance for our proposed method, we first
improve the existing upper bound for standard SGLD,
given in Raginsky et al. (2017). Our new bound for
standard SGLD shows a tighter upper bound on the
constant of the logarithmic Sobolev inequality.

2. To clarify the advantage of using particle interaction,
we compare theoretical properties of the proposed sam-
pling method with those of naive parallel-chain SGLD
(Chen et al., 2016; Ahn et al., 2014). We find that
the interaction causes a trade-off between a larger dis-
cretization error and faster convergence to the station-
ary distribution.

3. We conduct numerical experiments to confirm that we
can control the trade-off by tuning the interaction ap-
propriately. Experiments on standard Bayesian models
support our theoretical findings and show the superior
performance of our method compared to SGLD and
other ensemble methods.

Notations: The last page of Appendix gives a summary of
the notations used in this paper. Note that · and ‖ · ‖ denote
the Euclidean inner product and distance, respectively, and
| · | is the absolute value. Capital letters such as X represent
random variables, and lowercase letters such as x represent
usual real values.

2. Preliminary
In this section, we briefly introduce the basic settings of
SGLD and its theoretical behavior.

2.1. SGLD and its non-asymptotic behavior

First, we introduce the notations and basic settings of SGLD.
Appendix B gives detailed explanations. Our aim is to
approximate the target distribution with density dπ(x) ∝
e−βU(x)dx, where the potential function U(x) is the sum-
mation of u : Rd×Z→ R, thus U(x) = 1

|Z|
∑|Z|
i=1 u(x, zi).

Here, zi denotes the data point in some space Z, |Z| denotes
the total number of data points and we express the tuple of
data points as Z = (z1, . . . , z|Z|). x ∈ X ⊂ Rd denotes a
parameter of the given model.

The SGLD algorithm (Welling & Teh, 2011; Raginsky et al.,
2017) is given as the recursion

Xk+1 = Xk − hg(Xk, Qz,k) +
√

2hβ−1εk, (1)

where h ∈ R+ is a step size, εk ∈ Rd is a standard Gaussian
random vector, g(Xk, Qz,k) is an conditionally unbiased es-
timator of the true gradient∇U(Xk), and Qz,k is a random
variable following the probability Pz(Qz,k) that expresses
the stochastic access to the subset of data points {zi} and sat-
isfies EPz(Qz,k)[g(Xk, Qz,k)] = ∇U(Xk) (see Appendix B
for the detail). We assume thatX0, εk, Qz,k are independent
of each other.

The discrete time Markov process Eq.(1) can be regareded as
the discretization of the continuous-time Langevin dynamics
(Raginsky et al., 2017)

dXt = −∇U(Xt) +
√

2β−1dw(t), (2)

where w(t) denotes standard Brownian motion in Rd. The
stationary measure of Eq.(2) is dπ(x) ∝ e−βU(x)dx.

We denote the law of Xk induced by Eq.(1) as µkh and the
law of Xt induced by Eq.(2) as νt. Our goal is to sample
from the true target measure π. This goal can be naively
achieved by taking samples from Eq.(2) according to the
ergodic theory. However, Eq.(2) represents a continuous
dynamics and we cannot simulate it exactly. Instead, we
take samples from the discretized dynamics of Eq.(1). Thus,
our interests are in how much µkh differs from π and in
how much µkh differs from νkh. In this work, we measure
this by the W2 distance and the bias given a target function.
The W2 distance is expressed by W2(µkh, π), where the
cost function is Euclidean distance (see Appendix A for the
definition). The bias of a given test function f is expressed
by
∣∣Ef(Xk)−

∫
Rd fdπ

∣∣.
We review the result of Raginsky et al. (2017), which estab-
lished the convergence of the SGLD algorithm in terms of
the W2 distance. Although there are already sharper results
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e.g., Xu et al. (2018), in terms of the dimension, our anal-
ysis relies on the result of convergence via the logarithmic
Sobolev inequality (LSI) (see Appendix C). Thus, we follow
the approach in Raginsky et al. (2017), which also used the
LSI.

Assumptions: Before proceeding to the result, we intro-
duce the assumptions used in this work, which are the same
as those in Raginsky et al. (2017).
Assumption 1. (Upper bound of the potential function at
the origin) The function u takes nonnegative real values
and is continuously differentiable on Rd, and there exist
constants A,B such that, for all z ∈ Z,

|u(0, z)| ≤ A, ‖∇u(0, z)‖ ≤ B. (3)

Assumption 2. (Smoothness) The function u has Lipschitz
continuous gradients; that is, for all z ∈ Z, there exists a
positive constant M for all x, y ∈ Rd,

‖∇u(x, z)−∇u(y, z)‖ ≤M‖x− y‖. (4)

Assumption 3. (Dissipative condition) The function u sat-
isfies the (m,b)-dissipative condition for all z ∈ Z; that is,
for all x,∈ Rd, there exist m > 0, b ≥ 0, such that

−x · ∇u(x, z) ≤ −m‖x‖2 + b. (5)

Assumption 4. (Initial condition) The initial probability
distribution µ0 of X0 has a bounded and strictly positive
density p0 and for all x ∈ Rd,

κ0 := log

∫
Rd
e‖x‖

2

p0(x)dx <∞. (6)

Assumption 5. (Stochastic gradient) There exists a con-
stant δ ∈ [0, 1) such that

EP (Qz,k)[‖g(x,Qz,k)−∇U(x)‖2] ≤ 2δ
(
M2‖x‖2 +B2

)
. (7)

The motivation to use the same assumptions as in Raginsky
et al. (2017) is that we want to clarify the advantage of intro-
ducing interactions in terms of the W2 distance compared
to standard SGLD. Under the above assumptions, the error
is bounded in the following way.
Theorem 1. (Proposition 10 in Raginsky et al. (2017))
Under Assumptions 1 to 5, for any k ∈ N and any
h ∈ (0, 1 ∧ m

4M2 ) obeying kh ≥ 1 and βm ≥ 2, we have

W2(µkh, π) ≤ C̃kh+
√

2λ0C ′e
− kh
βλ0 , (8)

C0 =
(
M2

(
κ0 + 2

(
1 ∨ 1

m

) (
b+ 2B2 + d

β

))
+B2

)
,

C1 = 6M2(βC0 + d),

C̃2
0 =

(
12 + 8

(
κ0 + 2b+ 2d

β

)) (
βC0 +

√
βC0

)
,

C̃2
1 =

(
12 + 8

(
κ0 + 2b+ 2d

β

)) (
C1 +

√
C1

)
,

C̃ =
√
C̃2

0

√
δ + C̃2

1

√
h,

C ′ = log ‖p0‖∞ + d
2 log 3π

mβ + β
(
Mκ0

3 +Bκ
1/2
0 +A+ b log 3

2

)
,

and λ0 is the constant of LSI shown in Eq.(11); see Sec-
tion 2.2 for details.

In Eq.(8), the first term corresponds to the error due to the
discretization and stochastic gradient, i.e., W2(µkh, νkh)
(hereinafter, we refer to this term as the discretization error
for simplicity), and the second term corresponds to the
convergence to the stationary measure, i.e., W2(νkh, π).

2.2. Logarithmic Sobolev inequality

The constant of LSI, λ0 plays an important role to analyze
the SDEs including our non-reversible SGLD. Here, we
introduce basic concepts (see Appendix C and Bakry et al.
(2013) for more details). First, we introduce the generator
associated to SDE of Eq.(2) as

Lf(Xt) : = lims→0+
E(f(Xt+s)|Xt)−f(Xt)

s

=
(
−∇U(Xt) · ∇+ β−1∆

)
f(Xt), (9)

where ∆ denotes a standard Laplacian on Rd, f ∈ D(L)
and D(L) ⊂ L2(π) denotes the domain of L. This −L is
a self-adjoint operator, which has only discrete spectrums
(eigenvalues). We say that π with L has a spectral gap if
the smallest eigenvalue of −L other than 0 is positive. We
refer to it as ρ0(> 0) (see Appendix C). We say that π with
L satisfies the (tight) logarithmic Sobolev inequality (LSI)
with constant λ0 (we call this LSI(λ0)) if for any f that is
integrable (

∫
Rd f | log f |dπ <∞), π with L satisfies,

Entπ(f2) ≤ −2λ0

∫
Rd
fLfdπ, (10)

Entπ(f) :=
∫
Rd f log fdπ −

∫
Rd fdπ log

(∫
Rd fdπ

)
.

Then, Raginsky et al. (2017) clarified that under the con-
ditions of Theorem 1, π with L of Eq.(9) satisfies LSI(λ0)
and an upper bound of λ0 is given as

λ0 ≤ λl := D1 + ρ−1
0 (D2 + 2), (11)

D1 = 2m2+8M2

βm2M , D2 ≤ 6M(d+β)
m , (12)

ρ−1
0 ≤ 2C(d+bβ)

mβ exp
(

2
m (M +B)(bβ + d) + β(A+B)

)
+ 1
mβ(d+bβ) . (13)

This constant λ0 controls the convergence speed in Theorem
1. The smaller λ0 means faster convergence. From D2 and
ρ, larger d means larger λ0 (see Propositions 13 and 15,
Appendix B in Raginsky et al. (2017) or Theorem 1.2 (2) in
Cattiaux et al. (2010) for details).

3. Proposed ensemble sampling
As we mentioned in the introduction, we update N particles
simultaneously. First, we introduce the notations to treat
the multiple particles. We express the n-th particle at time
t as X(n)

t ∈ Rd. We express the joint state of all the N
particles at time t as X⊗Nt := (X

(1)
t , . . . , X

(N)
t )> ∈ RdN .
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We express the joint stationary measure as π⊗N := π ⊗
· · · ⊗ π ∝ e−U(X(1))−U(X(2))−···−U(X(N)).

3.1. Naive parallel-chain SGLD

First, we introduce naive parallel-chain SGLD. The N -
parallel and independent chain is written as

dX⊗Nt = −∇U⊗N (X⊗Nt )dt+
√

2β−1dwt, (14)

∇U⊗N (X⊗Nt ) :=
(
∇U(X

(1)
t ), . . . ,∇U(X

(N)
t )

)>
, (15)

and wt is the dN -dimensional Wiener process. The dis-
cretized dynamics with the stochastic gradient is given as

X⊗Nk+1 = X⊗Nk − g⊗Nk h+
√

2β−1εk, (16)

g⊗Nk := (g(X
(1)
k , Qz,k), . . . , g(X

(N)
k , Qz,k))>, (17)

where each g(X
(n)
k , Qz,k) is an unbiased estimator of the

gradient∇U(X
(n)
t ) and for simplicity, we assume the same

random access to the data points for all n. Intuitively, this
means we use the same subset of data for all n. εk ∈ RdN
is a standard Gaussian random vector. Eq.(16) is the base-
line method of the ensemble sampling since there is no
interaction among particles. This dynamics is just the con-
catenation of the d-dimensional single chain introduced in
Eq.(2). We assume that all the initial measures {X(n)

0 }Nn=1

are the same. Then, all the marginal probability at any time
t ≥ 0 will be the same. We study theoretical properties of
the dynamics in Eq.(16) in Section 4.2.

3.2. Proposed algorithm

Building on naive parallel-chain SGLD, we propose our
sampling scheme. Motivated by existing ensemble methods,
including SVGD and SPOS, we introduce an interaction
term into naive parallel-chain SGLD. Specifically, we intro-
duce the additional drift term γ in the following way:

dX⊗Nt =−∇U⊗N(X⊗Nt )dt+αγ(X⊗Nt )dt+
√

2β−1dwt, (18)

where α ∈ R expresses the strength of the interaction term.
Since the stationary measure should not be changed by the
interaction, we assume that the interaction γ satisfies the
divergence-free condition: ∇ · (γπ⊗N ) = 0. Then, we
can easily confirm that the interaction never changes the
stationary measure (see Appendix H.1). This type of drift
term has been studied in Hwang et al. (2005), Kaiser et al.
(2017), Hwang et al. (2015), Duncan et al. (2016), Duncan
et al. (2017), Hu et al. (2020). There are multiple ways to
construct such γ. Our strategy is using a skew-symmetric
matrix J as

γ(X⊗Nt ) = −J∇U⊗N (X⊗Nt ), J = −J>. (19)

This surely satisfies the divergence-free condition. This is
motivated by SVGD and SPOS, which use the derivative of a

kernel function as the interaction. Note that the derivative of
the kernel Gram matrix is a skew-symmetric matrix. Then,
we introduce a discretized dynamics as

X⊗Nk+1 = X⊗Nk − g⊗Nk h+ αγg⊗Nh+
√

2β−1εk, (20)

γg⊗N := −Jg⊗Nk . (21)

We denote the law of X⊗Nk induced by Eq.(20) as µ⊗Nkh and
the law of X⊗Nt induced by Eq.(18) as ν⊗Nkh . We discuss
theoretical properties of this dynamics in Section 4.3.

4. Theoretical properties
In this section, we first improve the bound of standard
SGLD, Eq.(1) and then, analyze our proposed method.

4.1. Standard SGLD
First, we present our bound for standard SGLD, then discuss
its difference from the Theorem 1 of Raginsky et al. (2017).
Theorem 2. Under Assumptions 1 to 5, for any k ∈ N and
any h ∈ (0, 1 ∧ m

4M2 ) obeying kh ≥ 1 and βm ≥ 2, µkh,
which is induced by Eq.(1), satisfies

W2(µkh, π) <
√
C3 (kh+ C4) kh+

√
2λC ′e−

kh
βλ , (22)

C3 := 6
β (C1h+ βC0δ),

C4 := (6M2)−1
(√

2π(3M2)−1exp
(

3M2

2 (kh)2
)
− kh

)
,

where C0, C1, and C ′ are given in Eq.(8). λ is the LSI
constant.

We can obtain a tighter bound for the LSI constant than that
of Raginsky et al. (2017).
Theorem 3. Under the same conditions as Theorem 2 and
the additional condition (4d + 9)πe2 > βm ≥ 16πe2/3,
the LSI constant is upper-bounded by λe:

λ ≤ λe := ((1 + ρ−1
0 |C|)2πe2)−1 + 3(2ρ0)−1, (23)

−C := infx

{
β
4 ‖∇U(x)‖2− 1

2∇2U(x)−πe2U(x)
}
, (24)

where ρ0 is given in Eq.(13) and C is bounded by

0 < C ≤ βB2

4
+
bπe2

2
log 3 +

Md

2
. (25)

Moreover, λe is always smaller than λl of Eq.(11) estimated
by Raginsky et al. (2017).

The proof of Theorem 2 is shown in Appendix E.1 and the
proof of Theorem 3 is shown in Appendix K.1. We may
further eliminate the additional assumption of Theorem 2.
See Theorem 14 in Appendix L for details.

Outline of the proof: Our proof is similar to that of Ra-
ginsky et al. (2017). First, we decompose the W2 distance
in the following way:

W2(µkh, π) ≤W2(µkh, νkh) +W2(νkh, π). (26)
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Then, we bound the convergence to the stationary,
W2(νkh, π), in the same way as Raginsky et al. (2017)
using the property of LSI (see Appendix E.1). The dif-
ference is the discretization error, W2(µkh, νkh). Simi-
larly to Chen et al. (2019), we consider the continuous-
time interpolation of Eq.(1) and denote by Vk, of which
measure is the same as µkh. Then, we use the relation
W 2

2 (νkh, µkh) ≤ E‖Xk−Vk‖2, and upper-bound the right-
hand side of this inequality and applied Gronwall’s inequal-
ity to it.

As for the estimation of the LSI constant, we use the method
of Carlen & Loss (2004), which relies on a restricted LSI
and a spectral gap. If −C, which is defined in Eq.(24), is
lower-bounded, then, π admits an LSI and its constant is
upper-bounded by λ ≤ ((1 + ρ−1|C|)2πe2)−1 + 3(2ρ)−1

where ρ is a spectral gap. See Appendix K.1 for the proof.

