
DessiLBI: Exploring Structural Sparsity of Deep Networks via Differential Inclusion Paths

Appendix to DessiLBI for deep learning: structural sparsity via differential inclusion paths
A Proof of Theorem 1
First of all, we reformulate Eq. (8) into an equivalent form. Without loss of generality, consider ⌦ = ⌦1 in the sequel.

Denote R(P) := ⌦(�), then Eq. (8) can be rewritten as, DessiLBI
Pk+1 = ProxR(Pk + (pk � ↵rL̄(Pk))), (17a)

pk+1 = pk � 
�1(Pk+1 � Pk + ↵rL̄(Pk)), (17b)

where pk = [0, gk]T 2 @R(Pk) and gk 2 @⌦(�k). Thus DessiLBI is equivalent to the following iterations,
Wk+1 = Wk � ↵rW L̄(Wk,�k), (18a)
�k+1 = Prox⌦(�k + (gk � ↵r�L̄(Wk,�k))), (18b)

gk+1 = gk � 
�1(�k+1 � �k + ↵ ·r�L̄(Wk,�k)). (18c)

Exploiting the equivalent reformulation (18a-18c), one can establish the global convergence of (Wk,�k, gk) based on the
Kurdyka-Łojasiewicz framework. In this section, the following extended version of Theorem 1 is actually proved.
Theorem 2. [Global Convergence of DessiLBI] Suppose that Assumption 1 holds. Let (Wk,�k, gk) be the sequence
generated by DessiLBI (Eq. (18a-18c)) with a finite initialization. If

0 < ↵k = ↵ <
2

(Lip+ ⌫�1)
,

then (Wk,�k, gk) converges to a critical point of F . Moreover, {(Wk,�k)} converges to a stationary point of L̄ defined in
Eq. 4, and {W

k
} converges to a stationary point of bLn(W).

A.1 Kurdyka-Łojasiewicz Property
To introduce the definition of the Kurdyka-Łojasiewicz (KL) property, we need some notions and notations from variational
analysis, which can be found in (Rockafellar & Wets, 1998).

The notion of subdifferential plays a central role in the following definitions. For each x 2 dom(h) := {x 2 Rp : h(x) <

+1}, the Fréchet subdifferential of h at x, written b@h(x), is the set of vectors v 2 Rp which satisfy

lim inf
y 6=x,y!x

h(y)� h(x)� hv,y � xi

kx� yk
� 0.

When x /2 dom(h), we set b@h(x) = ?. The limiting-subdifferential (or simply subdifferential) of h introduced in
(Mordukhovich, 2006), written @h(x) at x 2 dom(h), is defined by

@h(x) := {v 2 Rp : 9xk
! x, h(xk) ! h(x), vk

2 b@h(xk) ! v}. (19)

A necessary (but not sufficient) condition for x 2 Rp to be a minimizer of h is 0 2 @h(x). A point that satisfies this
inclusion is called limiting-critical or simply critical. The distance between a point x to a subset S of Rp, written dist(x,S),
is defined by dist(x,S) = inf{kx� sk : s 2 S}, where k · k represents the Euclidean norm.

Let h : Rp
! R [{+1} be an extended-real-valued function (respectively, h : Rp ◆ Rq be a point-to-set mapping), its

graph is defined by
Graph(h) := {(x, y) 2 Rp

⇥ R : y = h(x)},

(resp. Graph(h) := {(x,y) 2 Rp
⇥ Rq : y 2 h(x)}),

and its domain by dom(h) := {x 2 Rp : h(x) < +1} (resp. dom(h) := {x 2 Rp : h(x) 6= ?}). When h is a proper
function, i.e., when dom(h) 6= ?, the set of its global minimizers (possibly empty) is denoted by

argminh := {x 2 Rp : h(x) = inf h}.

The KL property (Łojasiewicz, 1963; 1993; Kurdyka, 1998; Bolte et al., 2007a;b) plays a central role in the convergence
analysis of nonconvex algorithms (Attouch et al., 2013; Wang et al., 2019). The following definition is adopted from (Bolte
et al., 2007b).
Definition 1. [Kurdyka-Łojasiewicz property] A function h is said to have the Kurdyka-Łojasiewicz (KL) property at
ū 2 dom(@h) := {v 2 Rn

|@h(v) 6= ;}, if there exists a constant ⌘ 2 (0,1), a neighborhood N of ū and a function � :
[0, ⌘) ! R+, which is a concave function that is continuous at 0 and satisfies �(0) = 0, � 2 C

1((0, ⌘)), i.e., � is continuous

DessiLBI: Exploring Structural Sparsity of Deep Networks via Differential Inclusion Paths

differentiable on (0, ⌘), and �
0(s) > 0 for all s 2 (0, ⌘), such that for all u 2 N \ {u 2 Rn

|h(ū) < h(u) < h(ū) + ⌘},
the following inequality holds

�
0(h(u)� h(ū)) · dist(0, @h(u)) � 1. (20)

If h satisfies the KL property at each point of dom(@h), h is called a KL function.

