Don’t Waste Your Bits! Squeeze Activations and Gradients for
Deep Neural Networks via TINYSCRIPT

Fangcheng Fu'!? Yuzheng Hu' Yihan He'! Jiawei Jiang® Yingxia Shao* Ce Zhang® Bin Cui '’

Abstract

Recent years have witnessed intensive research in-
terests on training deep neural networks (DNNs)
more efficiently by quantization-based compres-
sion methods, which facilitate DNNs training in
two ways: (1) activations are quantized to shrink
the memory consumption, and (2) gradients are
quantized to decrease the communication cost.
However, existing methods mostly use a uniform
mechanism that quantizes the values evenly. Such
a scheme may cause a large quantization variance
and slow down the convergence in practice.

In this work, we introduce TINYSCRIPT, which
applies a non-uniform quantization algorithm to
both activations and gradients. TINYSCRIPT mod-
els the original values by a family of Weibull dis-
tributions and searches for “quantization knobs”
that minimize quantization variance. We also
discuss the convergence of the non-uniform
quantization algorithm on DNNs with varying
depths, shedding light on the number of bits re-
quired for convergence. Experiments show that
TINYSCRIPT always obtains lower quantization
variance, and achieves comparable model quali-
ties against full precision training using 1-2 bits
less than the uniform-based counterpart.

1. Introduction

Deep learning (DL) has brought revolutionary changes to
machine learning and made remarkable improvements on
various complicated tasks such as image recognition, natu-
ral language processing, recommendation, and autonomous

"Department of Computer Science and Technology & Key
Laboratory of High Confidence Software Technologies (MOE),
Peking University “Tencent Inc. *ETH Zurich *Beijing Key Lab of
Intelligent Telecommunications Software and Multimedia, BUPT
>Center for Data Science & National Engineering Laboratory for
Big Data Analysis and Applications, Peking University. Corre-
spondence to: Bin Cui <bin.cui@pku.edu.cn>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

drawback 1:
most values tend to
be quantized to s,(=0)

—

drawback 2:
high magnitude

distribution in quant. error

So S1 Sz S3 S4

Figure 1. Uniform quantization with n = 4 on a distribution which
has the properties of central tendency and long-tailed.

driving (He et al., 2016; Devlin et al., 2019; Arun & Govin-
dan, 2018; Chen et al., 2019; Zhang et al., 2020; Gharibshah
et al., 2020). Recently, with the incredible surge of big
data and trend of edge-computing, many researchers have
devoted efforts to training deep neural networks (DNNs)
on edge devices. However, due to the large amount of
data and increasingly complex model architectures, train-
ing DNNs becomes both memory- and communication-
bounded. For one thing, activations (a.k.a. feature maps) in
forward propagation need to be stored for gradient computa-
tion in backward propagation, which leads to large memory
footprints. For another, gradients need to be sent to cen-
tral servers or exchanged among workers for model update,
resulting in heavy network transmission.

One approach to alleviating the burden of memory consump-
tion and communication overhead is reducing the data size
by quantizing values to fewer bits, at the price of preci-
sion loss. For instance, gradient quantization accelerates
the overall training speed since the communication time is
decreased (Alistarh et al., 2017; Wen et al., 2017), whilst
(Chakrabarti & Moseley, 2019) copes with the memory
bottleneck by quantizing activations into 4 bits.

Given a tensor « and a set of quantization points s =
{si}y_, satisfying —M = s9 < s1 < ... < s, = M,
where M = ||z|| acts as a scaling factor!, the stochastic
quantization on each element x; € [s¢, s¢+1) is defined as

~ St,
Ty =
St+1,

In a sense, each element is more likely to be quantized

with probability (s¢+1 — i)/ (St41 — St)
with probability (z; — s¢)/(St41 — St)

!(Alistarh et al., 2017) scales gradient with Lo norm in their
analysis, but uses Lo, norm in practice.

Don’t Waste Your Bits! Squeeze Activations and Gradients for Deep Neural Networks via TINYSCRIPT

to the nearest point, but the stochastic technique ensures
unbiasedness, i.e., E[Z] = E[x]. Although unbiased, the
errors between the quantized and original values, which we
refer to as quantization variance, can significantly affect
the convergence. More aggressive quantization (smaller n)
results in a higher variance, which inevitably slows down
the convergence or even leads to divergence. To obtain
better convergence, one may use more quantization levels
(larger n) to reduce the variance or use a smaller step size to
restrict the effect of variance. Nonetheless, such approaches
cannot completely solve the problem and will either lower
the compression rate or require more training steps.

We notice that existing works for DNNs essentially adopt a
set of uniform quantization points, i.e., they evenly split the
value range into n intervals. Nonetheless, empirical results
have revealed that activation/gradient values conform to a
unimodal and symmetric distribution rather than a uniform
distribution (Bernstein et al., 2018). Worse, the value dis-
tribution usually has the properties of central tendency and
long-tailed in practice, as we will describe later. Obviously,
the stark difference between the uniform assumption and
real distribution is the root cause of the high variance. As
summarized in Figure 1, there are two drawbacks when
adopting uniform quantization — (1) a large amount of co-
ordinates with small absolute values are more likely to be
quantized to 0, which causes information loss; (2) the range
of each interval is large due to the long tail property, leading
to high magnitude of quantization error.

Owing to the fundamental limitations in existing works, we
try to study this problem from a different angle: can we find
the optimal quantization points with minimum quantization
variance based on the value distribution? Motivated as such,
this work proposes a novel, distribution-aware quantization
framework for DNNs called TINYSCRIPT, which leverages
the distribution property to achieve optimal quantization. To
summarize, we list the main contributions as below:

* TINYSCRIPT is superior to previous works in two ways:
(1) previous works focus on either activations or gradients,
whilst TINYSCRIPT is a unified framework that considers
both; (2) TINYSCRIPT adopts a non-uniform quantiza-
tion which fits values with Weibull priors and computes
optimal quantization points.