Comparison with Theorem 1: The W2 distance of our
Theorem 2 shows better dependency on N compared to
Theorem 1, especially for the discretization error and the
LSI constant. First, we discuss the discretization error.
In Theorem 1, the discretization error is C̃kh, which de-
pends on d linearly due to the weighted CKP inequal-
ity in the derivation. On the other hand, our discretiza-
tion error shows d1/2-dependency. This gap is impor-
tant when we consider ensemble sampling. Let us con-
sider the bias of an ensemble sampling; that is, with N -
particles, we approximate the integral of a test function f
by 1

N

∑N
n=1 f(X

(n)
k ). If a test function f is Lf -lipschitz in

Rd, the bias
∣∣∣E 1

N

∑N
n=1 f(X

(n)
k )−

∫
Rd fdπ

∣∣∣ can be upper-

bounded by the W2 distance multiplied by Lf/
√
N . Ad-

ditionally, when we assume the W2 distance of this en-
semble sampling can be upper-bounded by the same ap-
proach as Theorem 1, then since the N -particle system is
dN -dimensonal, its discretization error linearly depends on
dN . Thus, the bias is O(

√
N). This means that the more

particles we use, the larger bias we suffer. This is an unde-
sirable property as the ensemble sampling. Our approach
in Theorem 2 does not suffer from this problem, since the
discretization error depends on

√
dN ; thus, the bias of ours

has the constant order with respect to N . However, our
discretization error is crude which entails

√
khek

2h2

. See
Appendix E.2 for more details. We may further improve the
discretization error based on Vempala & Wibisono (2019).
See Theorem 9 in Appendix F for details.

Next, we discuss the upper-bound of the LSI constant. In
Raginsky et al. (2017), the LSI constant is estimated via the
Lyapunov condition-based approach (Cattiaux et al., 2010).
Its estimate is given by λ ≤ a+ ρ−1

0 (a′ + a′′
∫
Rd ‖x‖2dπ),

where a, a′, a′′ are some positive constants and independent
of d. Thus, if we consider the dN -dimensional particle sys-
tem, the estimated LSI constant becomes significantly larger

than the single-particle system due to the second-moment
term. Since the larger LSI constant means the slower conver-
gence to the stationary measure, the convergence speed of
the N -particle system is much slower than that of standard
SGLD. Thus, this results in a larger bias. On the other hand,
our estimation in Theorem 3 does not show such behavior.
Moreover, as we will see in Section 4.3, we can show that
our estimate of the LSI constant for the proposed ensemble
sampling is smaller than that of standard SGLD. However,
we need the stronger condition of βm ≥ 16πe2 than that of
Raginsky et al. (2017), which is βm ≥ 2. See Appendix K.1
for more details.

4.2. Naive parallel-chain SGLD
We analyze naive parallel-chain SGLD with N particles.
Since naive parallel-chain SGLD is just theN concatenation
of standard SGLD, itsW2 distance isN1/2 times larger than
Eq.(8). In addition to the W2 distance, we consider bias
here additionally. Our goal is to approximate the integral of
the test function f with Lf -lipschitzness by the ensemble
average 1

N

∑N
n=1 f(X

(n)
k ). Then we obtain,

Corollary 1. Under the same conditions as Theorem 2,
X⊗Nk of Eq.(16) satisfies∣∣∣E 1

N

∑N
n=1 f(X

(n)
k )−

∫
Rd fdπ

∣∣∣
< Lf

(√
C3 (kh+ C4) kh+

√
2λC ′e−

kh
βλ

)
, (27)

where the constants C0, C1, C
′ and λ are given in Theo-

rem 2.

The proof is shown in Appendix G. Note that this bias does
not depend on N , which means that using multiple chains
will not contribute to reducing the bias.

4.3. Proposed method
Here, we analyze our proposed method. Since we control the
magnitude of the interaction by α, we impose the additional
condition about the norm of J :

Assumption 6. A skew-symmetric matrix J is bounded as

‖J‖F ≤ 1, (28)

where ‖ · ‖F is the Frobenius norm.

Then, we have our main theorem,

Theorem 4. Under the same conditions as Theorem 3 and
Assumption 6, µ⊗Nkh , which is induced by Eq.(20), satisfies

W2(µ⊗Nkh ,π
⊗N)

<N1/2(
√
C ′3(α) (kh+ C ′4(α)) kh+

√
2λC ′e−

kh
βλ ), (29)

where C ′3(α), C ′4(α) are the positive constants, which are
obtained by replacing M → (1 +α)M , B2 → (1 +α)2B2
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in C3 and C4 of Eq.(22) (see Appendix H for details) and λ
is the LSI constant bounded by λ(α,N):

λ ≤ λ(α,N)

{
≤ λe if α 6= 0

= λe if α = 0
. (30)

The proof is shown in Appendix H. It is clear that when we
substitute N = 1 and α = 0 in Theorem 4, the bound will
be equal to standard SGLD, Eq.(22). This is natural since
these conditions means that there is no interaction.

From the above theorem, we can easily find that the bias of
our proposed method is∣∣∣E 1

N

∑N
n=1 f(X

(n)
k )−

∫
Rd fdπ

∣∣∣
< Lf

(√
C ′3(α) (kh+ C ′4(α)) kh+

√
2λC ′e−

kh
βλ

)
, (31)

which never increases as N increases. N only appears
through the upper-bound of the LSI constant. See Ap-
pendix H.7 for this proof. We may further improve the
discretization error based on Vempala & Wibisono (2019).
See Theorem 11 in Appendix I for details.

Outline of the proof of Theorem 4

Modified dissipative condition: First, we study how the
parameters in the dissipative and smoothness assumptions
are modified by the interaction. We define the drift func-
tion ∇uα(x⊗N , z) := ∇u⊗N (x⊗N , z) + αJ∇u⊗N (x⊗N , z)

and ∇U⊗Nα =
∑
z∇uα(x⊗N , z)/|Z|. Then, we have

Lemma 1. Let x⊗N , y⊗N ∈ RdN , for all z,

− x⊗N · ∇uα(x⊗N , z) ≤ −m‖x⊗N‖2 + bN, (32)
‖∇uα(x⊗N,z)−∇uα(y⊗N,z)‖≤M(1+ α)‖x⊗N−y⊗N‖. (33)

Here the dot · and ‖ · ‖ are the inner product and norm in
RdN . Because of the skew-symmetric property of J , the
dissipative constant m does not change. This is a crucial
property in our analysis. The proofs and other conditions
are discussed in Appendix H.

Based on these modified conditions, we bound the W2 dis-
tance in a similar way to standard SGLD in Section 4.1. We
just change the constants in the assumptions.

Smaller upper-bound of the LSI constant: Next, we
discuss the estimation of the LSI constant. Note that the
generator of Eq.(18) is

Lα :=
(
−∇U⊗Nα (X⊗Nt ) · ∇+ β−1∆

)
. (34)

Then, under the same conditions as Theorem 2, π⊗N with
Lα satisfies the LSI and there exists a spectral gap ρ(α,N)
(see Appendix C). Then, our interest is how the upper-bound
of the LSI constant λ(α,N) and ρ(α,N) depend on N , α.
We answer this in the following lemma:

Lemma 2. Under the same conditions as Theorem 4, we
have

λ(α,N) ≤ λ(α = 0, N) = λe < λl. (35)

This means that the upper-bound of the LSI constant of the
proposed method can be smaller than that of naive parallel-
chain SGLD. Moreover, it is bounded by that of standard
SGLD. The proof is shown in Appendix K.2. Here, we
briefly describe the outline of the proof. First, note that
Eq.(260) is monotonically increasing function about ρ−1

if C is fixed. This means that the larger the spectral gap
ρ is, the smaller the upper-bound of the LSI constant is.
Thus, we need to evaluate the spectral gaps. We can prove
ρ(α,N) ≥ ρ(0, N) by the spectral decomposition of Lα.
Then, since Lα=0 is the generator of naive parallel-chain
SGLD, we can apply this tensorization property of a spectral
gap. This results in ρ(0, N) = ρ0. Next, we prove the
constant C of Eq.(260) for Lα, Lα=0 and L are the same.
Finally, combined with the inequality of spectral gaps and
the equality of C, we get the lemma. See Appendix K.2 for
more details.

We cannot obtain this lemma in the approach of Raginsky
et al. (2017) because we cannot conclude that the larger
the spectral gap ρ0 is, the smaller the LSI constant is. This
is because, when we use the Lyapunov condition-based
approach, its estimation includes the term: ρ−1

0 Eπ‖X‖2
and this second moment of the N -particle system can be N
times larger than that of the single-particle system.

4.4. Comparison with naive parallel-chain SGLD
In Eq.(31), the first term is dominated by the discretiza-
tion error and the second term is the convergence to the
stationary. Compared to the naive parallel-chain bound in
Eq.(27), the discretization error becomes larger due to the
additional interaction term. On the other hand, since the
upper-bound of the LSI constant becomes small, the conver-
gence speed is improved. In conclusion, when we use the
non-reversible interaction term, there is a trade-off between
the larger discretization error and faster convergence speed.

From Theorem 4, we should set α to be small enough so that
the discretization error will not become so large. Under the
assumption that α is sufficiently small, we can evaluate how
much the spectral gap is improved in the following way:
Theorem 5. Let us denote the pairs of the eigenvalues and
eigenvectors of −Lα=0 as {(ρk, ek)}∞k=0 , which satisfies
0 < ρ0 < ρ1 < · · · . Then, the spectral gap is ρ(0, N) = ρ0.
Let V := Lα6=0 − Lα=0. Under the same conditions as
Theorem 4, we have

ρ(α,N) = ρ(0, N) + α2
∞∑
k=1

|
∫
ekV e0dπ

⊗N |2
ρk − ρ0

+O(α3).

The proof is shown in Appendix J.3. This is the perturbation
of the operator Lα. Note that the first-order of α is zero due
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to the skew-symmetric property of J . The second term of
the above equation is always positive since for all k ≥ 1,
ρk > ρ0. Thus, up to the second-order of α, the spectral gap
becomes large. In practice, since it is difficult to calculate
the eigenvectors and eigenvalues of Lα, evaluation of the
second term is difficult numerically.

5. Related work
In this section, we discuss the relation of our proposed
method to other ensemble sampling methods and non-
reversible Markov chain methods.

5.1. Comparison with other ensemble samplings
Although Stochastic particle-optimization sampling (SPOS)
(Zhang et al., 2018) is the most closely related method to
ours, it is a Vlasov process, of which drift function depends
on the probability law at each time steps. Since we do not
know the explicit expression of this law in practice, we
need the empirical approximation for it by particles. This
introduces an additional bias. To reduce this bias, we need a
large number of particles, which causes high computational
costs.

Another difference between SPOS and the proposed method
is that we upper-bound the W2 distance, while the bound of
SPOS is upper-bounded in terms of the W1 distance. Then,
for the discretization error, they obtained the bound follow-
ing the approach in Raginsky et al. (2017). Thus, the bias
is O(

√
N). On the other hand, as shown in Theorem 4,

our bound does not depends on N explicitly and N only
affects the LSI constant. As for the convergence rate, they
showed the exponential convergence and its exponent de-
pends on ρdN , where ρ is the positive constant, ρ ∈ [0, 1).
This means that as we increase the number of particles, the
convergence speed drops significantly. Thus, it is hard to
recognize the advantage of the ensemble method.

Another famous ensemble method is Nusken & Pavliotis
(2019). While our method correlates particles by using the
divergence-free drift, Nusken & Pavliotis (2019) correlates
particles by the coupling technique, such as synchronous
coupling, mirror coupling. Another difference is that we
focused on non-asymptotic behavior, on the other hand, they
focused on asymptotic behavior.

The existing parallel-chain SGLD methods, e.g. Chen et al.
(2016); Ahn et al. (2014), focus on reducing the compu-
tational cost of calculating the gradient by the distributed
framework. On the other hand, our method focuses on
accelerating the sampling.

Other than sampling, Stein variational gradient descent
(SVGD) (Liu & Wang, 2016) is the most widely used ensem-
ble method. However, SVGD is not a valid sampling, which
is pointed out in Zhang et al. (2018). Moreover, because it is

a Vlasov process, it is hard to assure the theoretical guaran-
tee under the non-asymptotic settings. Thus, the theoretical
advantage as the ensemble method is unclear.

5.2. Comparison with the non-reversible drift work
Compared to existing non-reversible Markov chain work
(Hwang et al., 2005; 2015; Duncan et al., 2016; 2017; Kaiser
et al., 2017), our work has both theoretical and numerical
contributions in this field. We believe that this work is the
first step to clarify the non-asymptotic behavior of the non-
reversible Markov chain with the non-convex potential func-
tion, which is widely used in the field of SGLD, while the
existing work of non-reversible Markov chain has focused
on the asymptotic settings. Although some work also fo-
cused on the convergence speed, they only took into account
the Ornstein-Uhlenbeck (OU) processes, which have the
convex potential functions and are limited. As for the con-
vergence, we focused on the LSI under the non-reversible
drift settings and derived the explicit formula (Theorem 5)
about the improvement of a spectral gap.

As for the numerical contributions, we believe that this work
is the first attempt to apply the divergence-free drift method
to the standard Bayesian models. Most existing work only
took into account OU processes. In the next section, we
numerically clarify that the divergence-free drift methods
are promising for sampling in Bayesian inference.

6. Numerical experiments
Detailed experimental settings are shown in Appendix M.
From the theoretical analysis, we confirmed that there is a
trade-off between discretization error and the convergence
speed. Thus, it is natural to consider that if we tune the
interaction α and J appropriately, we can improve the con-
vergence speed while regulating the discretization error. We
confirm this numerically since theoretical analysis does not
tell us what is the optimal α and J .

Thus, the primal purpose of the numerical experiments is to
confirm that our proposed ensemble methods enjoy better
and faster performance compared to naive parallel-chain
SGLD. Additionary, we compared the proposed method
with other ensemble methods; SPOS, SVGD. We also
changed the value of α so that how α affects the discretiza-
tion error and the convergence rate. The models we used
are simple and widely used Bayesian models including
the Ornstein-Uhlenbeck process (OU), Bayesian logistic
regression (BLR), Latent Dirichlet Allocation (LDA) and
Bayesian neural net (BNN).

Another purpose of the experiments is to study the effect
of the choice of J since it is unknown how to construct the
skew-symmetric matrix J for the smaller bias theoretically.
Thus, we prepared three types of J . We generated J in the
following way: First, generated an upper triangular matrix
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Figure 1. OU experiments (Averaged over 10 trials)

J ′ randomly and then calculated J ′ − J ′>. We generated
two types of J ′, of which each entry follows the Bernoulli
distribution and the Gaussian distribution. Then, we nor-
malized them to satisfy Assumption 6. We refer to this
matrix multiplied α as skew-B(α) that is generated from
the Bernoulli distribution and skew-N(α) that is generated
from the Gaussian distribution in the followings. Another
skew-symmetric matrix is that before taking the normaliza-
tion in skew-N, we multiplied the kernel Gram matrix of
RBF kernel, of which elements are X0 from both left and
right-hand side. This is expressed as skew-k(α).

We used 20 particles for all the experiments except for OU.
We repeated 10 trials for OU, BLR and LDA experiments,
and 20 trials for BNN experiments. The following values
and error bars are the mean and the standard deviation of
these trials.

Ornstein-Ohlenbeck process: This process is given by

dXt = Σ−1(Xt − µ)dt+
√

2dw(t) (36)
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Figure 2. BLR experiments (Averaged over 10 trials)

for the standard SGLD. Its stationary distribution is π =
N(µ,Σ). Theoretical properties of this dynamics and its
discretized version have been widely studied (Wibisono,
2018). An important property is that there is a formula
for W2(νt, π) if the initial distribution is Gaussian (see Ap-
pendix M for the details). Thus, by studying the convergence
behavior of OU, we can understand our proposed method
more clearly.

In our experiments, we used 100 particles. Since calculating
the W2 distance is computationally demanding, we used the
energy distance (Székely et al., 2004) and the maximum
mean discrepancy (MMD) (Gretton et al., 2007) between
µ⊗Nk and the stationary distribution as indicators to observe
the convergence. The results are shown in Figure 1.

We can see that if α is set to be very small, its performance
is close to naive parallel-chain SGLD, while if α is set to
too large, it suffers from the large discretization error. This
shows that there is a trade-off between the larger discretiza-
tion error and faster convergence by the interaction, as our
analysis clarified.