KL functions include real analytic functions, semialgebraic functions, tame functions defined in some o-minimal structures
(Kurdyka, 1998; Bolte et al., 2007b), continuous subanalytic functions (Bolte et al., 2007a) and locally strongly convex
functions. In the following, we provide some important examples that satisfy the Kurdyka-Łojasiewicz property.
Definition 2. [Real analytic] A function h with domain an open set U ⇢ R and range the set of either all real or complex
numbers, is said to be real analytic at u if the function h may be represented by a convergent power series on some interval
of positive radius centered at u: h(x) =

P1
j=0 ↵j(x� u)j , for some {↵j} ⇢ R. The function is said to be real analytic on

V ⇢ U if it is real analytic at each u 2 V (Krantz & Parks, 2002, Definition 1.1.5). The real analytic function f over Rp

for some positive integer p > 1 can be defined similarly.

According to (Krantz & Parks, 2002), typical real analytic functions include polynomials, exponential functions, and the
logarithm, trigonometric and power functions on any open set of their domains. One can verify whether a multivariable real
function h(x) on Rp is analytic by checking the analyticity of g(t) := h(x+ ty) for any x,y 2 Rp.
Definition 3. [Semialgebraic]

(a) A set D ⇢ Rp is called semialgebraic (Bochnak et al., 1998) if it can be represented as

D =
s[

i=1

t\

j=1

{x 2 Rp : Pij(x) = 0, Qij(x) > 0} ,

where Pij , Qij are real polynomial functions for 1  i  s, 1  j  t.

(b) A function h : Rp
! R [{+1} (resp. a point-to-set mapping h : Rp ◆ Rq) is called semialgebraic if its graph

Graph(h) is semialgebraic.

According to (Łojasiewicz, 1965; Bochnak et al., 1998) and (Shiota, 1997, I.2.9, page 52), the class of semialgebraic sets are
stable under the operation of finite union, finite intersection, Cartesian product or complementation. Some typical examples
include polynomial functions, the indicator function of a semialgebraic set, and the Euclidean norm (Bochnak et al., 1998,
page 26).

A.2 KL Property in Deep Learning and Proof of Corollary 1
In the following, we consider the deep neural network training problem. Consider a l-layer feedforward neural network
including l� 1 hidden layers of the neural network. Particularly, let di be the number of hidden units in the i-th hidden layer
for i = 1, . . . , l � 1. Let d0 and dl be the number of units of input and output layers, respectively. Let W i

2 Rdi⇥di�1 be
the weight matrix between the (i� 1)-th layer and the i-th layer for any i = 1, . . . l6.

According to Theorem 2, one major condition is to verify the introduced Lyapunov function F defined in (11) satisfies the
Kurdyka-Łojasiewicz property. For this purpose, we need an extension of semialgebraic set, called the o-minimal structure
(see, for instance (Coste, 1999), (van den Dries, 1986), (Kurdyka, 1998), (Bolte et al., 2007b)). The following definition is
from (Bolte et al., 2007b).
Definition 4. [o-minimal structure] An o-minimal structure on (R,+, ·) is a sequence of boolean algebras On of “definable”
subsets of Rn, such that for each n 2 N

(i) if A belongs to On, then A⇥ R and R⇥A belong to On+1;

(ii) if ⇧ : Rn+1
! Rn is the canonical projection onto Rn, then for any A in On+1, the set ⇧(A) belongs to On;

(iii) On contains the family of algebraic subsets of Rn, that is, every set of the form
{x 2 Rn : p(x) = 0},

where p : Rn
! R is a polynomial function.

6To simplify notations, we regard the input and output layers as the 0-th and the l-th layers, respectively, and absorb the bias of each
layer into W i.

DessiLBI: Exploring Structural Sparsity of Deep Networks via Differential Inclusion Paths

(iv) the elements of O1 are exactly finite unions of intervals and points.

Based on the definition of o-minimal structure, we can show the definition of the definable function.

Definition 5. [Definable function] Given an o-minimal structure O (over (R,+, ·)), a function f : Rn
! R is said to be

definable in O if its graph belongs to On+1.

According to (van den Dries & Miller, 1996; Bolte et al., 2007b), there are some important facts of the o-minimal structure,
shown as follows.

(i) The collection of semialgebraic sets is an o-minimal structure. Recall the semialgebraic sets are Bollean combinations
of sets of the form

{x 2 Rn : p(x) = 0, q1(x) < 0, . . . , qm(x) < 0},

where p and qi’s are polynomial functions in Rn.

(ii) There exists an o-minimal structure that contains the sets of the form
{(x, t) 2 [�1, 1]n ⇥ R : f(x) = t}

where f is real-analytic around [�1, 1]n.

(iii) There exists an o-minimal structure that contains simultaneously the graph of the exponential function R 3 x 7! exp(x)
and all semialgebraic sets.

(iv) The o-minimal structure is stable under the sum, composition, the inf-convolution and several other classical operations
of analysis.