* In order to interpret the rationality of adopting Weibull
prior, we first discuss the distribution of activations and
gradients using an MLP model. Then we analyze the
convergence of SGD with quantization and build a bridge
between the convergence and depth of neural network.

* Empirical results reveal that TINYSCRIPT achieves sim-
ilar convergence performance as full precision training
with approximately 2.3-3.2 bits, which gives 0.8-1.8 bits
improvement over the uniform-based counterpart.

2. Related Works

In this section, we briefly go through the prior researches
and preliminary literature related to our topic.

Weibull-related Random Variables Let random variable
(t.v.) X with PDF p(z) = £ (¥ exp(—(21)%) be a
double-Weibull r.v. parameterized by shape £ > 0 and scale
A > 0, which is extended from the Weibull distribution. A
rv. Y satisfying P(|Y| > y) < aexp(—(%)é) forally > 0
and for some 0 > 0 is called a sub-Weibull r.v. with tail 0,
denoted by Y ~ subW () (Vladimirova et al., 2018). Note

that X ~ subW(4) since P(|X| > z) = exp(—(%)*).

Low-memory Training Various works have been devel-
oped to reduce the memory footprint of activations. A popu-
lar technique is to swap-out activations from GPU memory
to CPU memory during forward pass and swap-in during
backward pass (Rhu et al., 2016; Wang et al., 2018b). Our
work is orthogonal to these works. One can first quantize
the activations and then swap-out in order to reduce 10 over-
head of swapping. Furthermore, the swapping technique
does not fit edge devices since there is no sufficient host
memory. (Chakrabarti & Moseley, 2019) adopts the quanti-
zation technique in training DNNs, which is similar to ours,
but only focuses on uniform quantization and conforms to 4
bits. In contrast, we leverage the distribution property and
derive a more advanced non-uniform quantization method.

Gradient Compression Since distributed training is com-
mon nowadays, numerous researches try to quantize gradi-
ents into smaller sizes (Wen et al., 2017; Alistarh et al., 2017,
Wu et al., 2018; Mishchenko et al., 2019). The most notable
gradient quantization works for DNNs are TernGrad and
QSGD. TernGrad proves the convergence of gradient quanti-
zation methods. However, it only considers an extreme case
with n = 2. QSGD discusses the trade-off between n and
convergence, but it merely focuses on uniform quantization.
Note that TernGrad is a special case for both TINYSCRIPT
and QSGD, since s = [-M, 0, M]if n = 2.

Another line of research focuses on how to sparsify the
gradients by only sending large values and dropping the
small ones (Stich et al., 2018; Wangni et al., 2018; Wang
etal., 2018a; Sun et al., 2019). These approaches can highly
reduce the size of gradients. Our work is orthogonal to the
sparsification methods. Since values conform to a unimodal
and symmetric distribution, there is a large portion of values
quantized to the middle point (in most cases, zero) if we use
fewer bits. Therefore, the quantized tensor is automatically
sparsified. Moreover, since sparsification accumulates the
filtered values for further updates, the memory consumed
by activations even increases. So whether the sparsification
technique is applicable for activations is still unknown. Con-
sequently, we focus on the quantization-based methods in
this work and leave the sparsification as future work.

Don’t Waste Your Bits! Squeeze Activations and Gradients for Deep Neural Networks via TINYSCRIPT

Low-precision training A number of works have focused
on training with low-precision values, e.g., 8-bit fixed-point
numbers (Drumond et al., 2018; Banner et al., 2018; Wang
et al., 2018c; Cambier et al., 2020). Empirical results have
shown that such approaches are suitable for low-power spe-
cialized hardware that supports low-precision arithmetic.
Nevertheless, our work differs from these methods — we
only quantize activations and gradients and all computations
are carried out in full precision. As we will describe later,
quantization error does not propagate across layers in DNNs.
Hence, our method can use fewer bits in quantization. To
the best of our knowledge, there is no 4-bit floating-point
representation since there will be insufficient bits for man-
tissa and exponent. As a result, we do not compare with this
kind of works due to the difference in goals.

Other Non-uniform Quantization There are also works
that adopt non-uniform quantization. The most distinguish-
able technique is using quantiles. ZipML (Zhang et al.,
2017) formulates the problem of searching quantization
points to reduce variance, which is similar to our work. How-
ever, a heuristic algorithm based on histograms is adopted
to solve the problem, which actually results in quantiles.
SketchML (Jiang et al., 2018; 2020) uses a data structure
called quantile sketch to approximate the quantiles (Green-
wald et al., 2001; Li & Li, 2018). In contrast, our approach
derives the optimal quantization points under certain distri-
bution rather than quantiles. Moreover, these works mainly
focus on generalized linear models (GLMs) rather than
DNNs. The reason is that the procedure of locating quan-
tiles processes the values sequentially and involves complex
operations to update the data structures. Thus it is infeasi-
ble for DNNs where the activations/gradients have a much
larger number of elements than GLMs.

LQ-Nets (Zhang et al., 2018) focuses on training QNNs by
learning quantizers. Specifically, it learns an encoding for
each coordinate and computes the quantization points via
the encoding. However, since storing the encoding requires
extra memory, it takes 2K bits in K-bit quantization when
training. Hence, it does not match our goal of squeezing
memory. Furthermore, the update procedure of the encoding
caused non-trivial overhead, as described in their paper. To
the contrary, we propose to fit the value distribution by a
reasonable prior and search the optimal quantization points
by minimizing the variance. By this means, our method does
not require extra memory and has the same time complexity
as the vanilla uniform quantization.

3. Methodology

In this section, we first formulate the problem of mini-
mizing quantization variance, and then introduce the pro-
posed distribution-aware quantization framework, namely
TINYSCRIPT.