Bayesian logistic regression experiment: Following Liu
& Wang (2016), we test on BLR using Covertype dataset
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Table 1. Holdout perplexity (Averaged over 10 trials)
Method Test perplexity
SGLD 1034.86± 1.46
SVGD 1029.97± 1.02
SPOS 1031.42± 1.15
Skew-k(0.01) 1029.12± 1.35
Skew-N(0.02) 1026.47 ± 1.72
Skew-B(0.01) 1024.33 ± 1.85
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Figure 3. LDA experiments (Averaged over 10 trials)

(Dua & Graff, 2017) and the result is shown in Fig.2. In
Fig.2(a), we can see that by the interaction, the conver-
gence speed and performance is improved compared to
naive parallel-chain SGLD. In Fig.2(b), we changed α in
skew-N. We can see a trade-off between the larger discretiza-
tion error and faster convergence, which is similar to the re-
sults of OU. The results of skew-B is shown in Appendix M.

Latent Dirichlet allocation experiment: We test on
LDA model using the ICML dataset (Ding et al., 2014)
following the same setting as Patterson & Teh (2013). The
result is shown in Table.1 and Fig.3. From the left-figure
of Fig.3 and Table.1, the proposed method shows faster
and superiror performance compared to naive parallel-chain
SGLD, and competitive performance with SVGD and SPOS.
In the left-figure of Fig.3, we did the experiments with dif-
ferent α, and found that the result is robust to the choice of
α.

Bayesian neural net regression: We test on the BNN re-
gression task using Kin8nm dataset of UCI (Dua & Graff,
2017), following the same setting as Liu & Wang (2016).
The results are shown in Table 2. We found that the pro-
posed methods shows competitive performance with other
ensemble methods. We show an additional Figure in Ap-
pendix M.

Bayesian neural net classification: We test on the BNN
classification task using MNIST (LeCun & Cortes, 2010)
dataset. We used a fully connected two-layer neural network

Table 2. Results of BNN experiments (Averaged over 20 trials)
Method Test RMSE (×10−2) Test LL
SGLD 6.92± 0.08 1.20± 0.01
SVGD 7.24± 0.07 1.16± 0.01
SPOS 6.88± 0.07 1.21 ± 0.01
Skew-N(0.05) 6.86 ± 0.08 1.21± 0.01
Skew-B(0.05) 6.90 ± 0.07 1.21 ± 0.01
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with 100 and 50 hidden units. The detailed settings are
shown in Appendix M. The result is shown in Figure 4. We
found that proposed methods show competitive performance
with other ensemble methods.

7. Conclusion
In this work, we proposed the new diffusion-based ensem-
ble sampling, which updates many particles simultaneously
with interaction by using the non-reversible drift term. We
also derive the non-asymptotic bound and compare it with
that of the naive parallel-chain SGLD. Introducing the in-
teractions have resulted in the larger discretization error
and faster convergence, which is a trade-off. Numerical
experiments on standard Bayesian models clarified that by
choosing the interaction carefully, we can enjoy faster con-
vergence compared to naive parallel-chain SGLD.

Our work can be extended in various ways. Theoretically, it
is still unclear how much the convergence speed is improved
when α is not small and the discretization error is crude,
and we leave them to the future work. It is still unclear
how to choose an appropriate skew-symmetric matrix and α
theoretically, although it is important in practice. This also
should be clarified in future work.
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A. Wasserstein distance
In this paper, we use the Wasserstein distance. Let us de-
fine the Wasserstein distance. Let (E, d) be a metric space
(appropriate space such as Polish space) with σ field A,
where d(·, ·) is A×A-measurable. Let µ, ν are probability
measures on E, and p ≥ 1. The Wasserstein distance of
order p with cost function d between µ and ν is defined as

W d
p (µ, ν) = inf

π∈Π(µ,ν)

(∫ ∫
d(x, y)pdπ(x, y)

)1/p

,

(37)

where Π(µ, ν) is the set of all joint probability measures
on E × E with marginals µ and ν. In this paper, we work
on the space Rd. As for the distance, we use the Euclidean
distance, ‖ · ‖. For simplicity, we express the p-Wasserstein
distance with the Euclidean distance as Wp. When we
use the Wasserstein distance with which the cost function
other than the Euclidean distance, we express it as W d

p

explicitly. The various properties of Wasserstein distance
are summarized in (Villani, 2003).

We also define the Kullback leibler (KL) divergence as

KL(ν‖µ) =

{∫
log dν

dµdν, ν � µ,

+∞, otherwise.
(38)

B. Preliminaries of SDE and Markov
diffusion

B.1. Notations

Before going to the detailed analysis, we formally define
the notations and the stochastic gradient Langevin dynamics
algorithm. Our aim is to approximate the target distribution
with the density dπ(x) ∝ e−βU(x)dx where

U(x) =
1

|Z|

|Z|∑
i=1

u(x, zi), (39)

where zi denotes the each data in some space Z and |Z|
denotes the total number of the data points, x ∈ X ⊂ Rd
denotes the parameter of the model. For simplicity, we
express the tuple of data points as z = (z1, . . . , z|Z|) ∈
Z⊗|Z|. The potential function U(x) is the summation of u :
Rd × Z→ R. The stochastic gradient Langevin dynamics
algorithm is given as the recursion

Xk+1 = Xk − hg(Xk, Qz,k) +
√

2hβ−1εk, (40)

where h ∈ R+ is the step size, εk ∈ Rd is a standard
Gaussian random vector. g(Xk, Qz,k) is an conditionally
unbiased estimator of the true gradient∇U(Xk) andQz,k is
a random variable in some space Q following the probability

Pz(Qz,k). Following Raginsky et al. (2017), we consider
g and Qz,k as a stochastic gradient oracle, which access
the gradient of U(Xk) at each iteration. Thus, a mapping,
g : Rd ×Q→ Rd is the unbiased estimator;

EPz(Qz,k)[g(Xk, Qz,k)] = ∇U(Xk). (41)

For example, this g expresses the stochastic access to the
subset of data points {zi}. Then, {Qz,k}∞k=0 is a sequence
of i.i.d random variable of Q with law Pz(Qz,k). We assume
that X0, εk, Qz,k are independent of each other.

On the other hand, the continuous-time Langevin dynamics
is written as

dX(t) = −∇U(X(t)) +
√

2β−1dw(t), (42)

where w(t) denotes the standard Brownian motion in Rd.
The stationary measure of Eq.(42) is dπ(x) ∝ e−βU(x)dx.
Since Eq.(40) can be regarded as the discretization of
Eq.(42), we will study the relation between them.

We denote the law of Xk induced by Eq.(40) as µkh and the
law of Xt induced by Eq.(42) as νt.

B.2. Markov diffusion and generator

In this section, we introduce basic Markov diffusion opera-
tors. Given SDE

dXt = −∇U(Xt)dt+
√

2β−1dw(t), (43)

then we denote the corresponding Markov semigroup as
P = {Pt}t>0 and the Kolmogorov operator as Ps which is
defined as

Psf(Xt) = E[f(Xt+s)|X(t)], (44)

where f : Rd → R is some bounded test function in L2(µ).
A property Ps+t = Ps ◦ Pt is called Markov property. A
probability measure π is the stationary distribution when it
satisfies for all measurable bounded function f and t∫

Rd
Ptfdπ =

∫
Rd
fdπ. (45)

We denote the infinitesimal generator of the associated
Markov group as L and we call it generator for simplic-
ity. The linearity of the operators of Pt with the semigroup
property indicates that L is the derivative of Pt as

1

h
(Pt+h − Pt) = Pt

1

h
(Ph − Id) =

1

h
(Ph − Id)Pt (46)

where Id is the identity map. And taking h→ 0, we have

∂Pt = LPt = PtL. (47)

From the Hille-Yoshida theory, there exists a dense linear
subspace of L2(π) on which L exists. We refer it as D(L).
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If the Markov semigroup is associated with the SDE of
Eq.(43), the generator can be written as

Lf(Xt) : = lim
h→0+

E(f(Xt+h)|Xt)− f(Xt)

h

=
(
−∇U(Xt) · ∇+ β−1∆

)
f(Xt), (48)

where ∆ is the Laplacian in the standard Euclidean space.
The generator satisfies

L1 = 0,

∫
Rd
Lfdπ = 0. (49)

B.3. Backward equation

The generator L is associated with the Kolmogorov back-
ward equation,

E(f(Xt)|X0) = etLf(X0). (50)

We can also express this identity as

∂tE(f(Xt)|X0) = LE(f(Xt)|X0). (51)

If we define φ(x, t) := E(f(Xt)|X0 = x) then we can
rewrite above as

∂tφ(x, t) = Lφ(x, t) with φ(x, 0) = f(x) (52)

and this is called the Kolmogorov backward equation. By
the Taylor expansion, we obtain

φ(x, t) = φ(x, 0) + ∂tφ(x, t)|t=0(t− 0) +O(t2)

= f(x) + tLf(x) +O(t2). (53)

For more details, see Chen et al. (2015); Xu et al. (2018).

B.4. Fokker-Planck equation

We can write the evolution of the probabilty density p(x).
Given the initial density as p0(x) and express the density at
time t as p(x, t), then

∂tp(x, t) = L∗p(x, t), p(x, 0) = p0(x), (54)

where L∗ is the adjoint of L.

C. Poincare and logarithmic Sobolev
inequalities

Following Raginsky et al. (2017), we use the Poincare and
logarithmic Sobolev inequalities to measure the speed of
convergence to the stationary distribution. In this section,
we review definitions and useful properties of them.

C.1. Poincare inequality

First, we define the Dirichlet form E(f) for all bounded
function f ∈ D(L) where D(L) denotes the domain of L
as

E(f) := −
∫
Rd
fLfdπ. (55)

E(f) > 0 is satisfied. If L is given by Eq.(48), by the partial
integration, we have

E(f) = −
∫
Rd
fLfdπ =

1

β

∫
Rd
‖∇f‖2dπ. (56)

Also, we define a Dirichlet domain, D(E), which is the set
of functions f ∈ L2(π) and satisfies E(f) <∞.

We say that π with L satisfies a Poincare inequality with a
positive constant c if for any f ∈ D(E), π with L satisfies,

Varπ(f) ≤ cE(f), (57)

Varπ(f) :=

∫
f2dπ −

(∫
fdπ

)2

.

This constant c is closely related to a spectral gap. If the
smallest eigenvalue ofL, λ, is greater than 0, then it is called
the spectral gap. If the spectral gap λ > 0 exists, then it is
written as

λ := inff∈D(E)

{ E(f)∫
f2dπ

: f 6= 0,

∫
fdπ = 0

}
. (58)

From this, a constant c which satisfies c ≥ 1/λ, can also
satisfy the Poincare inequality. To check the existence of the
spectral gap, one approach is to use the Lyapunov function,
which is developed by Bakry et al. (2008).

We can also express the Poincare inequality via chi diver-
gence. Let us define the χ2 divergence for µ� π as

χ2(µ‖π) :=

∥∥∥∥dµdπ − 1

∥∥∥∥2

L2
π

=

∫
Rd

∣∣∣∣dµdπ − 1

∣∣∣∣2 dπ. (59)

Then, we express the Poincare inequality with a constant c
for all µ� π as

χ2(µ‖π) ≤ c E
(√

dµ

dπ

)
. (60)

C.2. Logarithmic Sobolev inequality

We say that π with L satisfies the defective logarithmic
Sobolev inequality (LSI) with constant D1, D2 (we call
this as LSI(D1, D2)) if for any f which is a integrable
(
∫
Rd f | log f |dπ <∞), π with L satisfies,

Entπ(f2) ≤ 2D1E(f) +D2

∫
f2dπ, (61)

Entπ(f) :=

∫
Rd
f log fdπ −

∫
Rd
fdπ log

(∫
Rd
fdπ

)
.
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If D1 = 0, the LSI is called tight. It is known that if
there exists the poincare constant, ρ ∈ R+, LSI(D1, D2)
becomes tight LSI, that is, LSI(λ0, 0) with λ0 = D1 +
ρ(1 + D2/2) (See Theorem 5.1.3 in (Bakry et al., 2013)).
Hereinafter, we only consider the tight LSI and call it LSI
simply.

We can express the LSI of π with L and a constant λ0 by
using the KL divergence. For all µ� π,

KL(µ‖π) ≤ 2λ E
(√

dµ

dπ

)
. (62)

We can express the LSI by KL divergence and Fisher infor-
mation. We define Carre du champ operator as

Γ(f, g) :=
1

2
[L(fg)− fLg − gLf ] , (63)

and we also denote Γ(f) := Γ(f, f). This satisfies∫
Γ(f, g)dπ = −

∫
fLgdπ. (64)

Then, for a function
√
f , the above definition can be rewrit-

ten as

Entπ(f) ≤ λ

2

∫
Γ(f)

f
dπ. (65)

Then we rewrite this by using the Fisher information. Be-
fore that we write the Entν(f) by using the KL divergence
when f is the density function. Under the condition that∫
Rd fdν = 1, dµ = fdν,

Entν(f) =

∫
Rd
f log fdν = KL(µ|ν). (66)

Then we can write the Fisher information as

I(µ|ν) =

∫
Rd

Γ(f)

f
dν = 4

∫
Rd

Γ(
√
f)ν. (67)

Then we can rewrite the LSI as

KL(µ|ν) ≤ λ

2
I(µ|ν). (68)

The important consequence of the LSI is that it implies the
transportation cost inequality and the Poincare inequality.
We say that π satisfies 2-transportation cost inequality (the
T2 inequality) if it satisfies for all µ� π with a constant λ,

W2(µ, π) ≤
√

2λ KL(µ‖π). (69)

For the details, see Villani (2008)

To check whether the logarithmic Sobolev inequality for
the given Markov process, a famous approach is a Lya-
punov function-based approach developed by Cattiaux et al.
(2010).

C.3. Consequence of the inequality

From the above functional inequalities for measures, we
obtain the following exponential convergence results. First,
we state the consequence of Poincare inequality.
Theorem 6. (Exponential convergence in the variance, The-
orem 4.2.5 in (Bakry et al., 2013)) When π satisfies the
Poincare inequality with a constant c, it implies the expo-
nential convergence in the variance with a rate 2/c, that is,
for every bounded function f : Rd → R,

Varπ(Ptf) ≤ e−2t/cVarπ(f), (70)

where Varπ(f) :=
∫
Rd f

2dπ −
(∫

Rd fdπ
)2

.

Next, we state the consequence of the logarithmic Sobolev
inequality.
Theorem 7. (Exponential convergence in the entropy, The-
orem 5.2.1 in (Bakry et al., 2013)) When π satisfies the
logarithmic Sobolev inequality with a constant c, it implies
the exponential convergence in the entropy with a rate 2/c,
that is, for every bounded function f ∈ L1 : Rd → R,

Entπ(Ptf) ≤ e−2t/cEntπ(f), (71)

where Entπ(f) :=
∫
Rd f log fdπ−

∫
Rd fdπ log

(∫
Rd fdπ

)
.

By setting f = dµ
dπ , we get the exponential convergence of

the KL divergence,

KL(µt‖π) ≤ e−2t/cKL(µ0‖π). (72)

These exponential convergence play an central role to prove
the convergence of the diffusion algorithm.

C.4. Functional inequalities and product measures

Here we review the important properties of the functional in-
equalities which are related to the product measures. These
relations play important roles in our analysis.
Proposition 1. (Stability under the product, proposition
4.3.1 in (Bakry et al., 2013)) If µ1 and µ2 on Rd satisfy the
Poincare inequalities with a constant c1 and c2, then the
product µ1⊗µ2 on Rd⊗Rd satisfies the Poincare inequality
with the constant max(c1, c2).
Proposition 2. (Stability under the product, proposition
5.2.7 in (Bakry et al., 2013)) If µ1 and µ2 on Rd satisfy the
logarithmic Sobolev inequalities with a constant c1 and c2,
then the product µ1⊗µ2 on Rd⊗Rd satisfies the logarithmic
Sobolev inequality with the constant max(c1, c2).