The Kurdyka-Łojasiewicz property for the smooth definable function and non-smooth definable function were established in
(Kurdyka, 1998, Theorem 1) and (Bolte et al., 2007b, Theorem 14), respectively. Now we are ready to present the proof of
Corollary 1.

Proof. [Proof of Corollary 1] To justify this corollary, we only need to verify the associated Lyapunov function F satisfies
Kurdyka-Łojasiewicz inequality. In this case and by (12), F can be rewritten as follows

F (W,�,G) = ↵

✓
bLn(W,�) +

1

2⌫
kW � �k2

◆
+ ⌦(�) + ⌦⇤(g)� h�, gi.

Because ` and �i’s are definable by assumptions, then bLn(W,�) are definable as compositions of definable functions.
Moreover, according to (Krantz & Parks, 2002), kW � �k2 and h�, gi are semi-algebraic and thus definable. Since the
group Lasso ⌦(�) =

P
g k�k2 is the composition of `2 and `1 norms, and the conjugate of group Lasso penalty is the

maximum of group `2-norm, i.e. ⌦⇤(�) = maxg k�gk2, where the `2, `1, and `1 norms are definable, hence the group
Lasso and its conjugate are definable as compositions of definable functions. Therefore, F is definable and hence satisfies
Kurdyka-Łojasiewicz inequality by (Kurdyka, 1998, Theorem 1).

The verifications of other cases listed in assumptions can be found in the proof of (Zeng et al., 2019a, Proposition 1). This
finishes the proof of this corollary.

A.3 Proof of Theorem 2
Our analysis is mainly motivated by a recent paper (Benning et al., 2017), as well as the influential work (Attouch et al., 2013).
According to Lemma 2.6 in (Attouch et al., 2013), there are mainly four ingredients in the analysis, that is, the sufficient
descent property, relative error property, continuity property of the generated sequence and the Kurdyka-Łojasiewicz
property of the function. More specifically, we first establish the sufficient descent property of the generated sequence via
exploiting the Lyapunov function F (see, (11)) in Lemma A.4 in Section A.4, and then show the relative error property of the
sequence in Lemma A.5 in Section A.5. The continuity property is guaranteed by the continuity of L̄(W,�) and the relation
limk!1 B

gk
⌦ (�k+1,�k) = 0 established in Lemma 1(i) in Section A.4. Thus, together with the Kurdyka-Łojasiewicz

assumption of F , we establish the global convergence of SLBI following by (Attouch et al., 2013, Lemma 2.6).

DessiLBI: Exploring Structural Sparsity of Deep Networks via Differential Inclusion Paths

Let (W̄ , �̄, ḡ) be a critical point of F , then the following holds

@WF (W̄ , �̄, ḡ) = ↵(r bLn(W̄) + ⌫
�1(W̄ � �̄)) = 0,

@�F (W̄ , �̄, ḡ) = ↵⌫
�1(�̄� W̄) + @⌦(�̄)� ḡ 3 0, (21)

@gF (W̄ , �̄, ḡ) = �̄� @⌦⇤(ḡ) 3 0.

By the final inclusion and the convexity of ⌦, it implies ḡ 2 @⌦(�̄). Plugging this inclusion into the second inclusion yields
↵⌫

�1(�̄� W̄) = 0. Together with the first equality imples

rL̄(W̄ , �̄) = 0, r bLn(W̄) = 0.

This finishes the proof of this theorem.

A.4 Sufficient Descent Property along Lyapunov Function
Let Pk := (Wk,�k), and Qk := (Pk, gk�1), k 2 N. In the following, we present the sufficient descent property of Qk

along the Lyapunov function F .

Lemma. Suppose that bLn is continuously differentiable and r bLn is Lipschitz continuous with a constant Lip > 0. Let
{Qk} be a sequence generated by SLBI with a finite initialization. If 0 < ↵ <

2
(Lip+⌫�1) , then

F (Qk+1)  F (Qk)� ⇢kQk+1 �Qkk
2
2,

where ⇢ := 1
 �

↵(Lip+⌫�1)
2 .

Proof. By the optimality condition of (17a) and also the inclusion pk = [0, gk]T 2 @R(Pk), there holds
(↵rL̄(Pk) + pk+1 � pk) + Pk+1 � Pk = 0,

which implies
�h↵rL̄(Pk), Pk+1 � Pki = 

�1
kPk+1 � Pkk

2
2 +D(�k+1,�k) (22)

where
D(�k+1,�k) := hgk+1 � gk,�k+1 � �ki.

Noting that L̄(P) = bLn(W) + 1
2⌫ kW � �k22 and by the Lipschitz continuity of r bLn(W) with a constant Lip > 0 implies

rL̄ is Lipschitz continuous with a constant Lip+ ⌫
�1. This implies

L̄(Pk+1)  L̄(Pk) + hrL̄(Pk), Pk+1 � Pki+
Lip+ ⌫

�1

2
kPk+1 � Pkk

2
2.