Forward Backward Update

= O (FE-0T
D ® O g ()

(D ® O

| o— .o’

Figure 2. Illustration of quantization for activations and gradients
on a fully connected layer with depth [.

3.1. Overview and Problem Formulation

Figure 2 illustrates the quantization for activations and gra-
dients with an example of fully connected layer. In forward
pass, the I-th layer takes as input the activations v(!~1)
from previous layer and generates v(!) to the next layer.
Then v~1) is quantized to reduce memory usage. In back-
ward pass, in addition to propagating derivatives n("), gradi-
ents gV are computed with the quantized activation &~ 1),
Upon model update, we quantize g(*) to reduce network
transmission, and the final update will be performed with
the quantized gradient §(*).

Obviously, the quantization strategy only perturbs the com-
putation of gradients (g), whilst forward and backward units
(v and n) are unaffected. It ensures that the error caused
by quantization will not be accumulated as the network
goes deeper. To limit the impact brought by quantization,
our goal is to minimize the expected quantization variance
E||& — «||3 for a given tensor &, motivated by the facts
that quantization variance on g can be reckoned as part of
stochastic variance and ||[ndT — noT||F = ||n]|2||D —v||2.
Suppose the size of x is D and each value in conform to
some distribution p(x), we have

Bl —olf =D [b0 - o)’ds
ED)

=D)_ /:H p(x)(st41 — x)(x — s¢)dw.

t=0

Given the number of quantization levels n, an ideal quantiza-
tion mechanism is expected to minimize Equation 1. There
are two critic issues: (1) a good estimation for the distribu-
tion p(z), and (2) a method to search quantization points s
for a given p(z). In the rest of the paper, we assume tensors
to be quantized are flattened as vectors and || - || denotes the
Ly norm for simplicity.

3.2. Modeling of Distribution

The distribution p(x) is vital to the minimum expected vari-
ance achieved by the optimal s. An initial thought is to fit

Don’t Waste Your Bits! Squeeze Activations and Gradients for Deep Neural Networks via TINYSCRIPT

Figure 3. Histograms and fitted curves of activations (top row)
and gradients (bottom row) of randomly chosen conv layers and
training steps when training WideResNet34 on Cifarl0. x-axis
represents value range and y-axis represents counts of values.

p(x) using methods like kernel density estimation or em-
pirical distribution. However, it would be expensive if we
fit p(x) on-the-fly. Worse, the empirical distribution is usu-
ally non-differentiable, making the searching of s infeasible.
As a result, we determine to assume a prior on p(z). In
each iteration, we compute statistics of the tensor, such as
mean and standard deviation, and then estimate p(x) with
the prior. It requires scanning only one pass on the tensor
and can be easily parallelized with SIMD instructions.

Nevertheless, it needs careful investigation to choose a good
prior. One may guess values are Gaussian distributed due to
the Central Limit Theorem, whereas it is not true in almost
all cases. (Bernstein et al., 2018) concludes that gradient
values are unimodal and symmetric, but they focus on the
convergence of their algorithm rather than formulating the
distribution. We plot some empirical distribution of activa-
tions and gradients in Figure 3, and notice that in addition
to unimodal and symmetric, p(z) is central tendency and
long-tailed. Inspired by this, we propose to model values
with the double-Weibull distribution 2:

p(z) = % ('i')klexp (— ('ii)k) ,0<k<=1.

The restriction on k guarantees p(z) is monotonic on nega-
tive or positive side. The parameter & also controls the shape
of p(x) — for a smaller k, p(z) is more central tendency
and has a longer tail. Therefore p(x) is able to express dis-
tributions with various tails. In Section 4.1, we will discuss
the rationality of the modeling in-depth.

In order to fit the distribution efficiently, we develop a
moment-based method to approximate the distribution with
mean and standard deviation (stddev). We present the
method in Algorithm 1 and go through its details below.

?For activations after ReLU, we only consider the positive side
and double the quantization level n. We also exclude the zeroes
when we compute the mean and standard deviation.

Algorithm 1 Moment-based distribution fitting

Input: tensor
Output: fitted distribution

1: function INITCVTABLE(table step delta = 0.001)
2: Initialize empty table T’

3: fork < 0.1to1bydelta do

4: CV « T(1+2/k)/T2(1+1/k) — 1

5: Insert (k,CV)to T
6

7

8

9

return T
: function MOMENTESTIMATE(stats stat, table 1)

W, 0 < |stat.mean|, stat.stddev
Lookup (k’, CV"') in T with binary search such that
|o/p — CV'| is the smallest

10: XN« p/T(1+1/E)

11: return (k', \')

12: if T not initialized then

13: T + INITCVTABLE()

14: Compute positive and negative statistics for tensor x

15: pos + MOMENTESTIMATE(x.pos_stat, T')

16: neg <~ MOMENTESTIMATE (x.neg_stat, T)

17: return (pos,neg)

Since moments E(X?) = AT'(1 + t/k), where I'(+) is the
gamma function, the coefficient of variation (C'V) satisfies

oy o _ VEX?) —(EX)? _ [r42/k)
Tu EX a4k

where p, o are mean and stddev. Therefore, we compute
a (k,CV) lookup table beforehand (line 1-6). Given a
tensor, we fit two distributions for positive and negative
sides individually (line 14-16). Once C'V is computed, we
lookup the closest one from the table with a corresponding
k' (line 9). Furthermore, since C'V' is monotonic decreasing
w.r.t. k, the lookup can be executed with binary search
efficiently. Finally, we can compute)\’ inspired by the first-
order moment E(X) = AI'(1 + 1/k) (line 10).

3.3. Searching of Optimal Quantization

Although we have modeled values via a Weibull prior,
whether the minimum of Equation 1 exists in the domain of
quantization points s is still unknown. If yes, how to find the
optimal s* that minimizes Equation 1 for any distribution
(k, \) and level n remains unsolved.