D. Review of Raginsky et al. (2017)
D.1. Review of the bound of Raginsky et al. (2017)

In this section, we review the result of Raginsky et al. (2017),
which establish the convergence of the SGLD algorithm in
2-Wasserstein sense.
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Theorem 8. (Proposition 10 in Raginsky et al. (2017) )
Under Assumptions 1 to 5, for any k ∈ N and any h ∈
(0, 1 ∧ m

4M2 ) obeying kh ≥ 1 and βm ≥ 2, we have

W2(µkh, π) ≤ Ckh+
√

2λ0C ′e
− kh
βλ0 , (73)

C0 =
(
M2

(
κ0 + 2

(
1 ∨ 1

m

) (
b+ 2B2 + d

β

))
+B2

)
,

C1 = 6M2(βC0 + d),

C̃2
0 =

(
12 + 8

(
κ0 + 2b+ 2d

β

)) (
βC0 +

√
βC0

)
,

C̃2
1 =

(
12 + 8

(
κ0 + 2b+ 2d

β

)) (
C1 +

√
C1

)
,

C =
√
C̃2

0

√
δ + C̃2

1

√
h,

C ′ = log ‖p0‖∞ + d
2 log 3π

mβ + β
(
Mκ0

3 +Bκ
1/2
0 +A+ b log 3

2

)
,

We review how this bound was derived in Raginsky et al.
(2017).In Raginsky et al. (2017), the error is decomposed
to the convergence to the stationary by the exact continuous
Langevin dynamics and the discretization error:

W2(µkh, π) ≤W2(µkh, νkh) +W2(νkh, π). (74)

Here, an important point is the discretization error
W2(µkh, νkh). First, the error in a sense of the relative
entropy is bounded as

Lemma 3. (Lemma 7 in (Raginsky et al., 2017)) For any k
and h, we have

KL(µkh|νkh) ≤ (C0βδ + C1h)kh, (75)

where

C0 =
(
M2

(
κ0 + 2

(
1 ∨ 1

m

) (
b+ 2B2 + d

β

))
+B2

)
,

(76)

C1 = 6M2(βC0 + d). (77)

Since the relative entropy is not enough to bound the bias
since it does not satisfy the triangle inequality, then from
Bolley & Villani (2005), by using the weighted CKP in-
equality, we can bound W2 distance by the relative entropy.

W2(µ, ν) ≤ Cν
(

KL(µ|ν)1/2 +

(
KL(µ|ν)

2

)1/4
)

(78)

with

Cν = 2 inf
λ>0

(
1

λ

(
3

2
+ log

∫
Rd
eλ‖w‖

2

dν

))1/2

. (79)

Next, we briefly introduce the LSI constant. As we men-
tioned in the main paper, the generator of the continuous
dynamics is that

Lf(Xt) =
(
−∇U(Xt) · ∇+ β−1∆

)
f(Xt). (80)

Instead of this original generator, in Raginsky et al. (2017),
they used the generator

L′f(Xt) = (−β∇U(Xt) · ∇+ ∆) f(Xt), (81)

which satisfies βL = L′ to use the Lyapunov function-based
approach of Cattiaux et al. (2010) to estimate LSI constant.
Then L′ corresponds to the SDE

dXt = −β∇U(Xt) +
√

2dw(t), (82)

which has the same stationary measure as L. The difference
is that the time scale is changed from t → βt. In conclu-
sion, we estimate LSI constant for L′ then multiply beta in
the convergence, we recover the result of L. We use this
rescaling in the following.

D.2. The problem of the Theorem 1

Dimensional dependency: The important point is that
Cν depends on d as d1/2 and C0 and C1 depends on d
linealy. Thus, KL(µz,k|νkh) depends on d linealy. In total,
due to the weighted CKP inequality, the bound of Eq.(78)
depends on d linearly. On the other hand, since we use
the usual Euclidean distance for the cost fucntion in W2

distance, we expect that W2 depends on d as d1/2 optimally.
Thus, there is a gap.

This gap is important when we consider ensemble sam-
pling. Let us consider the bias of an ensemble sam-
pling, that is, with N -particles, we approximate the in-
tegral of a test function f by 1

N

∑N
n=1 f(X

(n)
k ). If a

test function f is an Lf -lipschitz function in Rd, the bias∣∣∣E 1
N

∑N
n=1 f(X

(n)
k )−

∫
Rd fdπ

∣∣∣ can be upper-bounded by

the W2 distance multiplied by Lf/
√
N . Additionally, when

we assume the W2 distance of this ensemble sampling can
be upper-bounded by the same approach as Theorem 8,
which is based on the LSI inequality, then since the N -
particle system is a dN -dimensonal, its discretization error
depends on dN linearly. Thus, the bias is O(

√
N). This

means that the more particles we use, the larger bias we
suffer. This is an undesirable property as the ensemble
sampling.

As for the problem of the LSI constant, please see the main
paper.

E. Results of standard SGLD
E.1. Proposed Error control

Our proof strategy is almost as same as the Raginsky et al.
(2017). That is, we decompose the distance into the conver-
gence to the stationary by the exact continuous Langevin
dynamics and the discretization error.

W2(µkh, π) ≤W2(µkh, νkh) +W2(νkh, π). (83)
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We bound the convergence to the stationary; W2(νh, π) in
the same way as Raginsky et al. (2017). The difference is
the approach for the discretization error.

For that purpose, we need the interpolated and one-time
marginal dynamics for the analysis. See Appendix C.4 of
Raginsky et al. (2017) or proof of theorem 6 in Zhang et al.
(2018). First, we introduce the interpolated dynamics as

X̄t = X0 −
∫ t

0

g(X̄bs/hch, Qz,s)ds+
√

2β−1

∫ t

0

dw(s),

(84)

where Qz,s := Qz,k for s ∈ [kh, (k + 1)h). Then this X̄t

has the same probability law µt with the original discretized
dynamics.

However, this is not a Markov process due to the stochas-
ticity of the stochastic gradient oracle. Thus, we define the
following one-time marginal dynamics which has the same
marginal distribution µkh,

Vt = X0 −
∫ t

0

gz,s(V (s))ds+
√

2β−1

∫ t

0

dw(s) (85)

with

gz,s(v) := E
[
g(X̄bs/hch, Qz,s) | X̄s = v

]
. (86)

Note that this new SDE for Vt has a weak solution, thus the
marginals of Vt is the same as that of X̄t for all t. Under
this setting, to bound W2(µkh, νkh), we use the basic rela-
tion, which follows from the definition of the Wasserstein
distance,

W 2
2 (νkh, µkh) ≤ E‖Xkh − Vkh‖2. (87)

We consider the synchronous coupling for Xt and Vt then
by using the Ito lemma,

Xt − Vt = −
∫ t

0

(∇U(Xs)− gz,s(V (s))) ds. (88)

By using this, we first apply Jensen inequality

E‖Xt − Vt‖2 = E
∥∥∥∥∫ t

0

∇U(Xs)− gz,s(V (s))ds

∥∥∥∥2

≤ tE
∫ t

0

‖∇U(Xs)− gz,s(V (s))‖2ds

≤ t
bt/hc∑
k=0

E
∫ (k+1)h

kh

‖∇U(Xs)− gz,s(V (s))‖2ds. (89)

Then, we consider the following decomposition

‖∇U(Xs)− gz,s(V (s))‖2

≤ ‖∇U(Xs)−∇U(Vs) +∇U(Vs)− gz,s(V (s))‖2

≤ 3M2‖Xs − Vs‖2 + 3‖∇U(Vs)−∇U(Vbs/hch)‖2

+ 3‖∇U(Vbs/hch)− gz,s(V (s))‖2
(90)

We will use the Gronwall inequality later, thus for that
purpose we need to bound the second and third term in
the above. These two terms are bounded in the proof of
Lemma 7 in Appendix D of Raginsky et al. (2017), so we
use it. They are bounded as

Lemma 4. From Raginsky et al. (2017),∫ (k+1)h

kh

E‖∇U(Vs)−∇U(Vbs/hch)‖2ds

≤ 6M2

(
2C0 +

d

β

)
h2, (91)∫ (k+1)h

kh

E‖∇U(Vbs/hch)− gz,s(V (s))‖2ds ≤ 2C0hδ,

(92)

where the constant C0 is shown in Theorem 8

Thus, we have

E‖Xt − Vt‖2

≤ 3M2t

∫ t

0

‖Xs − Vs‖2ds

+ 6C0h(bt/hc)δt+ 18M2

(
2C0 +

d

β

)
h2(bt/hc)t.

(93)

For simplicity, we express the second and third term as

6C0h(bt/hc)δt+ 18M2

(
2C0 +

d

β

)
h2(bt/hc)t = Dt2.

(94)

Then, we use the Gronwall inequality, from Dragomir
(2002). We use the following type of Gronwall inequal-
ity. Let x, k are continuous and a, b are integrable functions
on some interval, J = [α, β] and let b, k are non-negative
on J . If

x(t) ≤ a(t) + b(t)

∫ t

α

k(s)x(s)ds, t ∈ J, (95)

then, we have

x(t) ≤ a(t) + b(t)

∫ t

α

a(s)k(s)e
∫ t
s
b(r)k(r)drds, t ∈ J.

(96)

In our case, α = 0, a(t) = Dt2, b(t) = 3M2t and k(s) = 1.
Since we need to integrate about s, the second term of the
Gronwall inequality is

t

∫ t

0

Ds2e
∫ t
s
rdrds = t

∫ t

0

Ds2e
3M2

2 (t2−s2)ds

= Dte
3M2

2 t2
∫ t

0

s2e−
3M2

2 s2ds. (97)
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The integral can be evaluated by∫ t

0

s2e−as
2

ds = − te
−at2

2a
+

∫ t

0

e−as
2

2a
ds. (98)

Thus, the second term is the error function. We can evaluate
the asymptotic behavior of this function by using the prop-
erty of the error function, but here for simplicity, we use the
following relation,∫ t

0

e−as
2

2a
ds <

∫ ∞
0

e−as
2

2a
ds =

1

4a

√
π

a
. (99)

Then, we have∫ t

0

s2e−as
2

ds < − te
−at2

2a
+

1

4a

√
π

a
. (100)

Thus, we get

t

∫ t

0

Ds2e
∫ t
s
rdrds

< Dte
3M2

2 t2

(
− te

− 3M2

2 t2

3M2
+

1

6M2

√
2π

3M2

)
. (101)

In conclusion, we have

E‖Xt − Vt‖2

< Dt2 +Dte
3M2

2 t2

(
− te

− 3M2

2 t2

3M2
+

1

6M2

√
2π

3M2

)
(102)

:= Dt (t+ C6) . (103)

Then we substitute t = kh, we get

Dt2 = 6C0hkδ(kh) + 18M2

(
2C0 +

d

β

)
h2k(kh)

=
6

β

(
C1kh

2 + βC0khδ
)
kh (104)

:= C7(kh)2, (105)

where C1 is shown in Theorem 8. We transformed in this
way so that we can easily compare our result with the Theo-
rem 8.

Then we get

W 2
2 (νkh, µkh) ≤ E‖Xkh − Vkh‖2 < C7 (kh+ C6) kh

(106)

and

C6 := e
3M2

2 (kh)2

(
− (kh)e−

3M2

2 (kh)2

3M2
+

1

6M2

√
2π

3M2

)
,

(107)

C7 :=
6

β
(C1h+ βC0δ) . (108)

Note that C7 depends on d linearly, and C6 does not depend
on d.

Thus our bound of W 2
2 (νkh, µkh) depends on d by d1/2,

which is crucial for the analysis of the ensemble sampling.

Finally, we briefly mension about the bound of the conver-
gence to the stationary: W2(νkh, π). This approach is same
as Raginsky et al. (2017).

From Appendix Raginsky et al. (2017), π satisfies the LSI
with the constant λ0 (We discuss this constant in the Ap-
pendix K.1). Since LSI implies the exponential convergence
of the relative entropy (Bakry et al., 2013),

KL(νkh|π) ≤ KL(ν0|π)e−2 kh
βλ0 , (109)

where we used the rescaled generator and the LSI constant,
see Eq.(81). Also, the LSI implies T2 inequality (Bakry
et al., 2013),

W2(νkh|π) ≤
√

2λ0KL(νkh|π). (110)

Combine with these relations, we get

W2(νkh|π) ≤
√

2λ0KL(ν0|π)e−
kh
βλ0 . (111)

Thus, we conclude that

W2(µkh, π)

<
√
C7 (kh+ C6) kh+

√
2λ0KL(νkh|π)e−

kh
βλ0 (112)

with

C6 := e
3M2

2 (kh)2

(
− (kh)e−

3M2

2 (kh)2

3M2
+

1

6M2

√
2π

3M2

)
,

(113)

C7 :=
6

β
(C1h+ βC0δ) . (114)

E.2. Comparison of discretization error

As we discussed in the main paper, our bound of
W2(νkh, µkh) is O(d1/2) and this is optimal since our cost
function for the W2 distance is Euclidean distance. On the
other hand, the bound of Raginsky et al. (2017) is O(d).

On the other hand, with respect to the kh, ours is much
worse than that of Raginsky et al. (2017). Due to the Cauchy-
Schwartz inequality and the Gronwall inequality, ours has
O(khe(kh)2), which is far from satisfactory. On the other
hand, that of Raginsky et al. (2017) is O(kh). This gap
should be resolved in future work.

F. Improved discretizatoin error
In this section, we derive the discretization error based on
Vempala & Wibisono (2019).
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Theorem 9. Under Assumptions 1 to 5 and an additional
assumption m

4M2 ≤ 1, for any k ∈ N and any h ∈
(0, 1

4
√

2M2λ
∧ m

4M2 ) obeying kh ≥ 1 and βm ≥ 2, µkh,
which is induced by Eq.(1), satisfies

W2(µkh, π)

≤
√

2λe−
kh
βλKL(µ0|π) + 8λ2

3

(
2hdM
β (m+ 4M) + 8C0δ

)
.

(115)

where λ is the LSI constant for π with L′.

Note that the smaller the LSI constant is, the smaller 2-
W distance we obtain. The third term corresponds to the
error induced by the stochastic gradient and the second term
corresponds to the discretization error. This shows much
better behavior with respect to the step size compared to
Theorem 2 in the main paper. However, we need to control
the step size so that h ∈ (0, 1

4
√

2M2λ
∧ m

4M2 ) holds which
contains the LSI constant. So we need the information about
the LSI constant to tune the step size. Additional remark is
that due to the discretization error, the convergence rate of
the exponential function is 1

2λ , while the rate of that function
in Raginsky et al. (2017) is 1

λ

Proof. To prove this theorem, we use the lemma 3 in Vem-
pala & Wibisono (2019),

Lemma 5. (lemma 3 in Vempala & Wibisono (2019)) Sup-
pose π satisfies LSI with constant 1/λ > 0 and isM -smooth.
If 0 < h ≤ 1

4λM2 then the Langevin algorithm converges

KL(µ(k+1)h|π) ≤ e−h/λKL(µkh|π) + 6h2dM2. (116)

Since this lemma considers full gradient, we need to extend
it to stochastic gradient. This is straight forward. We get the
following lemma.

Lemma 6. Suppose π satisfies LSI with constant λ > 0 and
is M -smooth. If h ∈ (0, 1

4
√

2M2λ
∧ m

4M2 ) obeying kh ≥ 1

and βm ≥ 2, then the Langevin algorithm converges

KL(µ(k+1)h|π)

≤ e− 1
λhKL(µkh|π) +

(
2h2dM

β
(m+ 4M) + 8hC0δ

)
.

(117)

The proof of this lemma is given in Appendix F.1. Then we
apply for k-steps, we get

KL(µk|π)

≤ e−
1
λkhKL(µ0|π) + 1

1−e−
1
λ
h

(
2h2dM
β (m+ 4M) + 8hC0δ

)
.

(118)

Then 1 − e−c ≥ 3
4c for 0 < c = h

λ ≤ 1
4

√
2, which holds

since h ≤ 1
4
√

2M2λ
and 1

λ ≤M . Then we get

KL(µk|π)

≤ e− 1
λkhKL(µ0|π) +

4λ

3

(
2hdM

β
(m+ 4M) + 8C0δ

)
.

(119)

Finally, from the transportation inequality, we get

W2(µk, π)

≤
√

2λ KL(µk|π)

≤
√

2λe−
1
λkhKL(µ0|π) + 8λ2

3

(
2hdM
β (m+ 4M) + 8C0δ

)
.

(120)

F.1. Proof of lemma 6

Proof. The proof is almost similar to the original proof
of lemma 3 in Vempala & Wibisono (2019). However,
in the original proof, a full gradient ∇U is used so we
replace it to the stochastic gradient. We use the notations in
Appendix E.1.

First, lemma 11 in Vempala & Wibisono (2019) is modified
to

Eπ‖∇U‖2 ≤
dM

β
. (121)

This is eqsily confirmed by the definition of π and using the
integration by parts.