Substituting the above inequality into (22) yields
↵L̄(Pk+1) +D(�k+1,�k) + ⇢kPk+1 � Pkk

2
2  ↵L̄(Pk). (23)

Adding some terms in both sides of the above inequality and after some reformulations implies
↵L̄(Pk+1) +B

gk
⌦ (�k+1,�k) (24)

 ↵L̄(Pk) +B
gk�1

⌦ (�k,�k�1)� ⇢kPk+1 � Pkk
2
2 �

�
D(�k+1,�k) +B

gk�1

⌦ (�k,�k�1)�B
gk
⌦ (�k+1,�k)

�

= ↵L̄(Pk) +B
gk�1

⌦ (�k,�k�1)� ⇢kPk+1 � Pkk
2
2 �B

gk+1

⌦ (�k,�k�1)�B
gk�1

⌦ (�k,�k�1),

where the final equality holds for D(�k+1,�k)�B
gk
⌦ (�k+1,�k) = B

gk+1

⌦ (�k,�k�1). That is,
F (Qk+1)  F (Qk)� ⇢kPk+1 � Pkk

2
2 �B

gk+1

⌦ (�k,�k�1)�B
gk�1

⌦ (�k,�k�1) (25)

 F (Qk)� ⇢kPk+1 � Pkk
2
2, (26)

where the final inequality holds for Bgk+1

⌦ (�k,�k�1) � 0 and B
gk�1

⌦ (�k,�k�1) � 0. Thus, we finish the proof of this
lemma.

Based on Lemma A.4, we directly obtain the following lemma.

Lemma 1. Suppose that assumptions of Lemma A.4 hold. Suppose further that Assumption 1 (b)-(d) hold. Then

(i) both ↵{L̄(Pk)} and {F (Qk)} converge to the same finite value, and limk!1 B
gk
⌦ (�k+1,�k) = 0.

(ii) the sequence {(Wk,�k, gk)} is bounded,

DessiLBI: Exploring Structural Sparsity of Deep Networks via Differential Inclusion Paths

(iii) limk!1 kPk+1 � Pkk
2
2 = 0 and limk!1 D(�k+1,�k) = 0,

(iv) 1
K

PK
k=0 kPk+1 � Pkk

2
2 ! 0 at a rate of O(1/K).

Proof. By (23), L̄(Pk) is monotonically decreasing due to D(�k+1,�k) � 0. Similarly, by (26), F (Qk) is also mono-
tonically decreasing. By the lower boundedness assumption of bLn(W), both L̄(P) and F (Q) are lower bounded by
their definitions, i.e., (4) and (11), respectively. Therefore, both {L̄(Pk)} and {F (Qk)} converge, and it is obvious that
limk!1 F (Qk) � limk!1 ↵L̄(Pk). By (25),

B
gk�1

⌦ (�k,�k�1)  F (Qk)� F (Qk+1), k = 1,

By the convergence of F (Qk) and the nonegativeness of Bgk�1

⌦ (�k,�k�1), there holds
lim
k!1

B
gk�1

⌦ (�k,�k�1) = 0.

By the definition of F (Qk) = ↵L̄(Pk) +B
gk�1

⌦ (�k,�k�1) and the above equality, it yields
lim
k!1

F (Qk) = lim
k!1

↵L̄(Pk).

Since bLn(W) has bounded level sets, then Wk is bounded. By the definition of L̄(W,�) and the finiteness of L̄(Wk,�k), �k

is also bounded due to Wk is bounded. The boundedness of gk is due to gk 2 @⌦(�k), condition (d), and the boundedness
of �k.

By (26), summing up (26) over k = 0, 1, . . . ,K yields
KX

k=0

�
⇢kPk+1 � Pkk

2 +D(�k+1,�k)
�
< ↵L̄(P0) < 1. (27)

Letting K ! 1 and noting that both kPk+1 � Pkk
2 and D(�k+1,�k) are nonnegative, thus

lim
k!1

kPk+1 � Pkk
2 = 0, lim

k!1
D(�k+1,�k) = 0.

Again by (27),

1

K

KX

k=0

�
⇢kPk+1 � Pkk

2 +D(�k+1,�k)
�
< K

�1
↵L̄(P0),

which implies 1
K

PK
k=0 kPk+1 � Pkk

2
! 0 at a rate of O(1/K).

A.5 Relative Error Property
In this subsection, we provide the bound of subgradient by the discrepancy of two successive iterates. By the definition of F
(11),

Hk+1 :=

0

@
↵rW L̄(Wk+1,�k+1)

↵r�L̄(Wk+1,�k+1) + gk+1 � gk

�k � �k+1

1

A 2 @F (Qk+1), k 2 N. (28)

Lemma. Under assumptions of Lemma 1, then
kHk+1k  ⇢1kQk+1 �Qkk, for Hk+1 2 @F (Qk+1), k 2 N,

where ⇢1 := 2�1 + 1 + ↵(Lip+ 2⌫�1). Moreover, 1
K

PK
k=1 kHkk

2
! 0 at a rate of O(1/K).