To answer these questions, we formulate the searching of s
that achieves minimum variance as an optimization problem.
For simplicity, we make the following adjustments: (1) we
only consider the case of A = 1, whereas we can easily mi-
grate the discussion to arbitrary A with a scaling factor; (2)
we leverage the symmetry in distribution to assume n to be
an even number (so that zero is always a quantization point)

Don’t Waste Your Bits! Squeeze Activations and Gradients for Deep Neural Networks via TINYSCRIPT

and only consider the non-negative side; (3) we assume
there is a sufficiently large value M (M < oo) such that all
(absolute) values are not greater than M. Now the objective
we study becomes the expected quantization variance on the
non-negative side:

n St41

Va(8) = Z/ kx* L exp (—2*) (8141 —2)(x—5;)de,
t=0 5t

where 71 = n/2 and {8}, = {s}/_,.

Thus, the searching of optimal quantization points can be

turned into the following problem:

argminVﬁ(§) st.0=3)<81 <...< 8§, =M.
K]

Theorem 1. There is a unique stationary point 8* of V; in
the domain of 8, and V;, attains minimum only at §*.

Theorem 1 implies that the minimum quantization variance
is attained at a unique stationary point. As a result, we can
use gradient descent to solve the optimization problem. The
partial derivative of §;(t = 1,2, ...,72 — 1) is given below:

oV,
95

1 1
-1+ %’S‘fﬂ) +T(1+ %755—1)

+ §t+1 exp(—§f+1) — 8t exp(_gffl)

— (8t41 — 81-1) exp(—57)

2

where I'(+,-) denotes the incomplete gamma function. A
general method of searching optimal quantization points
can be: (1) randomly initialize &, e.g., uniform quantiza-
tion points; (2) iteratively update § via gradient descent by
Equation 2 until converged.

Algorithm 2 shows how we compute the quantization points
on-the-fly. Optimal points are pre-computed (line 1-8). Mo-
tivated by three-sigma rule of thumb, we set M = 30
heuristically (line 5). For tensor x, we first fit distributions
by Algorithm 1, then we lookup the optimal points and
scale by A (line 9-11). Finally the quantization points are
reorganized in ascending order (line 16).

3.4. Implementation and Complexity Analysis

To implement TINYSCRIPT, we customize forward and
backward propagation with PyTorch (Paszke et al., 2019),
and we leverage NVIDIA Thrust library to perform statistics
reduction and parallel quantization. For practical concerns,
we further make two adjustments as described below.

First, we follow (Chakrabarti & Moseley, 2019) to inte-
grate quantization of activations with the checkpointing
technique (Chen et al., 2016). For instance, we regard
consecutive bn—-relu—-conv chain as one block and only
quantize and store one activation (input of bn), whilst the

Algorithm 2 Quantization Calculation

Input: fitted distribution (pos, neg), min and max values
x.min, x.max, #intervals n
Output: Optimal quantization points

1: function INITQUANTABLE(max allowed 7,4 = 8)
2: Initialize empty table)

3 for k < T keys() do

4: for n + 2,3, ..., ynas do
5

6

M <+ 3y/T(1+2/k) —T2(1+ 1/k)
Iteratively compute {3*}7-' by Equation 2
with §§ =0and 8}, = M
Insert (k,n, {§* f:]l) to

return Q

9: function QUANCALC(dist (k, \), table Q)

10: Lookup 8* + Q[k,n/2]

11: return §* x \

12: if @ not initialized then

13: @ < INITQUANTABLE()

14: 8,55 + QUANCALC(pos, Q)

15: 8,4 < QUANCALC(neg, ()).negative().reverse()

16: return {x.min, 8,4, 0, 8pos, T.max}

[c BN

rest (inputs of relu and conv) are re-computed in back-
ward pass. Such an approach is worthy since the time cost
for bn-relu is much smaller than conv and is able to
reduce both memory consumption and quantization over-
head. In practice, we store the batch-wise mean and stddev
in full precision since they are small in size. Therefore, it is
obvious that the re-computed outputs of bn are identical to
the directly quantized version in expectation. Consequently,
in our following analysis, we simply assume all activations
are quantized rather than re-computed.

Second, we apply the bucketing strategy where each tensor
is sliced into buckets and each bucket is quantized individu-
ally. Such a bucketing technique is widely used to decrease
the quantization variance (Seide et al., 2014; Alistarh et al.,
2017). By default, we set bucket size as 4096, and we ex-
clude small tensors (<10K values, typically, gradients of
bn layers and batch-wise mean and stddev).

We finish this section by summarizing the complexity of
TINYSCRIPT. To quantize a tensor, we need to (1) compute
statistics of each bucket, (2) fit Weibull distributions, (3)
calculate optimal points, and finally (4) perform the quanti-
zation. Fortunately, the time complexities of step 2 and 3 are
both O(1) for each bucket, and different buckets can be pro-
cessed concurrently. The most time-consuming phases are
step 1 and 4, which are also required in uniform quantization
and can be highly parallelizable with SIMD instructions. As
a result, the proposed non-uniform quantization algorithm
shares the same complexity as that of uniform.

Don’t Waste Your Bits! Squeeze Activations and Gradients for Deep Neural Networks via TINYSCRIPT

Input 1stlayer

2nd Jayer

th
Lt layer 2O —x

u® = WwOyt-D

v = ReLU (")

= ugl)]]{ufl) >0}

X wh 3@ 510 W@ 4@ @ w® y®

(a) Forward propagation. u, v are forward units (activations).

1st layer

(L-1)t layer Lt layer Loss

ngL) = aLoss/augL)
m® = (W(“”)Tn(l“)

2 = mgl)ﬂ{ugl) >0}

13

D -1 @) @

WD 2® m® W
(b) Backward propagation. m, n are backward units.

Figure 4. An MLP model with ReL.U as activation functions.

4. Analysis

In this section, we describe our analysis of the proposed
non-uniform quantization algorithm.