Then lemma 12 in Vempala & Wibisono (2019) is modified
to

Eρ‖∇U‖2 ≤ 4M2λKL(ρ|π) +
2dM

β
, (122)

for any integrable µ. Recall the interpolated dynamics as

X̄t = X0 −
∫ t

0

g(X̄bs/hch, Qz,s)ds+
√

2β−1

∫ t

0

dw(s),

(123)

where Qz,s := Qz,k for s ∈ [kh, (k + 1)h). Then this X̄t

has the same probability law µt with the original discretized
dynamics. When we focus on the step k, we consider the
following SDE for t ∈ (kh, (k + 1)h]

dX̄t = −g(X̄k, Qz,k)dt+
√

2β−1dw(t), (124)

and the solution to this SDE at time t = h is given by

X̄(k+1)h = X̄k − g(X̄k, Qz,k)h+
√

2β−1ε, (125)
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We would like to derive the continuity equation correspond
to Ew.(124). Following Vempala & Wibisono (2019), we
express X̄t as xt and X̄k as x0 for simplicity. Let ρ0t(x0, xt)
denote the joint distribution of (x0, xt) conditioned on the
stochastic gradient oracle at step k. The conditional and
marginal relations are written as

ρ0t(x0, xt) = ρ0(x0)ρt|0(xt|x0) = ρt(xt)ρ0|t(x0|xt).
(126)

Then, conditioned on x0, the conditional density ρt|0(xt|x0)
follows the FP equation

∂ρt|0(xt|x0)

∂t

= ∇ · (ρt|0(xt|x0)g(X̄k, Qz,k)) + β−1∆ρt|0(xt|x0),
(127)

Then following Vempala & Wibisono (2019), to derive the
evolution of ρt, we take the expection over ρ0(x0)

∂ρt(x)

∂t

=

∫
Rd

∂ρt|0(xt|x0)

∂t
ρ0(x0)dx0

= ∇ · (ρt(xt)Eρ0|t [g(x0, Qz,k)|xt = x]) + β−1∆ρt(x).

(128)

and take the expectation over Qz,k, we have

∂µt(x)

∂t
= ∇ · EP (Qz,k)[(ρt(xt)Eρ0|t [g(x0, Qz,k)|xt = x]]) + β−1∆µt(x).

(129)

Recall that

∂KL(µt|π)

∂t
=

∫
∂µt(x)

∂t
ln
µt
π
dx. (130)

Then following Vempala & Wibisono (2019), we get

∂KL(µt|π)

∂t

≤ −3

4
I(µt|π)

+ Eρ0tEP (Qz,k)[‖∇U(X̄t)− g(X̄k, Qz,k)‖2], (131)

where t ∈ (kh, (k + 1)h] and

Xt = X̄k − t∇U(X̄k) +
√

2tβ−1ε. (132)

Then, following the proof of Vempala & Wibisono (2019),
we need to upper bound

EP (Qz,k)‖∇U(X ′t)− g(X̄k, Qz,k)‖2. (133)

To bound this, we consider the decomposition

EP (Qz,k)‖∇U(Xt)− g(X̄k, Qz,k)‖2

≤ EP (Qz,k)‖∇U(Xt)−∇U(X̄k) +∇U(X̄k)− g(X̄k, Qz,k)‖2

≤ 2‖∇U(Xt)−∇U(X̄k)‖2 + 2EP (Qz,k)‖∇U(X̄k)− g(X̄k, Qz,k)‖2

≤ 2M2‖Xt − X̄k‖2 + 2EP (Qz,k)‖∇U(X̄k)− g(X̄k, Qz,k)‖2

≤ 2M2‖Xt − X̄k‖2 + 4C0δ, (134)

in the last line, we used Eq.(92). Then, we can substi-
tute above inequality into the original proof of Vempala &
Wibisono (2019) and h ∈ (0, 1∧ m

4M2 ) obeying kh ≥ 1 and
βm ≥ 2, we get

d

dt
KL(µt|π)

≤ − 3
4I(µt|π) + 8t2M4λKL(µt|π) + 4t2dM3

β + 4tdM2

β + 4C0δ.

(135)

For simplicity, we assume that h ∈ (0, m
4M2 ) and m

4M2 < 1,
then we get

d

dt
KL(µt|π)

≤ − 3
4I(µt|π) + 8t2M4λKL(µt|π) + tdM

β (m+ 4M) + 4C0δ.

(136)

Then by using t ∈ (kh, (k + 1)h], we get

KL(µk+1|π)

≤ e− 3
2λh
(
1 + 16h3M4λ

)
KL(µk|π)

+ e−
3
2λh

(
2h2dM

β
(m+ 4M) + 8hC0δ

)
. (137)

If h ∈ (0, 1
4
√

2M2λ
), we get

KL(µk+1|π)

≤ e− 1
λhKL(µk|π) +

(
2h2dM

β
(m+ 4M) + 8hC0δ

)
.

(138)

F.2. Bias of the improved discretization error

We can derive the bias for the test function f with Lipschitz
constant Lf as∣∣∣∣Ef(Xk)−

∫
Rd
fdπ

∣∣∣∣
≤ LfW2(µk, π)

≤ Lf
√

2λe−
kh
βλKL(µ0|π) + λC8, (139)

where we set

C8 :=
8

3

(
2hdM

β
(m+ 4M) + 8C̄0δ̄

)
. (140)

for simplicity
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G. N-parallel and interacting dynamics and
its theoretical results

In this section, we review the theoretical results of the N-
parallel chain dynamics. Since there is no interaction be-
tween particles, this dynamics is just the concatenation of
the d-dimensional single-chain introduced in Eq.(2). We
assume that all the initial measures {X(n)

0 }Nn=1 are the same.
Then, all the marginal probability at any time t ≥ 0 will be
the same. This means that∣∣∣∣∣E 1

N

N∑
n=1

f(X
(n)
k )−

∫
Rd
fdπ

∣∣∣∣∣ =

∣∣∣∣Ef(Xk)−
∫
Rd
fdπ

∣∣∣∣ .
(141)

Thus, the bias of the naive parallel chain SGLD is the same
as the standard SGLD.

H. Divergence-free accelerated dynamics and
its theoretical results

H.1. The stationary distribution of the proposed
dynamics

Here, we briefly check how the interaction term affects the
stationary distribution. When π satisfies∫

Lfdπ = 0, (142)

then we say π is the stationary (invariant) measure of the
Markov semigroup Pt with the generator L (Bakry et al.,
2013).

Then, when we add the divergence-free term as the interac-
tion,

Lα = L+ α〈γ,∇〉 (143)

with∇ · (γπ) = 0 . Thus, from partial integration,∫
Lαfdπ =

∫
Lfdπ = 0, (144)

holds. Thus, the divergence-free additional term never
changes the stationary measure.

H.2. The effect of the divergence-free drift

First, we discuss the effect of the divergence-free drift on the
dissipative condition and the smoothness condition since
these conditions directly affect the convergence and dis-
cretization error.

H.3. Dissipative condition

In this section, we analyze how the dissipative condition x ·
∇u(x, z) ≥ m‖x‖2 − b will be modified by the divergence-
free drift. This analysis is crucial in our setting since the

constants m, b directly influence the convergence speed.
Since the original dissipative condition is the lower bound
of the inner product

x · ∇u(x, z) ≥ m‖x‖2 − b, (145)

what we will analyze is to estimate the lower bound of

X⊗Nt · (I + αJ)∇U⊗N (X⊗Nt ), (146)

where · is the inner product of dN -dimensional euclidean
space and∇Uα(x⊗N ) := ∇U⊗N (x⊗N )+α∇U⊗N (x⊗N ).
Then,

Lemma 7. Let x⊗N ∈ RdN and under the assumprions 1
to 6, we have

x⊗N · ∇Uα(x⊗N ) ≥ m‖x⊗N‖2 − bN. (147)

Proof. First of all, we study how the dissipative condi-
tion will change under the naive parallel chain SGLD.
Recall that X⊗Nt = (X

(1)
t , . . . , X

(N)
t )> ∈ RdN and

∇U⊗N (X⊗Nt ) := (∇U(X
(1)
t ), . . . ,∇U(X

(N)
t ))>. Based

on this definition,

X⊗Nt · ∇U⊗N (X⊗Nt ) =

N∑
n=1

X
(n)
t · U(X

(n)
t )

(i)

≥
N∑
n=1

(m‖X(n)
t ‖2 − b)

(ii)
= m‖X⊗Nt ‖2 −Nb, (148)

and in (i), we used the dissipative condition for each X(n)
t

and the norm is the euclidean norm in Rd and in (ii), the
norm is the euclidean norm in RdN . Thus, we can observe
that the constants of m, b changed to m,Nb.

Before going to the analysis of the proposed method, we
reformulate the dissipative condition as trace inequality. To
do that, we use the trace form of the inner product, that is,

x · ∇u(x, z) = Tr(∇u(x, z)x>), (149)

thus, the condition of the naive parallel chain can be written
as

Tr(∇U⊗N (X⊗Nt )X⊗N>t ) ≥ m‖X⊗Nt ‖2 −Nb. (150)

To bound the trace, we use the following theorem in Bak-
salary & Puntanen (1992)

Theorem 10. (Upper and lower bound of the trace Bak-
salary & Puntanen (1992)) Let A be any real value N ×N
matrix, Ā = A+A>

2 , and B is any non-negative definite
N ×N matrix. Furthur, let ρ∗(Ā) and ρ∗(Ā) be the small-
est and the largest negative eigenvalue of Ā if they exist,
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otherwise ρ∗(Ā) = ρ∗(Ā) = 0, and ω∗(Ā) and ω∗(Ā) be
the smallest and the largest positive eigenvalue of Ā if they
exist, otherwise ω∗(Ā) = ω∗(Ā) = 0. Then(
ρ∗(Ā) + ω∗(Ā)

)
Tr(B) ≤Tr(AB)

≤
(
ρ∗(Ā) + ω∗(Ā)

)
Tr(B).

(151)

To apply Theorem 10, we introduce the following matrix

Θ := ∇U⊗N (X⊗Nt )X⊗N,>t (152)

which satisfies

TrΘ := X⊗Nt · ∇U⊗N (X⊗Nt ) ≥ m‖X⊗Nt ‖2 −Nb.
(153)

Then, what we will analyze is to estimate the lower bound
of

X⊗Nt · (I + αJ)∇U⊗N (X⊗Nt )

= Tr((I + αJ)∇U⊗NX⊗N>t )

= Tr((I + αJ) Θ). (154)

From the elementary calculus of the matrix, we can say
that Θ is the rank 1 matrix of which eigenvalues are X⊗Nt ·
∇U⊗N (X⊗Nt ) and 0. To apply Theorem 10, the matrix B
must be non-negative definite. Thus, we consider the several
settings, which depend on the sign ofX⊗Nt ·∇U⊗N (X⊗Nt ).

• Whenm‖X⊗Nt ‖2−Nb ≥ 0, that is, outside the ball of
which radius R2 = Nb

m . Then we set A := I +αJ and
B := Θ which satisfies the assumption of Theorem 10.
From the left handside of Eq.(151), we get

Tr((I + αJ)Θ) ≥ m‖X⊗Nt ‖2 −Nb. (155)

• When 0 ≥ m‖X⊗Nt ‖2 − Nb and X⊗Nt ·
∇U⊗N (X⊗Nt ) > 0. Then we assume that A :=
I + αJ and B := Θ which satisfies the assumption of
Theorem 10. From the left handside of Eq.(151), we
get

Tr((I + αJ)Θ) ≥ m‖X⊗Nt ‖2 −Nb. (156)

• When 0 ≥ m‖X⊗Nt ‖2 − Nb and 0 ≥ X⊗Nt ·
∇U⊗N (X⊗Nt ). Then we assume that A := I + αJ
and B := −Θ which satisfies the assumption of The-
orem 10. From the right handside of Eq.(151), we
get

− Tr((I + αJ)Θ) ≤ −(m‖X⊗Nt ‖2 −Nb). (157)

Combining above three cases, we have

Tr((I + αJ)Θ) ≥ m‖X⊗Nt ‖2 −Nb. (158)

H.4. Smoothness condition

In this section, we study how the smoothness condition

‖∇u(x, z)−∇u(y, z)‖ ≤M‖x− y‖, (159)

changes by using the non-reversible drift. Recall that the
non-reversible drift is

(I + αJ)∇U⊗N (X⊗Nt ), (160)

where · is the inner product of dN -dimensional eu-
clidean space and ∇Uα(x⊗N ) := ∇U⊗N (x⊗N ) +
αJ∇U⊗N (x⊗N ). Then,

Lemma 8. Let x⊗N , y⊗N ∈ RdN and under the assumpri-
ons 1 to 6, we have

‖∇Uα(x⊗N )−∇Uα(y⊗N )‖ ≤M(1 + α)‖x⊗N − y⊗N‖.
(161)

Proof. First of all, for the drift of the naive parallel chain
SGLD, following smoothness condition holds,

‖∇U⊗N (x⊗Nt )−∇U⊗N (y⊗Nt )‖2

(i)
=

N∑
n=1

‖∇U(x
(n)
t )−∇U(y

(n)
t )‖2

(ii)

≤
N∑
n=1

M2‖x(n)
t − y(n)

t ‖2

(iii)
= M2‖x⊗Nt − y⊗Nt ‖2, (162)

and in (i), we changed the norm from RNd to Rd and in (ii),
we used the smoothness condition in Rd, and in (iii), we
changed the norm from Rd to RNd. Based on this basic rela-
tion, we upper bound the drift function of the non-reversible
chain by using the matrix norm,

‖∇Uα(x⊗N )−∇Uα(y⊗N )‖
= ‖ (I + αJ)

(
∇U⊗N (x⊗Nt )−∇U⊗N (y⊗Nt )

)
‖

(i)

≤ ‖I + αJ‖2‖∇U⊗N (x⊗Nt )−∇U⊗N (y⊗Nt )‖
(ii)

≤ M‖I + αJ‖2‖x⊗Nt − y⊗Nt ‖
(iii)

≤ M(‖I‖2 + α‖J‖F )‖x⊗Nt − y⊗Nt ‖
(iv)

≤ M(1 + α)‖x⊗Nt − y⊗Nt ‖ (163)

and in (i), we used the product inequality about the norm
of the matrix and vector product, and in (ii), we used the
fact that 2-norm is smaller than the Frobenius norm and
used the smoothness condition and in (iii), we used the
decomposition inequality of the matrix norm and finally in
(iv), we used the assumption 6. This ends the proof.
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H.5. Other conditions

In this section, we study how the conditions other than dis-
sipativeness and smoothness change by the non-reversible
drift function.

First, we check about the condition of the drift function at
the origin: ‖∇u(0, z)‖ ≤ B. We can calculate in the same
way as the smoothness condition. Then we have

‖ (I + αJ)∇U⊗N (0⊗N )‖ ≤ B(1 + α). (164)

Next, we study the condition about thte stochastic gradient:
E[‖g(x, Vz)−∇U(x)‖2] ≤ 2δ

(
M2‖x‖2 +B2

)
. This can

be easily modified to

E[‖ (I + αJ) g⊗N (x⊗N , Vz)− (I + αJ)∇U⊗N (x⊗N )‖2]

≤ (1 + α)2E[g⊗N (x⊗N , Vz)−∇U⊗N (x⊗N )‖2]

≤ (1 + α)2
N∑
i=1

E[g(x(i), Vz)−∇U(x(i))‖2]

≤ (1 + α)2
N∑
i=1

2δ
(
M2‖x(i)‖2 +B2

)
≤ 2δ(1 + α)2

(
M2‖x⊗N‖2 +NB2

)
. (165)

Finally, we discuss about the initial condition: κ0 :=

log
∫
Rd e

‖x‖2p0(x)dx < ∞. We assume that the initial
probability distribution is µ⊗N0 (X⊗N0 ) = µ0(X

(1)
0 )×· · ·×

µ0(X
(N)
0 ), which means that all the marginal probability is

the same. Then

κ⊗N0 := log

∫
RdN

e‖x
⊗N‖2µ⊗N0 (x⊗N )dx⊗N

= log

N∏
n=1

(∫
Rd
e‖x

(n)‖2µ0(x(n))dx

)
= Nκ0. (166)

H.6. Error control

We analyze our proposed dynamics in the same way as the
standard SGLD. For that purpose, we decompose the error
in the following way.

W2(µ⊗Nkh , π
⊗N ) ≤W2(µ⊗Nkh , ν

⊗N
kh ) +W2(ν⊗Nkh , π⊗N ).