Proof. Note that
rW L̄(Wk+1,�k+1) = (rW L̄(Wk+1,�k+1)�rW L̄(Wk+1,�k)) (29)

+ (rW L̄(Wk+1,�k)�rW L̄(Wk,�k)) +rW L̄(Wk,�k).

By the definition of L̄ (see (4)),
krW L̄(Wk+1,�k+1)�rW L̄(Wk+1,�k)k = ⌫

�1
k�k � �k+1k,

krW L̄(Wk+1,�k)�rW L̄(Wk,�k)k = k(r bLn(Wk+1)�r bLn(Wk)) + ⌫
�1(Wk+1 �Wk)k

 (Lip+ ⌫
�1)kWk+1 �Wkk,

DessiLBI: Exploring Structural Sparsity of Deep Networks via Differential Inclusion Paths

Dataset MNIST Cifar-10 ImageNet-2012
Models Variants LeNet ResNet-20 AlexNet ResNet-18

SGD

Naive 98.87 86.46 –/– 60.76/79.18
l1 98.52 67.60 46.49/65.45 51.49/72.45

Mom 99.16 89.44 55.14/78.09 66.98/86.97
Mom-Wd? 99.23 90.31 56.55/79.09 69.76/89.18
Nesterov 99.23 90.18 -/- 70.19/89.30

Adam

Naive 99.19 89.14 –/– 59.66/83.28
Adabound 99.15 87.89 –/– –/–
Adagrad 99.02 88.17 –/– –/–
Amsgrad 99.14 88.68 –/– –/–
Radam 99.08 88.44 –/– –/–

DessiLBI
Naive 99.02 89.26 55.06/77.69 65.26/86.57
Mom 99.19 89.72 56.23/78.48 68.55/87.85

Mom-Wd 99.20 89.95 57.09/79.86 70.55/89.56

Table 2. Top-1/Top-5 accuracy(%) on ImageNet-2012 and test accuracy on MNIST/Cifar-10. ?: results from the official pytorch website.
We use the official pytorch codes to run the competitors. All models are trained by 100 epochs. In this table, we run the experiment by
ourselves except for SGD Mom-Wd on ImageNet which is reported in https://pytorch.org/docs/stable/torchvision/models.html.

where the last inequality holds for the Lipschitz continuity of r bLn with a constant Lip > 0, and by (18a),
krW L̄(Wk,�k)k = (↵)�1

kWk+1 �Wkk.

Substituting the above (in)equalities into (29) yields
krW L̄(Wk+1,�k+1)k 

⇥
(↵)�1 + Lip+ ⌫

�1
⇤
· kWk+1 �Wkk+ ⌫

�1
k�k+1 � �kk

Thus,
k↵rW L̄(Wk+1,�k+1)k 

⇥

�1 + ↵(Lip+ ⌫

�1)
⇤
· kWk+1 �Wkk+ ↵⌫

�1
k�k+1 � �kk. (30)

By (18c), it yields
gk+1 � gk = 

�1(�k � �k+1)� ↵r�L̄(Wk,�k).

Noting that r�L̄(Wk,�k) = ⌫
�1(�k �Wk), and after some simplifications yields

k↵r�L̄(Wk+1,�k+1) + gk+1 � gkk = k(�1
� ↵⌫

�1) · (�k � �k+1) + ↵⌫
�1(Wk �Wk+1)k

 ↵⌫
�1

kWk �Wk+1k+ (�1
� ↵⌫

�1)k�k � �k+1k, (31)

where the last inequality holds for the triangle inequality and 
�1

> ↵⌫
�1 by the assumption.

By (30), (31), and the definition of Hk+1 (28), there holds
kHk+1k 

⇥

�1 + ↵(Lip+ 2⌫�1)

⇤
· kWk+1 �Wkk+ (�1 + 1)k�k+1 � �kk


⇥
2�1 + 1 + ↵(Lip+ 2⌫�1)

⇤
· kPk+1 � Pkk (32)


⇥
2�1 + 1 + ↵(Lip+ 2⌫�1)

⇤
· kQk+1 �Qkk.

By (32) and Lemma 1(iv), 1
K

PK
k=1 kHkk

2
! 0 at a rate of O(1/K).

This finishes the proof of this lemma.

B Supplementary Experiments
B.1 Ablation Study on Image Classification
Experimental Design. We compare different variants of SGD and Adam in the experiments. By default, the learning rate
of competitors is set as 0.1 for SGD and its variant and 0.001 for Adam and its variants, and gradually decreased by 1/10
every 30 epochs. In particular, we have,

SGD: (1) Naive SGD: the standard SGD with batch input. (2) SGD with l1 penalty (Lasso). The l1 norm is applied to
penalize the weights of SGD by encouraging the sparsity of learned model, with the regularization parameter of the l1 penalty

DessiLBI: Exploring Structural Sparsity of Deep Networks via Differential Inclusion Paths

term being set as 1e�3 (3) SGD with momentum (Mom): we utilize momentum 0.9 in SGD. (4) SGD with momentum and
weight decay (Mom-Wd): we set the momentum 0.9 and the standard l2 weight decay with the coefficient weight 1e�4. (5)
SGD with Nesterov (Nesterov): the SGD uses nesterov momentum 0.9.