4.1. Rationality of Weibull Prior

To comprehensively understand the rationality of the mod-
eling method in Section 3.2, we investigate the distribution
property of forward and backward units for an MLP model
depicted in Figure 4. To begin with, we introduce the analy-
sis of forward propagation in (Vladimirova et al., 2019).

Assumption 1. For an MLP model depicted in Figure 4, we
migrate the assumptions from (Vladimirova et al., 2019):

(1) All weights are independent and have zero-mean nor-
mal distribution. Specifically, let the model have L lay-

ers and W) have size Ci_1 x C,, then we have Wz(lj) ~

NO, 6O for1 <1< L1<i<C1,1<j<Cy;
(2) The input data are independent with model weights.

Theorem 2. [Theorem 3.1 of (Vladimirova et al., 2019)]
Consider an MLP depicted in Figure 4. If Assumption I
holds, then for any 1 <1 < L,1 < ¢ < C}, we have
ugl), vl(l) ~ subW(l/2).

Assumption 1 implies a Gaussian prior on weights, and
indicates the data are unseen before, which holds at the very
first training steps or in online settings. (Vladimirova et al.,
2019) concludes that activations conform to a sub-Weibull
distribution parameterized by depth (. In order to study the
gradient distribution, we extend the analysis to backward
propagation. However, since it is non-trivial to deduce on
the backward units, we have to make another assumption:

Assumption 2. We make the Gradient Independence as-
sumptions following (Yang & Schoenholz, 2017):

(1) the model weights used in backward propagation are dif-
ferent copies from those in forward propagation, but drawn

i.i.d. from the same distributions;
(2) for 1 <1 < L, the backward units m(l), nW are inde-
pendent from the forward units u® | v®),

Assumption 2 is implicitly used in (Schoenholz et al., 2016)
and formally introduced by (Yang & Schoenholz, 2017).
Although seeming unrealistic, Assumption 2 is actually a
well-known statement in the mean field theory since it plays
a crucial role in the derivation of back-propagation. Due
to space limitation, we skip the discussion of correctness
of Assumption 2 in this work and refer readers to other
surveys (Yang, 2019). Note that m®) n® are correlated
with w1 v+ according to W), so we do not assume
they are independent. Next, we introduce Theorem 3.

Theorem 3. Assume the MLP model in Theorem 2 satisfies
Assumption 2, then forany 1 <1 < L,1 <1 < C}, we have
m{" n ~ subW((L — 1)/2).

Theorem 3 shows that the backward units conform to a
sub-Weibull distribution parameterized by L — [.

Since VW) = n® (»¢=D)T it gives an intuitive idea
that gradients are also Weibull-related variables. To be
formal, we conclude with Theorem 4.

Theorem 4. Considering the MLP model in Theorem 2, 3,
foranyl <l < L,1 <1< (1,1 <j <Oy, we have
VW ~ subW((L —1)/2).

Remark 1. Although the above discussion is based on MLP
and requires assumptions which are ideal in practice, it pro-
vides a hint on the distribution of activations and gradients
— for DNNs where L is large, the distribution is strongly
related to a sub-Weibull distribution with a large 0 (or a
double-Weibull distribution with a small k). As stated in
Section 3.2, a smaller k leads to more central tendency and
long-tailed, which corresponds to the empirical distribution
of activations and gradients in DNNs.

4.2. Understanding Convergence against Variance

Till now, readers might suspect the significance of exhaust-
ingly minimizing the quantization variance. In other words,
it is non-intuitive how quantization variance affects con-
vergence. To answer this question, we try to analyze the
convergence of SGD with quantization on the following
(non-convex) empirical risk minimization problem:

N
. 1 ~
min w) = — W), w = Wy — gy,
Juin, f(w) Nzi:f(), Wip1 =wp—ag
where « is step size, g;, = V f;,(w;), and g;, represents
the quantized version of g;,. Our analysis is based on As-
sumption 3 and given in Theorem 5.

Assumption 3. For Vi € {1,2,..., N}, w,w’ € RP, we
make the assumptions below following (Allen-Zhu, 2017):

Don’t Waste Your Bits! Squeeze Activations and Gradients for Deep Neural Networks via TINYSCRIPT

—h— Weibull

—e— Uniform

\
4 8 16 32

#Intervals 7t (log-scale)

Expected Variance (log-scale)

Expected Variance (log-scale)

IVU 1'5 2‘0 é
2/k+1

Figure 5. Expectation of quantization variance. Left: Expected
variance of non-uniform quantization. We adjust the x-axis as
2/k + 1 to connect to L according to Theorem 4. Right: Compari-
son of expected variance for non-uniform and uniform quantization
with £ = 0.1. The figures show that quantization variance almost
exponentially increases w.r.t. 2/k + 1 and decreases w.r.t. log 7.

(1. Lo-Lipschitz) ||V f;(w) — V fi(w’)|| < La||w — w’
(2. Bounded moment) E[||V f;(w)||] < oo,

(3. Bounded variance) E[||V f;(w) — V f(w)]|]] < o;
(4. Existence of global minimum) 3f* s.t. f(w) > f*.

Theorem 5. Suppose we run SGD with quantization on
an object satisfying Assumption 3 with constant step size
a < 2/Ly. Assume quantization satisfies E[||Z — z||] <
QE[||z||] for any x € RP. After T runs, select wr ran-
domly from {wg, w1, ..., wr_1}. Then we have

wo) — f*)
— QQLQ)T

’

aLy(o? + Q%*})
2 — CMLQ '

IV £l < 7

As T increases, the convergence of SGD with quantization
is influenced by quantization variance (), especially when
the optimization is stuck in a sharp minima/minimum. For
uniform quantization, @) can be bounded by O(||x||s/7),
which turns Theorem 5 into similar analysis in previous
works (Alistarh et al., 2017; Bernstein et al., 2018). How-
ever, this only represents a worst-case scenario, which can
hardly occur unless all values are close to one side of the
intervals but unfortunately quantized to another side. Hence,
we should consider the expectation of quantization variance,
which gives a more general picture. We plot the expected
variance in Figure 5 and summarize the discussion below.