(167)

About the convergence to the stationary, the strategy is the
same. As shown in in Appendi K.2, our proposed dynam-
ics satisfies LSI(λ(α,N)). Thus, the logarithmic Sobolev
inequality implies T2 inequality and use the exponential
convergence to the stationary in the meaning of the relative

entropy, we get

W2(ν⊗Nkh |π⊗N ) ≤
√

2λ(α,N)KL(ν⊗Nkh |π⊗N )

≤
√

2λ(α,N)KL(ν⊗N0 |π⊗N )e−
kh

βλ(α,N) .

(168)

where we substitute β in the LSI constant following the time
rescaling introduced in Appendix D.1. Then, we assume
that the initial measures are all the same,

KL(ν⊗N0 |π⊗N ) = NKL(ν0|π), (169)

holds. Thus, our interest is how the logarithmic constant
λα depends on N and α. Our analysis clarified that the
logarithmic Sobolev constant of our scheme can be smaller
than that of the naive parallel chain SGLD, which is shown
in Appendix K.2.

Thus, next, we consider the discretization error. Since the
discretization error of the standard SGLD is written as

W 2
2 (νkh, µkh) ≤ E‖Xkh − Vkh‖2 < C7 (kh+ C6) kh,

(170)

our interest is how the constant C6 and C7 is modified due
to the interaction.

For that analysis, we use the discussion of the previous
section, Appendix H.2. Then, due to the interaction and
ensembling, constants are modified in the following way:
M → (1 + α)M , B2 → (1 + α)2NB2, κ0 → Nκ0,
κ→ Nκ, d→ Nd. The definition of C6 and C7 is

C6 := e
3M2

2 (kh)2

(
− (kh)e−

3M2

2 (kh)2

3M2
+

1

6M2

√
2π

3M2
,

)
(171)

C7 :=
6

β
(C1h+ βC0δ) . (172)

Thus, we easily find that C6 is modified by replacing M →
(1 + α)M . Thus, we find that C6 never depends on N . We
express this modified C6 as C ′6. Since this C ′6 depends on
α, we write it as C ′6(α) and C ′6(α = 0) = C6. About C7,
recall that

C0 =
(
M2

(
κ0 + 2

(
1 ∨ 1

m

) (
b+ 2B2 + d

β

))
+B2

)
,

C1 = 6M2(βC0 + d).

Then, this is modified to

C̄0 = N(1 + α)2M2
(
κ0 + 2

(
1 ∨ 1

m

) (
b+ 2(1 + α)2B2 + d

β

))
+ (1 + α)2NB2,

C̄1 = 6(1 + α)2M2(NβC̃0 +Nd).
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We define C̄0 = NC ′′0 , C̄1 = NC ′′1 , then we get the modi-
fied C7

C̄7 = N
6

β
(C ′′1 h+ βC ′′0 δ) kh := NC ′7. (173)

where C ′7 never depends on N . Since this C ′7 depends on α,
we write it as C ′7(α) and C ′7(α = 0) = C7. Thus, we get

W 2
2 (ν⊗Nkh , µ⊗Nkh ) < NC ′7(α) (kh+ C ′6(α)) kh. (174)

and

C ′6 = (6((1 + α)M)2)−1×(√
2π(3((1 + α)M)2)−1e

(
3((1+α)M)2

2 (kh)2
)
− 2kh

)
,

(175)

C ′7(α) =
6

β
(C ′′1 h+ βC ′′0 δ) kh, (176)

C ′′0 = (1 + α)2B2 + (1 + α)2M2,

×
(
κ0 + 2

(
1 ∨ 1

m

)(
b+ 2(1 + α)2B2 +

d

β

))
(177)

C ′′1 = 6(1 + α)2M2(βC ′′0 + d). (178)

Thus, in conclusion, the W2 distance of our proposed
method is

W2(µ⊗Nkh , π
⊗N )

<
√
NC ′7(α) (kh+ C ′6(α)) kh

+
√

2Nλ(α,N)KL(ν0|π)e−
kh

βλ(α,N) . (179)

H.7. Derivation of the bias Eq (31)

If a test function f is an Lf -lipschitz function in Rd, the bias∣∣∣E 1
N

∑N
n=1 f(X

(n)
k )−

∫
Rd fdπ

∣∣∣ can be upper-bounded by

the W2 distance multiplied by Lf/
√
N . Thus, we get∣∣∣E 1

N

∑N
n=1 f(X

(n)
k )−

∫
Rd fdπ

∣∣∣
< Lf

(√
C ′3(α) (kh+ C ′4(α)) kh+

√
2λC ′e−

kh
βλ(α,N)

)
,

(180)

H.8. Comparison with the bound of Theorem 1

Note that, if we set N = 1 and α = 0, which is the
setting of the standard SGLD, then this bound reduce to
W 2

2 (νkh, µkh) < C7 (kh+ C6) kh, which is the bound of
the standard SGLD. Thus, this is a natural result.

On the other hand, let us consider to bound the proposed
dynamics with the bound of Theorem 1. The problem is

already discussed in Appendix D.2, that is, the bias becomes
larger as we increase the number of particles.

On the other hand, our bias is∣∣∣∣∣E 1

N

N∑
n=1

f(X
(n)
kh )−

∫
Rd
fdπ

∣∣∣∣∣
< Lf

(√
C ′3(α) (kh+ C ′4(α)) kh+

√
2λC ′e−

kh
βλ(α,N)

)
,

(181)

which never increases as N increases.

I. Improved discretizatoin error for the
ensemble system

In this section, we derive the discretization error based on
Vempala & Wibisono (2019). For that puperse, we just
replace the constants in Theorem 9 in the following way:
M → (1 + α)M , B2 → (1 + α)2NB2, κ0 → Nκ0,
κ→ Nκ, d→ Nd, λ→ λ(α,N), and C0 → C̄0 Then we
get

W2(µ⊗Nk , π⊗N )2

≤ 2λ(α,N) KL(µ⊗Nk |π⊗N )

≤ 2λ(α,N)e−
kh

βλ(α,N)NKL(µ0|π)

+ 8λ(α,N)2

3

(
2hdN(1+α)M

β (m+ 4(1 + α)M) + 8C̄0δ̄
)

:= 2Nλ(α,N)e−
kh

βλ(α,N)κ0 +Nλ(α,N)2C8(α), (182)

where we set

C8(α) := 8
3

(
2hd(1+α)M

β (m+ 4(1 + α)M) + 8C̄0δ̄
)
, (183)

for simplicity.

We summarize this result as

Theorem 11. Under Assumptions 1 to 5 and an addi-
tional assumption m

4M2 ≤ 1, for any k ∈ N and any
h ∈ (0, 1

4
√

2M2λ
∧ m

4M2 ) obeying kh ≥ 1 and βm ≥ 2,

µ⊗Nkh , which is induced by Eq.(20), satisfies

W2(µ⊗Nk , π⊗N )2

:= 2Nλ(α,N)e−
kh

βλ(α,N)κ0 +Nλ(α,N)2C8(α), (184)

where

C8(α) := 8
3

(
2hd(1+α)M

β (m+ 4(1 + α)M) + 8C̄0δ̄
)
. (185)

If a test function f is an Lf -lipschitz function in Rd, the bias∣∣∣E 1
N

∑N
n=1 f(X

(n)
k )−

∫
Rd fdπ

∣∣∣ can be upper-bounded by
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the W2 distance multiplied by Lf/
√
N . Thus, we get∣∣∣∣∣E 1

N

N∑
n=1

f(X
(n)
k )−

∫
Rd
fdπ

∣∣∣∣∣
≤ Lf

√
2λ(α,N)e−

kh
βλ(α,N)κ0 + λ(α,N)2C8(α).

(186)

Compared to the bias Eq.(139),∣∣∣∣Ef(Xkh)−
∫
Rd
fdπ

∣∣∣∣
≤ Lf

√
2λe−

1
βλkhKL(µ0|π) + λC8,

where C8 = C8(α = 0), we can see that the first term
becomes small due to the interaction, while the second term
corresponds to the stochastic gradient and discretization
error can be larger due to the interaction. Thus, we can
observe the trade-off between faster convergence and larger
discretization error.

J. Discussion about a spectral gap
In this section, we discuss the spectral gap, which is closely
related to the Poincaré constant. We focus on the situation
when we introduce the divergence-free drift.

J.1. Definition of a spectral gap

First, recall that the definition of the generator for standard
Langevin dynamics is

Lf(Xt) =
(
−∇U(Xt) · ∇+ β−1∆

)
f(Xt),

and that of the N-naive parallel chain as

Lα=0f(X⊗N
t ) =

(
−∇U⊗N (X⊗N

t ) · ∇+ β−1∆
)
f(X⊗N

t ).

On the other hand, the generator of the proposed dynamics
is

Lαf(X⊗Nt ) =
(
−∇U⊗Nα (X⊗Nt ) · ∇+ β−1∆

)
f(X⊗Nt ),

where∇Uα(x⊗N ) := ∇U⊗N (x⊗N ) + αJ∇U⊗N (x⊗N ).

Then, if ρ0 > 0 which is defined as

ρ0 := inff∈D(E)

{ E(f)∫
f2dπ

: f 6= 0,

∫
fdπ = 0

}
,

π with L has the spectral gap ρ0. From this definition, ρ0 is
the smallest eigenvalue other than 0. From the definition of
the spectral gap, a constant c which satisfies ρ−1 ≥ c can
satisfy a Poincare inequality. We can also define the spectral
gap of π⊗N with Lα=0 and denote it ρ(α = 0, N).

On the other hand, the spectrum of Lα 6=0 are not the real
values but takes complex values. Although −Lα is not self
adjoint operator, from proposition 1 in Franke et al. (2010),
it has discrete complex spectrums. Following Franke et al.
(2010), we define the spectral gap of Lα as the smallest real
part of the eigenvalue which is larger than 0 and denote it
ρ(α,N).

We review the result of Hwang et al. (2005), which shows
that a real part of the spectral gap of the nonreversible dy-
namics is larger than those of the reversible one. We denote
the spectral gap of the proposed dynamics as ρ(α,N). Note
that Then ρ0 denotes the case of standard Langevin dynam-
ics.

J.2. Relation of spectral gaps

Theorem 12. Assume that the stationary distribution π with
L has the spectral gap ρ0 and π⊗N with Lα has the spectral
gap ρ(α,N). Then we have

ρ(α,N) ≥ ρ0. (187)

Proof. Our proof follow a similar line with Hwang et al.
(1993; 2005).

Since the generator Lα=0 is self-adjoint, and the suit-
able growth condition, the spectral of Lα=0 is discrete
Bakry et al. (2013). We denote the spectrum of Lα=0 as
{λk}∞k=0 ∈ R and corresponding normalized eigenvectors
as {ek}∞k=0, which are the real functions. We order the spec-
trum as 0 > λ0 > λ1 > . . . . Thus, ρ(α = 0, N) = −λ0.

As for Lα, although it is not self adjoint operator, from
proposition 1 in Franke et al. (2010), it has discrete complex
spectrums. We denote the spectrum of Lα as λ + iµ ∈ C
where λ, µ ∈ R and corresponding normalized eigenvector
as u+ iv where u, v are the real functions and then we have

Lα(u+ iv) = (λ+ iµ)(u+ iv). (188)

From this definition, by checking the real parts and complex
parts, following relations are derived

Lαu = λu− µv, (189)
Lαv = λv + µu. (190)

Due to the divergence-free drift property, for any bounded
real value test function g(x),∫

g(Lα=0 − Lα)gdπ =

∫
αgγ · ∇gdπ

= −
∫
αgγ · ∇gdπ (191)

where we used the partial integral. This means that for any
bounded real function g(x),∫

gLα=0gdπ =

∫
gLαgdπ. (192)
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(This only holds for real functions.) Then, we can evaluate
the real part of the eigenvalue λ as follows,∫
uLα=0udπ +

∫
vLα=0vdπ =

∫
uLαudπ +

∫
vLαvdπ

= λ

(∫
u2dπ +

∫
v2dπ

)
= λ. (193)

Then, by expanding the eigenfunction u, v by the eigenfunc-
tion {ek},

λ =

∫
uLα=0udπ +

∫
vLα=0vdπ

=
∑
k

λk

((∫
uekdπ

)2

+

(∫
vekdπ

)2
)

≤ λ0

∑
k

((∫
uekdπ

)2

+

(∫
vekdπ

)2
)

≤ λ0. (194)

Thus the real part of the eigenvalue of Lα is smaller than
the smallest eigenvalue of Lα. This means that ρ(α,N) ≥
ρ(α = 0, N) = −λ0.

Finally, we can conclude ρ(α = 0, N) = ρ0 from the
tensorization property of the spectral gap (Proposition 4.3.1
in Bakry et al. (2013)).

Then we conclude ρ(α,N) ≥ ρ(α = 0, N) = ρ0.

J.3. Evaluation of the spectral gap

As our analysis clarified, we should set α sufficiently small
so that the discretization error will not become large. In
such a situation, we can regard the non-reversible drift term
as the perturbation to the original process. This means that
when we write the perturbation term as V , the generator is
written as

Lαf = Lα=0f + αV f. (195)

(Hereinafter in this section, we denote Lα=0 as L for sim-
plicity.) Then, our question is that how much the largest
eigenvalue will be perturbed by the αV . Following the no-
tations in the previous section, we write the eigenvalues and
vectors of L as {λk} and {ek}. We write the eigenvalues
and eigenvectors of Lα as γ = λ+iµ, w = u+iv. Our goal
is to derive the relation between the λk and γ, especially it’s
real part Reγ.

When α is sufficiently small, we can use the perturbation
theory for that purpose. Let us start from the definition of
the basic relation,

Lαw = (L+ αV )w = γw = (λ+ iµ)(u+ iv). (196)

Then by multiplying ek from the left-hand side and take the
average with respect to µ, we get∫

ek(L+ αV )wdπ = (λ+ iµ)

∫
ekwdπ. (197)

As for the left-hand side in the above equation, by using

Lek = λkek, (198)

we get∫
ek(L+ αV )wdπ = λk

∫
ekwdπ + α

∫
ekV wdπ.

(199)

Then we get

((λ+ iµ)− λk)

∫
ekwdπ = α

∫
ekV wdπ, (200)

if w and ek are not orthogonal,

(λ+ iµ)− λk =
α
∫
ekV wdπ∫
ekwdπ

. (201)

Thus,

λ− λk = Re
α
∫
ekV wdπ∫
ekwdπ

. (202)

Then, we will study the right-hand side by the perturba-
tion theory. For that purpose, we introduce two projection
operators, {Qk} and {Pk}. Since {ek} is the complete or-
thogonal system, we define Qk as the projection into the
space spanned by ek. Thus we define the projection Qk as

Qkw :=

(∫
ekwdπ

)
w = 〈ek, w〉πek. (203)

Then, we define the projection Pk as the orthogonal projec-
tion to Qk;

Pkw := (I −Qk)w = w − 〈ek, w〉πek. (204)

SinceQk and Pk are projections, we can easily comfirm that
Q2
k = Qk, P 2

k = Pk, QkPk = PkQk = 0, Pk +Qk = I .

Based on this projections, let us start the perturbation esti-
mation of the eigenvalues. Back to the definition,

(L+ αV )w = γw, (205)

first, we add the baseline ε ∈ R from both-sides, then we
get

(L+ αV + ε)w = (γ + ε)w, (206)

then rearrange the both-sides as

(αV + ε− γ)w = (ε− L)w. (207)
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Then, we apply the projection Pk on both-hands,

Pk(αV + ε− γ)w = Pk(ε− L)w

= (ε− L)Pkw

= (ε− L)(w − 〈ek, w〉πek), (208)

then by applying the inverse; (ε− L)−1 (thus, we need to
choose ε so that this inverse exists. Later we set this ε = λk).
Then, by rearranging the both-hand sides, we get

w = 〈ek, w〉πek + (ε− L)−1Pk(αV + ε− γ)w. (209)

From this expression, we recursively substituting w,

w = 〈ek, w〉πek + (ε− L)−1Pk(αV + ε− γ)w

= 〈ek, w〉πek + (ε− L)−1Pk(αV + ε− γ)〈ek, w〉πek
+
(
(ε− L)−1Pk(αV + ε− γ)

)2
w

...