Adam: (1) Naive Adam: it refers to the standard version of Adam. We report the results of several recent variants of Adam,
including (2) Adabound, (3) Adagrad, (4) Amsgrad, and (5) Radam.

The results of image classification are shown in Tab. 2 . It shows the experimental results on ImageNet-2012, Cifar-10, and
MNIST of some classical networks -- LeNet, AlexNet and ResNet. Our DessiLBI variants may achieve comparable or even
better performance than SGD variants in 100 epochs, indicating the efficacy in learning dense, over-parameterized models.
The visualization of learned ResNet-18 on ImageNet-2012 is given in Fig. 6.

Random
Initialization

Input Image

D
essiLBI-1

D
essiLBI-10

SG
D

Figure 6. Visualization of the first convolutional layer filters of ResNet-18 trained on ImageNet-2012. Given the input image and initial
weights visualized in the middle, filter response gradients at 20 (purple), 40 (green), and 60 (black) epochs are visualized by (Springenberg
et al., 2014).

B.2 Ablation Study of VGG16 and ResNet56 on Cifar10
To further study the influence of hyperparameters, we record performance of Wt for each epoch t with different combinations
of hyperparameters. The experiments is conducted 5 times each, we show the mean in the table, the standard error can
be found in the corresponding figure. We perform experiments on Cifar10 and two commonly used network VGG16 and
ResNet56.

On  , we keep ⌫ = 100 and try  = 1, 2, 5, 10, the validation curves of models Wt are shown in Fig. 7 and Table 3
summarizes the mean accuracies. Table 4 summarizes best validation accuracies achieved at some epochs, together with
their sparsity rates. These results show that larger kappa leads to slightly lower validation accuracies, where the numerical
results are shown in Table 3 . We can find that  = 1 achieves the best test accuracy.

On ⌫ , we keep  = 1 and try ⌫ = 10, 20, 50, 100, 200, 500, 1000, 2000 the validation curve and mean accuracies are
show in Fig. 7 and Table 5. Table 6 summarizes best validation accuracies achieved at some epochs, together with their
sparsity rates. By carefully tuning ⌫ we can achieve similar or even better results compared to SGD. Different from , ⌫ has
less effect on the generalization performance. By tuning it carefully, we can even get a sparse model with slightly better
performance than SGD trained model.

DessiLBI: Exploring Structural Sparsity of Deep Networks via Differential Inclusion Paths

Figure 7. Validation curves of dense models Wt for different  and ⌫. For DessiLBI we find that the model accuracy is robust to the
hyperparameters both in terms of convergence rate and generalization ability. Here validation accuracy means the accuracy on test set of
Cifar10. The first one is the result for VGG16 ablation study on , the second one is the result for ResNet56 ablation study on , the third
one is the result for VGG16 ablation study on ⌫ and the forth one is the result for ResNet56 ablation study on ⌫.

Type Model  = 1  = 2  = 5  = 10 SGD

Full Vgg16 93.46 93.27 92.77 92.03 93.57
ResNet56 92.71 92.18 91.50 90.92 93.08

Sparse Vgg16 93.31 93.00 92.36 76.25 -
ResNet56 92.37 91.85 89.48 87.02 -

Table 3. This table shows results for different , the results are all the best test accuracy. Here we test two widely-used models: VGG16
and ResNet56 on Cifar10. For results in this table, we keep ⌫ = 100. Full means that we use the trained model weights directly,
Sparse means the model weights are combined with mask generated by � support. Sparse result has no finetuning process, the result is
comparable to its Full counterpart. For this experiment, we propose that  = 1 is a good choice. For all the model, we train for 160
epochs with initial learning rate (lr) of 0. 1 and decrease by 0.1 at epoch 80 and 120.

Model Ep20 Ep40 Ep80 Ep160

Vgg16

Term Sparsity Acc Spasity Acc Spasity Acc Spasity Acc
 = 1 96.62 71.51 96.62 76.92 96.63 77.48 96.63 93.31
 = 2 51.86 72.98 71.99 73.64 75.69 74.54 75.72 93.00
 = 5 8.19 10.00 17.64 34.25 29.76 69.92 30.03 92.36
 = 10 0.85 10.00 6.62 10.00 12.95 38.38 13.26 76.25

ResNet56

Term Sparsity Acc Spasity Acc Spasity Acc Spasity Acc
 = 1 96.79 73.50 96.87 75.27 96.69 77.47 99.68 92.37
 = 2 76.21 72.85 81.41 74.72 84.17 75.64 84.30 91.85
 = 5 36.58 60.43 53.07 76.00 57.48 75.67 57.74 89.48
 = 10 3.12 10.20 29.43 53.36 41.18 74.56 41.14 87.02

Table 4. Sparsity rate and validation accuracy for different  at different epochs. Here we pick the test accuracy for specific epoch. In this
experiment, we keep ⌫ = 100. We pick epoch 20, 40, 80 and 160 to show the growth of sparsity and sparse model accuracy. Here Sparsity
is defined in Sec. 5, and Acc means the test accuracy for sparse model. A sparse model is a model at designated epoch t combined with
the mask as the support of �t.