Remark 2. Upon Theorem 5, we further assume gradients
Sollow double-Weibull distribution with k = O(2/(L — 1))
inspired by Theorem 4. According to Figure 5, we conclude
that E[Q] = O(qL /¢¥%™) for some constants q; > 0, qy >
0. By doing so, we have two important findings:

(1) Since the expected variance exponentially increases w.r.t.
L, a larger n (which turns into more bits) is needed to ob-
tain comparable convergence for deeper networks;

(2) The proposed non-uniform quantization method can
achieve similar variance as the uniform-based counterpart
with half quantization levels.

—&— Weibull
—e— Gaussian

—&— Weibull (n=4)
—e— Uniform (n=4)

Laplace Uniform (n=8)

VT 5L

KL-Divergence
Quantization Variance

Iteration

Iteration

Figure 6. Measurements in different iterations (WRN34, Cifar10,
gradients of a conv layer in the last residual block), the lower the
better. Left: KL divergence between gradients and fitted distribu-
tion. Right: Related quantization variance ||§ — g]|*/||gl|>.

5. Experiments
5.1. Experimental Setup

We conduct the experiments on a GPU server equipped with
4 Titan RTX GPUs. We focus on CNNs training since it
is a well-studied task and models have non-trivial sizes 3.
Specifically, we consider the widely-used VGG and ResNet
architectures (Simonyan & Zisserman, 2014; He et al., 2016;
Zagoruyko & Komodakis, 2016). All experiments are con-
ducted on Cifar10 and ImageNet (Krizhevsky et al., 2009;

Deng et al., 2009).

5.2. Effectiveness of Non-uniform Quantization

We first assess the effectiveness of the proposed non-uniform
quantization algorithm over Cifar10 dataset and WideRes-
Net34 (WRN34) model. Due to space limitation, we only
take gradients of a conv layer in the last residual block as
a representative since it has the largest size, whilst similar
results are also observed on activations and other models.

Measurement of distribution To validate our analysis of
distribution, we empirically compare gradients fitted with
different distributions regarding KL divergence. Specifi-
cally, we fit Weibull distribution with Algorithm 1, and
fit Gaussian and Laplace distributions via scipy.stats
package. As shown in the left of Figure 6, throughout the
training, fitting with Weibull distribution can always achieve
the lowest KL divergence. In fact, Laplace distribution is a
special case of double-Weibull when k& = 1, thus it does not
have enough complexity to describe the distribution. Whilst
Gaussian distribution has the poorest performance due to
the stark difference to distribution.

Measurement of quantization The most critical issue we
concern about is the quantization variance. As a result, we
measure the quality of quantization by computing the related
variance ||g — g||%/||g||? in different iterations. Results are

3Since Section 4 targets at feed-forward networks, whether
recurrent neural networks (RNNs) share similar distribution prop-
erties remains unknown. Therefore, we leave the discussion and
evaluation on RNNs as our future work.

Don’t Waste Your Bits! Squeeze Activations and Gradients for Deep Neural Networks via TINYSCRIPT

—&— TinyScript (n=4)
Vanilla (n=8) 20-
—— FP32

—&— TinyScript (n=4)
Vanilla (n=8)
—— FP32

Train Loss

300

100

0 100 300

200
Epoch

(b) Cifar10, WRN34

200
Epoch

(a) Cifar10, VGG19

Train Loss

3- —A— TinyScript (n=4)

—e— TinyScript (n=8)
Vanilla (n=16)
FP32

—— TinyScript (n=8)
Vanilla (n=16)
Vanilla (n=32)

——

Valid Error

300 100

200

Epoch

(c) Cifarl10, ResNet50

0 100

(d) ImageNet, ResNet50

Figure 7. Convergence curves. For Cifar10, we plot the mean and stddev of training loss over 5 runs. For ImagetNet, we plot the top-5
validation error. We start from the quantization level n = 4 and double the level until comparable accuracy has been achieved.

Table 1. Best testing error on Cifar10 (in percentage). We report the mean and stddev of 5 runs.
indicates we skip the level since comparable accuracy has been achieved.

@

Table 2. Best top-5 validation error
on ImageNet (in percentage).

Batch Init. TINYSCRIPT Vanilla Method Error

Model . FP32
Sizez. LR p =14 n=2,8 n=8 n=16 TINYSCRIPT n=8 7.74
VGG19 256 0.1 7.98+.20 - 7.81+.17 - 7.15+.03 Vanilla n=16 797
WRN34 256 0.1 5.72+.12 - 5.78+.23 - 5.23+.25 n=232 748
ResNet50 128 0.05 6.45+.11 5.59+.18 diverge 5.61+£.14 5.57£.07 FP32 7.05

shown in the right of Figure 6. In general, our non-uniform
approach consistently achieves lower variance compared
to the uniform-based counterpart at the same quantization
level n = 4 since it better adapts to the distribution and
executes an optimal quantization. In contrast, the uniform-
based approach requires doubling n (n = 8) to obtain a
comparable variance, which is consistent with Figure 5.

5.3. Convergence Performance

We compare the convergence of TINYSCRIPT, uniform-
based quantization (Vanilla) 4, and full precision (FP32)
over Cifar10 and ImageNet datasets. Figure 7 presents the
convergence curves and Table 1, 2 list the best performances.