=

∞∑
n=0

Dk(α, ε)n〈ek, w〉πek. (210)

where

Dk(α, ε) := (ε− L)−1Pk(αV + ε− γ). (211)

Then, we substitute this expression to Eq.(202), then we get

λ− λk = αRe

∫
ekV

∞∑
n=0

Dk(α, ε)nekdπ. (212)

Let us set ε = λl where l 6= k. First, the when we consider
only up to n = 0, we get the first order expansion with
respect to α as

λ− λk = αRe

∫
ekV ekdπ +O(α2). (213)

Since V ek = J∇U · ∇ek where J is the skew symmetric
matrix,

∫
ekV ekdπ = 0. Thus,

λ = λk +O(α2). (214)

This means that the real part of the eigenvalue of Lα never
changes up to the first order concerning α. Thus, we need
to check the higher-order to observe the α dependency. Let
us consider the term up to n = 1,

λ− λk = αRe

∫
ekV Dk(α, ε)ekdπ

= αRe

∫
ekV (ε− L)−1Pk(αV + ε− γ)ekdπ,

(215)

where we omit O(α3). From now on, we set k = 0 and
ε = λ0 for simplicity. The following discussion holds

in the case of k 6= 0. Note that {ek} is the complete
orthonormal system (CONS), thus for any f, g ∈ D(f),
〈f, g〉π =

∑∞
k=0〈f, ek〉π〈ek, g〉π (This is the property of

CONS), thus we use this relation in Eq.(215), we get

λ− λ0

= αRe

∞∑
k=0

(∫
e0V (λ0 − L)−1P0ekdπ

)
×
(∫

ek(αV + ε− γ)e0dπ

)
= α

∞∑
k=1

(∫
e0V ekdπ

λ0 − λk

)(∫
ekαV e0dπ

)

= α2
∞∑
k=1

|
∫
ekV e0dπ|2
λk − λ0

. (216)

Thus, in conclusion, we get the expression that up to the
second order of α,

λ = λ0 + α2
∞∑
k=1

|〈ek, V e0〉π|2
λk − λ0

+O(α3). (217)

This concludes the proof.

J.4. Lower bound of the Poincare constant

In Raginsky et al. (2017), the upper bound of the Poincare
constant is derived for the standard Langevin dynamics
under the assumptions 1 to 5. On the other hand, in this
section, we discuss the lower bound of the Poincare constant
under the same assumptions, which will be used in the
comparison of the LSI constants. Since we are interested
in the lower bound of the Poincare constant, what we will
investigate is the tightest Poincare inequality, which satisfies
the assumptions 1 to 5. For that purpose, we focus on
the assumption 3, which is a dissipative assumption. This
assumption is closely related to a convex property. In usual,
we say that a function U(x) : X ⊂ Rd → R is a convex
function , if there exists a positive constant m for any x, y ∈
X ⊂ Rd such that

(∇U(x)−∇U(y)) · (x− y) ≥ m‖x− y‖2. (218)

If we substitute y = 0, then we get the assumption 3 with
b = 0. Thus, the assumption 3 is weaker than the convex
assumption. Thus, we focus on the Poincare constant when
the potential is a convex function.

Convexity is closely related to the curvature dimension con-
ditions (Bakry et al., 2013), and that condition directly re-
sults in various functional inequalities. Recall that Γ is the
Carre du champ operator and then let us define the following
operator

Γ2(f, g) :=
1

2
(LΓ(f, g)− Γ(f,Lg)− Γ(Lf, g)) . (219)



Accelerating the diffusion-based ensemble sampling by non-reversible dynamics

We express Γ2(f) := Γ2(f, f). Then, we say that L sat-
isfies the curvature dimension condition CD(ρ,∞) if it
satisfies

Γ2(f) ≥ ρΓ(f), (220)

for every function f in a sufficiently rich families of func-
tions in D(L) (See Bakry et al. (2013) for the details).
From the discussion in Collorary 4.8.2 in Bakry et al.
(2013), if U − m

2 ‖x‖2 is a convex function, then it sat-
isfies CD(m,∞). Then from Collorary 4.8.2 in Bakry et al.
(2013), such a Langevin dynamics satisfies the Poincare
inequality with constant 1

m . Furthurmore, if π ∝ e−U is a
compactly supported Riemannian measure, then from 4.8.1
in Bakry et al. (2013), it satisfies the Poincare inequality
d−1
dm . We cannot improve this constant by the definition. See

Bakry et al. (2013) for details.

Back to our setting, our potential function can satisfy
CD(2βm, d), thus it can satisfy the Poincare inequality
d−1
d2βm , which cannot be improved. This is achieved if U is a
convex function.

K. Estimation of the Logarithmic Sobolev
constant

In this section, we estimate the upper bound of the Loga-
rithmic Sobolev constants in standard SGLD, naive parallel
chain SGLD, and particle interacting system.

K.1. LSI constant of standard SGLD

Proof of Theorem 3: To estimate the logarithmic Sobolev
constant, we rely on the technique of restricted logarithmic
Sobolev inequality, which was introduced in Carlen & Loss
(2004).
Theorem 13. (Theorem 3.3 in Carlen & Loss (2004)) Sup-
pose that π ∝ exp(−βU(x)) and U is C2 and π admits a
spectral gap ρ > 0, and

−C = infx

{
β

4
‖∇U(x)‖2 − 1

2
∆U(x)− πe2U(x)

}
> −∞,

(221)

then π admits a logarithmic Sobolev inequality with con-
stant λ no larger than

λ ≤ 1

(1 + ρ−1β|C|)2πe2
+

3

2
ρ−1, (222)

that means for all functions v on Rd with
∫
Rd f

2dµ = 1,∫
Rd
v2 ln v2dµ ≤ λ

∫
Rd
‖∇v‖2dµ. (223)

This means that if the right-hand side of Eq.(285) is lower
bounded, then π satisfies the logarithmic Sobolev inequality.

Also we can transform Eq.(223) by partial integration,∫
Rd
v2 ln v2dµ ≤ λ

∫
Rd
‖∇v‖2dµ

= −λ
∫
Rd
vL′vdµ

= −λβ
∫
Rd
vLvdµ (224)

where L and L′ are defined by

Lf(Xt) =
(
−∇U(Xt) · ∇+ β−1∆

)
f(Xt). (225)

and

L′f(Xt) = (−β∇U(Xt) · ∇+ ∆) f(Xt), (226)

which satisfies βL = L′. These are defined in Ap-
pendix D.1. Thus, from Appendix D.1, L′ induces

dXt = −β∇U(Xt) +
√

2dw(t), (227)

and its time scale is changed from t → βt. So by using
Theorem 3.3 in Carlen & Loss (2004), we can understand
the LSI constant of L′. After that we just multiply β to get
the LSI constant of L′.
We study the right-hand side of Eq.(285) of standard SGLD
under the assumptions 1 to 5.

From lemma 2 in (Raginsky et al., 2017), for all x ∈ Rd,

‖∇U‖ ≤M‖x‖+B, (228)

and
m

3
‖x‖2 − b

2
log 3 ≤ U(x) ≤ M

2
‖x‖2 +B‖x‖+A,

(229)

and since the U is M -smooth, thus

∆U ≤Md. (230)

From the dissipative condition, we have

‖x‖‖∇U(x)‖ ≥ x · ∇U(x) ≥ m‖x‖2 − b. (231)

Thus

‖∇U(x)‖ ≥ m‖x‖ − b/‖x‖. (232)

If ‖x‖ ≥
√

2b/m, then

‖∇U‖ ≥ 1

2
m‖x‖. (233)

Then,
β

4
‖∇U(x)‖2 − 1

2
∆U(x)− πe2U(x)

≥ βm2

16
‖x‖2 −Md/2− πe2

(
M

2
‖x‖2 +B‖x‖+A

)
=

(
βm2

16
− Mπe2

2

)
‖x‖2 − πe2B‖x‖ − (Md/2 +Aπe2).

(234)
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Thus,

−C = infx
β

4
‖∇U(x)‖2 − 1

2
∆U(x)− πe2U(x)

≥ infx

(
βm2

16
− Mπe2

2

)
‖x‖2 − πe2B‖x‖ − (Md/2 +Aπe2).

(235)

Then, the coefficient of ‖x‖2 should be larger than 0 so that
the right-hand side of the above inequality is bounded below.
This means

C ′ :=
βm2

16
− Mπe2

2
> 0. (236)

This is equivalent to

βm2

M
> 8πe2. (237)

On the other hand, from Eq.(229), following relation holds,

M/2 ≥ m/3⇔ 3/2 ≥ m/M. (238)

Combined with Eq.(237,238), we get

βm >
16πe2

3
. (239)

Under this assumption, π satisfies the logarithmic Sobolev
inequality. Compared with (Raginsky et al., 2017), where
βm > 2 holds, this is stronger condition. However, as
we can see later this shows better dependency about the
dimension d in the LSI constant.

Back to the estimate of the upper bound of the LSI, under
the above assumption, the larger the absolute value of C
means the smaller LSI constant, which means stronger in-
equality. We can easily find the infimum of Eq.(235) under
the assumption of ‖x‖ ≥

√
2b/m. However, for simplicity,

we simply upper bound the LSI constant as

λ ≤ 1

(1 + ρ−1β|C|)2πe2
+

3

2
ρ−1 ≤ 1

2πe2
+

3

2
ρ−1.

(240)

Thus, the estimate of the LSI constant is

λe :=
1

(1 + ρ−1β|C|)2πe2
+

3

2
ρ−1. (241)

We can estimate the lower bound of the LSI constant. Note
the right-hand side of Eq.(285) as

β

4
‖∇U(x)‖2 − 1

2
∆U(x)− πe2U(x)

≤ β(M‖x‖+B)2

4
− πe2

(
m

3
‖x‖2 − b

2
log 3

)
+Md/2.

(242)

Thus,

−C = infx
β

4
‖∇U(x)‖2 − 1

2
∆U(x)− πe2U(x)

≤ infx
β(M‖x‖+B)2

4

− πe2

(
m

3
‖x‖2 − b

2
log 3

)
+Md/2

≤ βB2

4
+
bπe2

2
log 3 +

Md

2
. (243)

in the last inequality on the above, we substitute 0 for ‖x‖
for simplicity. Thus, we get the upper bound

λ ≤ λe :=
1

(1 + ρ−1βC)2πe2
+

3

2
ρ−1, (244)

0 < C ≤ βB2

4
+
bπe2

2
log 3 +

Md

2
. (245)

Next let us compare the estimated upper bound of the loga-
rithmic constant with that of (Raginsky et al., 2017), which
shows that

λ ≤ λl := D1 + ρ−1D2,

D1 =
2m2 + 8M2

βm2M
, D2 =

(
6M(d+ β)

m
+ 2

)
. (246)

Thus, we compare λe and λl. From Cauchy-Shwartz in-
equality,

D1 =
2

Mβ
+

8M

βm2
≥ 2

√
16

β2m2
=

8

βm
(247)

Then

λl − λe

= D1 + ρ−1D2 −
(

1

(1 + ρ−1β|C|)2πe2
+

3

2
ρ−1

)
≥ 8

βm + ρ−1
(

6M(d+β)
m + 2

)
−
(

1
(1+ρ−1β|C|)2πe2 + 3

2ρ
−1
)

≥ 8

βm
+ ρ−1 (4(d+ β) + 1/2)− 1

(1 + ρ−1β|C|)2πe2

≥ 8

βm
+

1

2βm
(4(d+ β) + 1/2)− 1

2πe2
. (248)

In the last line, we used the tightest Poincare constant from
Appendix J.4. Note that this ρ is associated with L′ due to
the time rescaling which is introduced in Appendix D.1. So,
if the last line is larger than 0, λl > λe holds. This is the
condition.

K.2. Smaller logarithmic Sobolev constants for the
non-reversible ensemble system

In this section, we show that a logarithmic Sobolev constant
of the non-reversible chain is smaller than the reversible
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one. The important question is that how the constant −C in
Eq.(285) changes by the divergence-free drift function. We
express that constant as Cα,N to make it clear.

First let us consider the case of the naive parallel-chain
SGLD and its corresponding constant which is related to
Eq.(285) as C0,N . By following the proof of Theorem 3.3 in
Carlen & Loss (2004), we can easily find that the constant
C0,N is derived by the following,

−C0,N = infx⊗N∈RdN

N∑
n=1

β

4
‖∇U (n)(x(n))‖2

− 1

2
∆U (n)(x(n))− πe2U (n)(x(n)) > −∞,

(249)

This is intuitive since the naive parallel-chain SGLD is the
concatenation of standard SGLD.

Then, we calculate the case of the non-reversible chain,
Cα,N . We can easily find that the term which depends on
J does not appear it is the skew-symmetric matrix. Thus,
the objective function of the non-reversible chain is also
Eq.(249). Thus, we can find that Cα,N = C0,N .

From this, the difference of the LSI constant between the
naive-parallel chain SGLD and our proposed method comes
from the difference of the spectral gap ρ. Recall that the
estimate of LSI constant is given as

λ ≤ λe :=
1

(1 + ρ−1βC)2πe2
+

3

2
ρ−1, (250)

0 < C ≤ βB2

4
+
bπe2

2
log 3 +

Md

2
. (251)

The important point is that the larger spectral gap ρ means
the smaller LSI constant. This is easily confirmed by the
fact that the right-hand side of Eq.(250) is a monotonically
increasing function of about ρ−1.

We express the upper bound of the LSI constant of standard
SGLD as λe and that of the naive parallel chain as λ(α =
0, N), and our proposed method as λ(α,N).

First of all, we need to evaluate the spectral gaps. This is
already finished in Appendix J.2,

ρ(α,N) ≥ ρ(0, N) = ρ0. (252)

Thus, we conclude that

λ(α,N) ≤ λ(0, N). (253)

Next, we discuss the relation between the LSI constant of
naive N -parallel chain SGLD and standard SGLD. From
the tensorization property of the LSI constant, we can see
that the LSI inequality for naive N -parallel chain has the

constant of λe, which is also the LSI constant of the standard
SGLD, thus

λ̃(0, N) = λe =
1

(1 + ρ−1
0 βC)2πe2

+
3

2
ρ−1

0 . (254)

Finally, let us compare λ̃(0, N) and λ(0, N). Then from
the definition of C and C0,N , the relation C0,N ≥ C and
ρ(0, N) = ρ0 holds, thus, we can conclude that λ̃(0, N) ≥
λ(0, N). Thus, we get

λ(α,N) ≤ λ̃(0, N) = λe. (255)

Lyapunov function-based approach: On the other hand,
when we estimate the LSI constat by the Lyapunov function-
based approach, LSI constant of the standard SGLD is esti-
mated as

λl ≤ a+ ρ−1
0 (a′ + a′′

∫
Rd
‖x‖2dπ), (256)

where a, a′, a′′ are some positive constants which are inde-
pendent from the dimension d. This is also monotonically
decreasing function about ρ, thus we can conclude that
the upper bounds of the proposed and naive parallel chain
SGLD are estimated as

λ(α,N) ≤ λ(0, N) = b+ ρ−1
0 (b′ + b′′

∫
RdN
‖x‖2dπ⊗N ),

(257)

where b, b′, b′′ are some positive constants which are inde-
pendent of the dimension d. On the other hand, from the
tensorization property of the LSI constant, the LSI constant
of the naive parallel chain SGLD is estimated differently,

λ̃(0, N) = λl = a+ ρ−1
0 (a′ + a′′

∫
Rd
‖x‖2dπ). (258)

Thus, there is two different estimate about the upper bound
of the LSI constant for the naive parallel chain SGLD.
Different from our evaluation method, since Lyapunov
function based-estimation has the second moment term∫
RdN ‖x‖2dπ⊗N , under the additional mild conditions,

λ̃(0, N) ≤ λ(0, N) (259)

can hold since
∫
RdN ‖x‖2dπ⊗N can be N times larger than∫

Rd ‖x‖2dπ. Thus, we cannot conclude that λ(α,N) is
smaller than λl. This is the undesirable result. Thus, Lya-
punov function-based approach is not appropriate in our
analysis.

L. Removing the additional assumption of
Theorem 3

In this section, we remove the additional condition of Theo-
rem 3 in the main paper. Our goal is to prove
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Theorem 14. Under the same conditions as Theorem 2, the
LSI constant is upper-bounded by λe:

λ ≤ λe :=

√
12

(1 + ρ−1|C|)2
√
β2m2 + 8

+ 3(2ρ0)−1,

(260)

where

C := inf
x

β2‖∇U‖2
4

− β∆U

2

− β

γ
V − γ2 − 2

4
‖x‖2 +

d

2
> −∞, (261)

, γ =
√

β2m2+8
12 , and ρ0 is given in Eq.(13). Moreover, λe

is always smaller than λl of Eq.(11) estimated by Raginsky
et al. (2017).