Type Model ⌫ = 10 ⌫ = 20 ⌫ = 50 ⌫ = 100 ⌫ = 200 ⌫ = 500 ⌫ = 1000 ⌫ = 2000 SGD

Full
Vgg16 93.66 93.59 93.57 93.39 93.38 93.35 93.43 93.46 93.57

ResNet56 93.12 92.68 92.78 92.45 92.95 93.11 93.16 93.31 93.08

Sparse
Vgg16 93.39 93.42 93.39 93.23 93.21 93.01 92.68 10 -

ResNet56 92.81 92.19 92.40 92.10 92.68 92.81 92.84 88.96 -

Table 5. Results for different ⌫, the results are all the best test accuracy. Here we test two widely-used model : VGG16 and ResNet56 on
Cifar10. For results in this table, we keep  = 1. Full means that we use the trained model weights directly, Sparse means the model
weights are combined with mask generated by � support. Sparse result has no finetuning process, the result is comparable to its Full
counterpart. For all the model, we train for 160 epochs with initial learning rate (lr) of 0.1 and decrease by 0.1 at epoch 80 and 120.

DessiLBI: Exploring Structural Sparsity of Deep Networks via Differential Inclusion Paths

Model Ep20 Ep40 Ep80 Ep160

Vgg16

Term Sparsity Acc Spasity Acc Spasity Acc Spasity Acc
⌫ = 10 96.64 71.07 96.64 77.70 96.65 79.46 96.65 93.34
⌫ = 20 96.64 69.11 96.64 77.63 96.65 77.08 96.65 93.42
⌫ = 50 96.64 74.91 96.65 74.21 96.65 79.15 96.65 93.38
⌫ = 100 96.64 74.82 96.64 73.22 96.64 78.09 96.64 93.23
⌫ = 200 91.69 73.67 94.06 74.67 94.15 75.20 94.15 93.21
⌫ = 500 18.20 10.00 59.94 67.88 82.03 78.69 82.32 93.01
⌫ = 1000 6.43 10.00 17.88 10.00 49.75 61.31 51.21 92.68
⌫ = 2000 0.22 10.00 6.89 10.00 18.15 10.00 19.00 10.00

ResNet56

Term Sparsity Acc Spasity Acc Spasity Acc Spasity Acc
⌫ = 10 99.97 73.37 99.95 71.64 99.74 76.46 99.74 92.81
⌫ = 20 99.97 72.58 99.84 74.16 99.69 72.37 99.72 92.19
⌫ = 50 99.96 70.72 99.89 73.96 99.79 74.93 99.77 92.40
⌫ = 100 96.31 73.63 96.63 75.79 96.55 72.94 96.57 92.10
⌫ = 200 91.98 75.30 94.38 72.13 94.87 73.75 94.88 92.68
⌫ = 500 74.44 65.58 90.00 74.12 92.96 71.91 92.99 92.81
⌫ = 1000 24.32 10.85 75.68 70.23 88.56 79.67 88.80 92.48
⌫ = 2000 0.65 10.00 26.66 13.30 74.98 70.38 75.92 88.95

Table 6. Sparsity rate and validation accuracy for different ⌫ at different epochs. Here we pick the test accuracy for specific epoch. In this
experiment, we keep  = 1. We pick epoch 20, 40, 80 and 160 to show the growth of sparsity and sparse model accuracy. Here Sparsity
is defined in Sec. 5 as the percentage of nonzero parameters, and Acc means the test accuracy for sparse model. A sparse model is a
model at designated epoch t combined with mask as the support of �t.

optimizer SGD DessiLBI Adam
Mean Batch Time 0.0197 0.0221 0.0210

GPU Memory 1161MB 1459MB 1267MB

Table 7. Computational and Memory Costs.

C Computational Cost of DessiLBI
We further compare the computational cost of different optimizers: SGD (Mom), DessiLBI (Mom) and Adam (Naive). We
test each optimizer on one GPU, and all the experiments are done on one GTX2080. For computational cost, we judge them
from two aspects : GPU memory usage and time needed for one batch. The batch size here is 64, experiment is performed
on VGG-16 as shown in Table 7.