Convergence on Cifarl0 We first experiment on Cifar10
dataset with VGG19, WRN34, and ResNet50. We use SGD
with momentum of 0.9 to train the models. In most cases,
using a small learning rate is beneficial for the quantization
methods since the error of each iteration can be restricted.
However, a smaller learning rate requires more iterations to
converge and even leads to more communication rounds in
distributed training. As a result, to achieve a fair compar-
ison, hyper-parameters are tuned for FP32 and applied to
TINYSCRIPT and Vanilla directly. We make 5 runs for each
method and report the mean and standard deviation. Overall,
FP32 achieves the best model performance since it never
suffers from quantization variance. Both TINYSCRIPT and
Vanilla can converge to considerable accuracy (within 1%

“we implement Vanilla as a combination of the uniform
quantization for gradients (Alistarh et al., 2017) and activations
(Chakrabarti & Moseley, 2019). The techniques described in Sec-
tion 3.4 are also applied to Vanilla to achieve fair comparison.

drop). However, Vanilla requires more quantization levels
(larger n) to converge properly and even diverges in all cases
when n = 4. This is unsurprising since TINYSCRIPT pro-
vides a lower quantization variance as described above, and
hence gains better convergence. Furthermore, it is worthy
to note that both TINYSCRIPT and Vanilla entail a higher
performance drop on ResNet50 than VGG19 and WRN34.
It matches our discussion in Section 4.2 that a deeper net-
work would cause higher quantization variance and require
more quantization levels.

Convergence on ImageNet We then compare the perfor-
mance of each method on ImageNet dataset with ResNet50.
Following (He et al., 2016), we set batch size as 256, initial
learning rate as 0.1, and use SGD with momentum of 0.9. In
general, FP32 still obtains the best model performance and
the convergence curves of the quantization competitors are
close to that of FP32. With a larger level n = 32, Vanilla
incurs 0.43% drop in accuracy, whilst suffers from a 0.92%
drop with n = 16 and diverges for smaller n. In contrast,
the gap between FP32 and TINYSCRIPT is only 0.69% when
n = 8. Furthermore, Vanilla diverges for both n = 4 and
n = 8 owing to the high quantization variance, whilst the
validation error of TINYSCRIPT is 10.5% when n = 4. The
experiment on this large-scale dataset verifies the ability of
TINYSCRIPT to achieve sound model performance with a
more aggressive quantization.

Compression Finally, we compare the compression per-
formance of TINYSCRIPT and Vanilla with the results in
Figure 8. Although the existing uniform quantization con-
veys a possibility to train DNNs with a small level n so
that memory consumption and communication cost can be
reduced, our non-uniform quantization further decreases

Don’t Waste Your Bits! Squeeze Activations and Gradients for Deep Neural Networks via TINYSCRIPT

B TinyScript (n=4) BN TinyScript (n=8) B Vanilla (n=16) EES Vanilla (n=32) |

AW S

1Y

S

3\:\2

#bitsl/value

Memory #bits/value Memory

Cifar10 ImageNet

Figure 8. Compression performance on ResNet50 models. We
show the memory consumed by activations in percentage of FP32
(we assume FP32 adopts re-computation) and the number of bits
per value after quantization. Both metrics are better if lower.

n to one-half or even one-fourth. From the perspective of
information theory, it requires at most log(n + 1) bits to rep-
resent n levels. Thus, TINYSCRIPT enjoys approximately
0.8-1.8 bits saving compared to the uniform-based method.

6. Conclusion and Possible Future Works

This work proposes TINYSCRIPT, a non-uniform quantiza-
tion framework for DNNs. TINYSCRIPT models the values
with a family of Weibull distributions and leverages the
distribution property to achieve minimum quantization vari-
ance. Empirical results show that TINYSCRIPT obtains
lower quantization variance than the uniform-based mecha-
nism, and therefore achieves a higher compression rate with
model accuracy on par with full precision training.

Beyond this work, we wish to discover the strength of the
proposed non-uniform quantization method in three direc-
tions. First, since all DNNs discussed in this work are feed-
forward networks, it will be interesting to see whether our
method fits RNNs. Second, whether the modeling on distri-
bution works well on model weights is worth discussing. If
yes, a model compression technique based on our method
would be possible. Third, a dynamic control, e.g., choosing
n w.r.t. k, may greatly improve the power of our method.
We will leave the exploration of these topics as future works.

Acknowledgements

The work is supported by National Key R&D Program of
China (No. 2018YFB1004403), National Natural Science
Foundation of China (NSFC) (No. 61832001, 61702016,
61702015, U1936104), PKU-Baidu Fund 2019BD006, Bei-
jing Academy of Artificial Intelligence (BAAI), PKU-
Tencent joint research Lab, and Fundamental Research
Funds for the Central Universities 2020RC25. CZ and
the DS3Lab gratefully acknowledge the support from
the Swiss National Science Foundation (Project Number
200021_184628), Swiss Data Science Center, Alibaba, eBay,
Google Focused Research Awards, Oracle Labs, Zurich In-
surance, Chinese Scholarship Council, and the Department
of Computer Science at ETH Zurich.

References

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,
M. Qsgd: Communication-efficient sgd via gradient quan-
tization and encoding. In Advances in Neural Information
Processing Systems, pp. 1709-1720, 2017.

Allen-Zhu, Z. Natasha: Faster non-convex stochastic opti-
mization via strongly non-convex parameter. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 89-97. IMLR. org, 2017.

Arun, K. and Govindan, V. A hybrid deep learning architec-
ture for latent topic-based image retrieval. Data Science
and Engineering, 3(2):166—-195, 2018.

Banner, R., Hubara, 1., Hoffer, E., and Soudry, D. Scal-
able methods for 8-bit training of neural networks. In
Advances in neural information processing systems, pp.
5145-5153, 2018.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anand-
kumar, A. Signsgd: Compressed optimisation for non-

convex problems. In International Conference on Ma-
chine Learning, pp. 559-568, 2018.

Cambier, L., Bhiwandiwalla, A., Gong, T., Nekuii, M., Eli-
bol, O. H., and Tang, H. Shifted and squeezed 8-bit
floating point format for low-precision training of deep
neural networks. arXiv preprint arXiv:2001.05674, 2020.