Note: In Theorem 2 in the main paper, there is an addi-
tional assumption about βm. This assumption is strong. For
example, if we consider the Gaussian potential function,
which has β = 1 and m = 2, then it cannot satisfy the
assumption of Theorem 2. On the other hand, it satisfy the
assumption of Theorem 14, which requires βm ≥ 2.

Proof. The proof is based on the improved result of Theo-
rem 3.3 Carlen & Loss (2004) with respect to the constants.

Theorem 15. Let us define π ∝ exp(−U(x)) and U is
C2 and π admits a spectral gap ρ > 0. Given a positive
constant γ, if

C := inf
x

β2‖∇U‖2
4

− β∆U

2

− β

γ
V − γ2 − 2

4
‖x‖2 +

d

2
> −∞, (262)

is satisfied, then, π admits a logarithmic Sobolev inequality
with constant λ no larger than

λ ≤ 1

(1 + ρ−1|C|)2γ +
3

2
ρ−1. (263)

The proof of this theorem is given in Appendix L.1

Discussion: Before the proof, we discuss why this is the
improved version. Remember that Theorem 3.3 Carlen &
Loss (2004) is given by

−C = infx
β

4
‖∇U(x)‖2

− 1

2
∆U(x)− πe2U(x) > −∞, (264)

then π admits a logarithmic Sobolev inequality with con-
stant λ no larger than

λ ≤ 1

(1 + ρ−1β|C|)2πe2
+

3

2
ρ−1. (265)

Let us compare this with Theorem 15. For example let us
consider U(x) = ‖x‖2, which is the Gaussian. Then

β

4
‖∇U(x)‖2 − 1

2
∆U(x)− πe2U(x)

= ‖x‖2 − d− πe2‖x‖2) = (1− πe2)‖x‖2 − d. (266)

Since (1− πe2) < 0, infx(1− πe2)‖x‖2 − d = −∞. On
the other hand

β2‖∇U‖2
4

− β∆U

2
− β

γ
V − γ2 − 2

4
‖x‖2 +

d

2

= ‖x‖2 − d

2
− 1

γ
‖x‖2 − γ2 − 2

4
‖x‖2

= (1− 1

γ
− γ2 − 2

4
)‖x‖2 − d

2
. (267)

So for example γ = 1, then (1 − 1
γ −

γ2−2
4 ) > 0 thus

infx(1 − 1
γ −

γ2+2
4 )‖x‖2 − d

2 > −∞. Thus, by tuning γ
appropriately, we can apply this improved Theorem to the
standard Gaussian measure to estimate the LSI constant.

Back to the proof, following Appendix K.1, we will study
when C of Theorem 15 is lower bounded. Following Ap-
pendix K.1, we substitute the relations about the upper
bound of U(x) and ∆U(x), and the lower bound of the
∇U(x), we get the condition that C of Theorem 15 is lower
bounded if

β2m2γ

16
− βM

2
− γ3 − 2γ

4
≥ 0, (268)

is satisfied. Then, we optimize above left handside with
respect to γ which is a positive. We can easily find that if
we define f(γ) := β2m2γ

16 − βM
2 −

γ3−2γ
4 , then f(γ) take

the minimum when

γ =

√
β2m2 + 8

12
, (269)

and moreover f(
√

β2m2+8
12 ) > 0. Thus, if we set γ =√

β2m2+8
12 , then C of Theorem 15 is always lower bounded.

Thus from Theorem 15, the LSI constant is upper bounded
by

λ ≤
√

12

(1 + ρ−1|C|)2
√
β2m2 + 8

+
3

2
ρ−1 := λe. (270)

Then we compare it in the following way

λl − λe
≥ 8

βm + ρ−1
(

6M(d+β)
m + 2

)
−
( √

12

(1+ρ−1|C|)2
√
β2m2+8

+ 3
2ρ
−1

)
≥ 8

βm
+ ρ−1 (4(d+ β) + 1/2)−

√
3

(1 + ρ−1β|C|)βm > 0.

(271)

Thus, we confirmed that we do not need additional assump-
tions like Theorem 3.
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L.1. Proof of Theorem 15

Proof. Theorem 3.3 in Carlen & Loss (2004) is the direct
consequence of lemma 3.1 and 3.2 in Carlen & Loss (2004).

The lemma 3.1 is that if π admits a spectral gap ρ > 0, and
for some finite b,∫

Rd
v2 ln v2dµ ≤ b

∫
Rd
‖∇v‖2dµ, (272)

whenever ∫
Rd
vdµ = 0, (273)

and ∫
Rd
v2dµ = 1. (274)

Then µ admits a LSI with constant no larger than b
2 + 3

2ρ.

On the other hand, lemma 3.2 is that U is C2 and π admits
a spectral gap ρ > 0, and

−C = infx
β

4
‖∇U(x)‖2

− 1

2
∆U(x)− πe2U(x) > −∞. (275)

Then for all v satisfying∫
Rd
vdµ = 0, (276)

and ∫
Rd
v2dµ = 1, (277)

we have∫
Rd
v2 ln v2dµ ≤ 1

1 + ρ−1πe2

∫
Rd
‖∇v‖2dµ. (278)

We improve this lemma 3.2. In the proof of lemma 3.2,
the key point is that the Lebesgue measure is used as a
reference measure. There is an LSI for Lebesgue measure
in the following way. For any function v on Rn, which
satisfies

∫
Rd v

2dnx = 1, we have∫
Rd
v2 ln v2dnx ≤ 1

πe2

∫
Rd
‖∇v‖2dnx. (279)

This relation plays an important role. We replace this rela-
tion to the Gaussian measure. Given a Gaussian measure
dN ∝ e−γ ‖x‖

2

2 dnx, which satisfies CD(γ,∞) from Propo-
sition 5.7.1 in Bakry et al. (2013), we have∫

Rd
v2 ln v2dN ≤ 1

γ

∫
Rd
‖∇v‖2dN. (280)

We use this Gaussian measure as a reference measure and
improve the lemma 3.2.

Lemma 9. (Improved result for lemma 3.2. in Carlen &
Loss (2004)) U is C2 and π admits a spectral gap ρ > 0,
and γ is a positive constant and

C := inf
x

β2‖∇U‖2
4

− β∆U

2

− β

γ
U − γ2 + 2

4
‖x‖2 +

d

2
> −∞, (281)

Then for all v satisfying∫
Rd
vdµ = 0, (282)

and ∫
Rd
v2dµ = 1, (283)

we have∫
Rd
v2 ln v2dµ ≤ 1

(1 + ρ−1)γ

∫
Rd
‖∇v‖2dµ. (284)

This proof is given in Appendix L.1.1. We combined this
result with lemma 3.1 in Carlen & Loss (2004), we have, if

C := inf
x

β2‖∇U‖2
4

− β∆U

2

− β

γ
V − γ2 − 2

4
‖x‖2 +

d

2
> −∞, (285)

is satisfied, then π admits a logarithmic Sobolev inequality
with constant λ no larger than

λ ≤ 1

(1 + ρ−1|C|)2γ +
3

2
ρ−1. (286)

L.1.1. PROOF OF LEMMA 9

Proof. For simplicity, we assume dµ = e−βU . Let us define

g := ue−β
U
2 eγ

‖x‖2
4 . (287)

Then for any t ∈ (0, 1]∫
Rd
‖∇v‖2dµ− tγ−1

∫
Rd
v2 ln v2dµ

= (1− t)
∫
Rd ‖∇v‖2dµ+ t

(∫
Rd ‖∇v‖2dµ− γ−1

∫
Rd v

2 ln v2dµ
)

≥ (1− t)ρ
∫
Rd v

2dµ+ t
(∫

Rd ‖∇v‖2dµ− γ−1
∫
Rd v

2 ln v2dµ
)
.

(288)

Then, we will evaluate the second term. From the definition,
we have

u = geβ
U
2 e−γ

‖x‖2
4 . (289)
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Thus, we get

∇u =

(
∇g +

β∇U
2

g − γ

2
xg

)
eβ

U
2 e−γ

‖x‖2
4 . (290)

Thus, we have∫
Rd
‖∇v‖2dµ

=

∫
Rd

(
∇g +

β∇U
2

g − γ

2
xg

)2

dN

=

∫
Rd
‖∇g‖2dN

+

∫
Rd

(
β2‖∇U‖2

4
− β∆U

2
− γ2

4
‖x‖2 +

d

2

)
g2dN.

(291)

Also, we have∫
Rd
v2 ln v2dµ

=

∫
Rd
g2 ln g2dN +

∫
Rd
g2(βV − γ‖x‖2

2
)dN. (292)

Thus, we have∫
Rd
‖∇v‖2dµ− tγ−1

∫
Rd
v2 ln v2dµ

≥ (1− t)ρ
∫
Rd
g2dN

+ t

∫
Rd
‖∇g‖2dN

+ t

∫
Rd

(
β2‖∇U‖2

4
− β∆U

2
− γ2

4
‖x‖2 +

d

2

)
g2dN

− t
∫
Rd
g2 ln g2dN − t

∫
Rd
g2(βV − γ‖x‖2

2
)dN

≥ (1− t)ρ
∫
Rd
g2dN

+t
∫
Rd

(
β2‖∇U‖2

4 − β∆U
2 − β

γ V −
γ2−2

4 ‖x‖2 + d
2

)
g2dN.

(293)

So if for any x,

(1− t)t−1ρ

+
β2‖∇U‖2

4
− β∆U

2
− β

γ
V − γ2 − 2

4
‖x‖2 +

d

2
≥ 0,

(294)

is satisfied, we have∫
Rd
‖∇v‖2dµ− tγ−1

∫
Rd
v2 ln v2dµ ≥ 0. (295)

For that purpose if we define

C ′ :=
β2‖∇U‖2

4
− β∆U

2
− β

γ
V − γ2 − 2

4
‖x‖2 +

d

2
(296)

and if this |C ′| is finite, and we set

t =
1

1 + ρ−1|C ′| , (297)

Eq.(295) wiil be satisfied. Thus, if

C := inf
x

β2‖∇U‖2
4

− β∆U

2

− β

γ
V − γ2 − 2

4
‖x‖2 +

d

2
> −∞, (298)

we set t = 1
1+ρ−1|C| , we have∫

Rd
v2 ln v2dµ ≤ 1

(1 + ρ−1)γ

∫
Rd
‖∇v‖2dµ. (299)

M. Experimental settings
M.1. Construction of J

Here we explain how to build J in our experiments. First of
all, we restrict the structure of J as

J =

dN︷ ︸︸ ︷

d︷︸︸︷
0

d︷︸︸︷
J ′12I . . .

d︷ ︸︸ ︷
J ′1NI

−J ′12I

d︷︸︸︷
0 . . .

...
. . .

...

−J ′1NI . . .

d︷︸︸︷
0


. (300)

where

d︷︸︸︷
0 means the d × d matrix whose entries are all

zero and

d︷︸︸︷
J ′12I means the d × d matrix whose entries are

J ′12 ∈ R times an identity matrix. Thus, this J is surely
skew-symmetric.

Since the drift function is defined as
∇uα(x⊗N , z) := ∇u⊗N (x⊗N , z) + αJ∇u⊗N (x⊗N , z)

and ∇U⊗Nα =
∑
z∇uα(x⊗N , z)/|Z|, for example, the first

particle X(1)
t moves with the dynamics;

dX
(1)
t = −

(
∇U(X

(1)
t ) +

∑N
n=2 J

′
1n∇U(X

(n)
t )

)
dt+

√
2β−1dwt.

(301)
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Figure 5. LDA experiments (Averaged over 10 trials)

This means that the interaction term, J ′1n∇U(X
(n)
t ), has

the equal weights J ′1n to each dimension so that the gradient
information ∇U(X

(n)
t ) is preserved. Also by setting the

block diagonal element of J as 0 ({Jnn}Nn=1 = 0), the self
interaction term becomes 0 ( J ′11∇U(X

(1)
t ) = 0).

In this work, as we described in the main paper, we prepared
three types of J , skew-N, skew-B, and skew-k. As for skew-
N, each entry follows standard Gaussian distribution. As
for skew-B, each entries follow Bernoulli distribution, so
each J ′i 6=j takes +1 or 0 randomly with equal probability.
After that, since we assumed that the Frobenius norm of J
is below 1, we divided each element by N2 where N is the
number of particles. Next, as for skew-k, we first prepared
the Gram matrixK, of which element is the Gaussian kernel
Kij = k(X

(i)
0 , X

(j)
0 ) = exp(−‖X(i)

0 −X
(j)
0 ‖2/(2h)) and

bandwidth h is calculated by the median trick, which is
the median of all the combination of the distances between
particles. Then, we calculate K1/2J(skew-B)K1/2. Then,
we divide K1/2J(skew-N)K1/2 by N2. The motivation of
introducing skew-k is to smooth skew-B matrix by the initial
position of the particles via the kernel Gram matrix.

M.2. Model settings and additional results

The settings of BLR and BNN experiments are exactly as
same as Liu & Wang (2016). We used adagrad optimizer
for SVGD.

The settings of LDA is the same as Patterson & Teh (2013)
and Liu et al. (2019b).

In all the experiments, we found that setting α = 0 in the
early stage of the sampling is useful to make the algorithm
stable. Thus, we set α = 0 for the first several steps. After
that, we set α 6= 0.
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Figure 6. BNN experiments for kin8 (Averaged over 20 trials)

Ornstein-Uhlenbeck process

There is a formula of the W2 distance between two Gaus-
sian distributions (Wibisono, 2018). Given two Gaussian,
N1(µ1,Σ1) and N2(µ2,Σ2),

W2(N1, N2)2 =‖µ1 − µ2‖2

+ Tr(Σ1 + Σ2 − 2(Σ
1/2
1 Σ2Σ

1/2
1 )1/2).

(302)

Then, given a OU

dXt = Σ−1(Xt − µ)dt+
√

2dw(t), (303)

its solution is given by

x(t) = x0e
−Σ−1t + µ(1− e−Σ−1t)

+
√

2

∫ t

0

e−Σ−1(t−s)dw(s), (304)

thus, its expectation and variance is

Ex(t) = x0e
−Σ−1t + µ(1− e−Σ−1at)

= µ+ (x0 − µ)e−Σ−1t (305)

and

Var(x(t)) = Σ(1− e−2Σ−1t) (306)

Thus, if we write the distribution at time t of above OU
process asNt(µ(t),Σ(t)), the wasserstein distance between
Nt and its stationary N(µ,Σ) is given by

W2(Nt, N)2

= ‖x0 − µ‖2e−Σ−1t + ‖Σ1/2 − Σ1/2(1− e−2Σ−1t)1/2‖2F .
(307)

Thus, we can see that W2 distance decreases exponentially.
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In the numerical experiments, to calculate the MMD and
the Energy distance, we draw 2000 samples from the target
distribution. Then we calculate the MMD and the Energy
distance between those samples and the particles of the
ensemble method at each time steps. We used RBF kernel
for MMD.

BNN classification

We performed the experiments of MNIST classification on
a neural network model with 2 hidden layers, of which unit
numbers are 100 and 50. We used Relu activation functions.
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Symbolslist

Sign Description
U(x) A potential function of the gibbs measure π ∼ e−βU(x)

W2 2-Wasserstein distance of which cost function is the Euclidean distance
g(x,Q) An unbiased estimator of the gradient of U(x)
π Stationary (target) measure π ∼ e−βU

X⊗Nt A random variable following the ensemble method at time t
X

(i)
t The i-th random variable of the X⊗Nt

Xt A random variable following standard SGLD at time t

ν⊗Nkh The measure at time kh induced by the continuous proposed ensemble method
νkh The measure at time kh induced by the continuous SGLD dynamics
µ⊗Nkh The measure at time kh induced by the discretized proposed ensemble method
µkh The measure at time kh induced by the discretized SGLD dynamics

α A magnitude of a interaction
J A skew-symmetric matrix of an interaction
k An iteration of the algorithm
h A step size
t A (continusous) time

f A test function with lipschitzness Lf

λ(α,N) An upper bound of the LSI constant of the proposed ensemble dynamics
λe An upper bound of the LSI constant of the standard Langevin dynamics
ρ(α,N) A spectral gap of the proposed ensemble method
ρ0 A spectral gap of the standard Langevin dynamics