D Fine-tuning of sparse subnetworks
We design the experiment on MNIST, inspired by (Frankle & Carbin, 2019). Here, we explore the subnet obtained by �T

after T = 100 epochs of training. As in (Frankle et al., 2019), we adopt the “rewind” trick: re-loading the subnet mask
of �100 at different epochs, followed by fine-tuning. In particular, along the training paths, we reload the subnet models
at Epoch 0, Epoch 30, 60, 90, and 100, and further fine-tune these models by DessiLBI (Mom-Wd). All the models use
the same initialization and hence the subnet model at Epoch 0 gives the retraining with the same random initialization as
proposed to find winning tickets of lottery in (Frankle & Carbin, 2019). We will denote the rewinded fine-tuned model
at epoch 0 as (Lottery), and those at epoch 30, 60, 90, and 100, as F-epoch30, F-epoch60, F-epoch90, and F-epoch100,
respectively. Three networks are studied here – LeNet-3, Conv-2, and Conv-4. LeNet-3 removes one convolutional layer of
LeNet-5; and it is thus less over-parameterized than the other two networks. Conv-2 and Conv-4, as the scaled-down variants

Layer FC1 FC2 FC3
Sparsity 0.049 0.087 0.398

Number of Weights 235200 30000 1000

Table 8. This table shows the sparsity for every layer of Lenet-3. Here sparsity is defined in Sec. 5, number of weights denotes the total
number of parameters in the designated layer. It is interesting that the � tends to put lower sparsity on layer with more parameters.

DessiLBI: Exploring Structural Sparsity of Deep Networks via Differential Inclusion Paths

Layer Conv1 Conv2 FC1 FC2 FC3
Sparsity 0.9375 1 0.0067 0.0284 0.1551

Number of Weights 576 36864 3211264 65536 2560

Table 9. This table shows the sparsity for every layer of Conv-2. Here sparsity is defined in Sec. 5, number of weights denotes the total
number of parameters in the designated layer. The sparsity is more significant in fully connected (FC) layers than convolutional layers.

Layer Conv1 Conv2 Conv3 Conv4 FC1 FC2 FC3
Sparsity 0.921875 1 1 1 0.0040 0.0094 0.1004

Number of Weights 576 36864 73728 147456 1605632 65536 2560

Table 10. This table shows the sparsity for every layer of Conv-4. Here sparsity is defined in Sec. 5, number of weights denotes the total
number of parameters in the designated layer. Most of the convolutional layers are kept while the FC layers are very sparse.

of VGG family as done in (Frankle & Carbin, 2019), have two and four fully-connected layers, respectively, followed by
max-pooling after every two convolutional layer.

The whole sparsity for Lenet-3 is 0.055, Conv-2 is 0.0185, and Conv-4 is 0.1378. Detailed sparsity for every layer of the
model is shown in Table 8, 9, 10. We find that fc-layers are sparser than conv-layers.

We compare DessiLBI variants to the SGD (Mom-Wd) and SGD (Lottery) (Frankle & Carbin, 2019) in the same structural
sparsity and the results are shown in Fig. 8. In this exploratory experiment, one can see that for overparameterized networks
– Conv-2 and Conv-4, fine-tuned rewinding subnets – F-epoch30, F-epoch60, F-epoch90, and F-epoch100, can produce
better results than the full models; while for the less over-parameterized model LeNet-3, fine-tuned subnets may achieve
less yet still comparable performance to the dense models and remarkably better than the retrained sparse subnets from
beginning (i.e. DessiLBI/SGD (Lottery)). These phenomena suggest that the subnet architecture disclosed by structural
sparsity parameter �T is valuable, for fine-tuning sparse models with comparable or even better performance than the dense
models of WT .

E Retraining of sparse subnets found by DessiLBI (Lottery)
Here we provide more details on the experiments in Fig. 5. Table 11 gives the details on hyper-parameter setting. Moreover,
Figure 9 provides the sparsity variations during DessiLBI training in Fig. 5.

Network Penalty Optimizer ↵ ⌫  � Momentum Nesterov
VGG-16 Group Lasso DessiLBI 0.1 100 1 0.1 0.9 Yes
ResNet-56 Group Lasso DessiLBI 0.1 100 1 0.05 0.9 Yes
VGG-16(Lasso) Lasso DessiLBI 0.1 500 1 0.05 0.9 Yes
ResNet-50(Lasso) Lasso DessiLBI 0.1 200 1 0.03 0.9 Yes

Table 11. Hyperparameter setting for the experiments in Figure 5.

DessiLBI: Exploring Structural Sparsity of Deep Networks via Differential Inclusion Paths

Figure 8. Fine-tuning of sparse subnets learned by DessiLBI may achieve comparable or better performance than dense models. F-epochk
indicates the fine-tuned model comes from the Epoch k. DessiLBI (Lottery) and SGD (Lottery) use the same sparsity rate for each layer
and the same initialization for retrain.

(a) VGG-16 (b) ResNet-56 (c) VGG-16 (Lasso) (d) ResNet-50 (Lasso)

Figure 9. Sparsity changing during training process of DessiLBI (Lottery) for VGG and ResNets (corresponding to Fig. 5). We calculate
the sparsity in every epoch and repeat five times. The black curve represents the mean of the sparsity and shaded area shows the standard
deviation of sparsity. The vertical blue line shows the epochs that we choose to early stop. We choose the log-scale epochs for achieve
larger range of sparsity.