Chakrabarti, A. and Moseley, B. Backprop with approxi-
mate activations for memory-efficient network training.
In Advances in Neural Information Processing Systems,
pp. 2426-2435, 2019.

Chen, S., Jian, Z., Huang, Y., Chen, Y., Zhou, Z., and
Zheng, N. Autonomous driving: cognitive construction
and situation understanding. Science China Information
Sciences, 62(8):81101, 2019.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248-255. Ieee, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 4171-4186,
2019.

Don’t Waste Your Bits! Squeeze Activations and Gradients for Deep Neural Networks via TINYSCRIPT

Drumond, M., Tao, L., Jaggi, M., and Falsafi, B. Training
dnns with hybrid block floating point. In Advances in
Neural Information Processing Systems, pp. 453463,
2018.

Gharibshah, Z., Zhu, X., Hainline, A., and Conway, M.
Deep learning for user interest and response prediction in
online display advertising. Data Science and Engineering,
5(1):12-26, 2020.

Greenwald, M., Khanna, S., et al. Space-efficient online
computation of quantile summaries. ACM SIGMOD
Record, 30(2):58-66, 2001.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Jiang, J., Fu, F,, Yang, T., and Cui, B. Sketchml: accel-
erating distributed machine learning with data sketches.
In Proceedings of the 2018 International Conference on
Management of Data, pp. 1269-1284. ACM, 2018.

Jiang, J., Fu, F, Yang, T., Shao, Y., and Cui, B. Skcom-
press: compressing sparse and nonuniform gradient in
distributed machine learning. The VLDB Journal, pp.
1-28, 2020.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Li, K. and Li, G. Approximate query processing: What is
new and where to go? Data Science and Engineering, 3
(4):379-397, 2018.

Mishchenko, K., Gorbunov, E., Taka¢, M., and Richtarik,
P. Distributed learning with compressed gradient differ-
ences. arXiv preprint arXiv:1901.09269, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information
Processing Systems, pp. 8024-8035, 2019.

Rhu, M., Gimelshein, N., Clemons, J., Zulfiqar, A., and
Keckler, S. W. vdnn: Virtualized deep neural networks
for scalable, memory-efficient neural network design. In
2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 1-13. IEEE, 2016.

Schoenholz, S. S., Gilmer, J., Ganguli, S., and Sohl-
Dickstein, J. Deep information propagation. arXiv
preprint arXiv:1611.01232, 2016.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. 1-bit stochas-
tic gradient descent and its application to data-parallel

distributed training of speech dnns. In Fifteenth Annual
Conference of the International Speech Communication
Association, 2014.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv: 1409.1556, 2014.

Stich, S. U., Cordonnier, J.-B., and Jaggi, M. Sparsified
sgd with memory. In Advances in Neural Information
Processing Systems, pp. 44474458, 2018.

Sun, H., Shao, Y., Jiang, J., Cui, B., Lei, K., Xu, Y., and
Wang, J. Sparse gradient compression for distributed
sgd. In International Conference on Database Systems
for Advanced Applications, pp. 139-155. Springer, 2019.

Vladimirova, M., Arbel, J., and Mesejo, P. Bayesian neural
networks become heavier-tailed with depth. 2018.

Vladimirova, M., Verbeek, J., Mesejo, P., and Arbel, J. Un-
derstanding priors in bayesian neural networks at the unit
level. In International Conference on Machine Learning,

pp. 6458-6467, 2019.

Wang, H., Sievert, S., Liu, S., Charles, Z., Papailiopoulos,
D., and Wright, S. Atomo: Communication-efficient
learning via atomic sparsification. In Advances in Neural
Information Processing Systems, pp. 9850-9861, 2018a.

Wang, L., Ye, J., Zhao, Y., Wu, W,, Li, A, Song, S. L.,
Xu, Z., and Kraska, T. Superneurons: dynamic gpu
memory management for training deep neural networks.
In Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp.

41-53, 2018b.

Wang, N., Choi, J., Brand, D., Chen, C.-Y., and Gopalakrish-
nan, K. Training deep neural networks with 8-bit floating
point numbers. In Advances in neural information pro-
cessing systems, pp. 7675-7684, 2018c.

Wangni, J., Wang, J., Liu, J., and Zhang, T. Gradient spar-
sification for communication-efficient distributed opti-
mization. In Advances in Neural Information Processing
Systems, pp. 1299-1309, 2018.

Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and
Li, H. Terngrad: Ternary gradients to reduce communica-
tion in distributed deep learning. In Advances in neural
information processing systems, pp. 1509-1519, 2017.

Wu, J., Huang, W., Huang, J., and Zhang, T. Error com-
pensated quantized sgd and its applications to large-scale
distributed optimization. In International Conference on
Machine Learning, pp. 5321-5329, 2018.

Don’t Waste Your Bits! Squeeze Activations and Gradients for Deep Neural Networks via TINYSCRIPT

Yang, G. Scaling limits of wide neural networks with
weight sharing: Gaussian process behavior, gradient in-
dependence, and neural tangent kernel derivation. arXiv
preprint arXiv:1902.04760, 2019.

Yang, G. and Schoenholz, S. Mean field residual networks:
On the edge of chaos. In Advances in neural information
processing systems, pp. 7103-7114, 2017.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

Zhang, D., Yang, J., Ye, D., and Hua, G. Lg-nets: Learned
quantization for highly accurate and compact deep neural
networks. In Proceedings of the European conference on
computer vision (ECCV), pp. 365-382, 2018.

Zhang, H., Li, J., Kara, K., Alistarh, D., Liu, J., and Zhang,
C. Zipml: Training linear models with end-to-end low
precision, and a little bit of deep learning. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 4035-4043. JMLR. org, 2017.

Zhang, W., Jiang, J., Shao, Y., and Cui, B. Snapshot boost-
ing: a fast ensemble framework for deep neural networks.
Science China Information Sciences, 63(1):112102, 2020.

