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A. Proofs
In this section, we provide proofs for the theorems and some
omitted deduction in our paper.

A.1. Proofs for Section 3

Theorem 1. There is a unique stationary point ŝ∗ of Vn̂ in
the domain of ŝ, and Vn̂ attains minimum only at ŝ∗.

Proof. We relax the domain of ŝ to ŝ0 ≤ ŝ1 ≤ ... ≤ ŝn =
M , denoted by D. Since D is a compact set on Rn−1,
Vn̂(ŝ) must attain a minimum on D. Also denote p(x) =
kxk−1 exp(−xk), 0 < k <= 1. It is easy to check that p(x)
is convex and strictly decreasing on [0,∞).

Now, we only need to prove two claims.

Claim 1. The minimum of Vn̂(ŝ) cannot lies on the bound-
ary ∂D.

Proof of Claim 1. We proof this claim by contradiction.

Notice that the points on ∂D must satisfy ŝi = ŝj for
some i 6= j, which will in fact results in a loss of pa-
rameters. We assume w.l.o.g. that the global minimum
ŝ∗ = (ŝ∗1, ..., ŝ

∗
n−1) “only” satisfies ŝ∗1 = ŝ∗2 (which means

that ŝ∗3 6= ŝ∗2 and ŝ∗1 6= 0).

Now denote ŝ′ = (ŝ∗1,
ŝ∗1+ŝ

∗
3

2 , ..., ŝ∗n−1). We will show that
Vn̂(ŝ′) < Vn̂(ŝ∗), which is a contradiction to the definition
of ŝ∗. In fact,

Vn̂(ŝ∗)− Vn̂(ŝ′) =

∫ ŝ∗3

ŝ∗1

p(x)(ŝ∗3 − x)(x− ŝ∗1)dx

−
∫ ŝ∗1+ŝ∗3

2

ŝ∗1

p(x)(
ŝ∗1 + ŝ∗3

2
− x)(x− ŝ∗1)dx

−
∫ ŝ∗3

ŝ∗1+ŝ∗3
2

p(x)(ŝ∗3 − x)(x− ŝ∗1 + ŝ∗3
2

)dx

=

∫ ŝ∗1+ŝ∗3
2

ŝ∗1

p(x)
ŝ∗3 − ŝ∗1

2
(x− ŝ∗1)dx

+

∫ ŝ∗3

ŝ∗1+ŝ∗3
2

p(x)(ŝ∗3 − x)
ŝ∗3 − ŝ∗1

2
dx

> 0.

Thus, Claim 1 holds. �

Claim 2. There exists an unique first-order stationary point
in D.

Proof of Claim 2. By setting the derivatives to zero, we
have∫ ŝt

ŝt−1

(x− ŝt−1)p(x)dx =

∫ ŝt+1

ŝt

(ŝt+1 − x)p(x)dx

∀t = 1, 2, ..., n− 1.

(∗)

Notice that the right hand side is strictly decreasing w.r.t.
ŝt+1. Thus, when ŝt−1 and ŝt are fixed, ŝt+1 can be
uniquely determined. By induction, ∀t ≥ 2, ŝt can be
uniquely determined by ŝ1 (since ŝ0 = 0). Also, it is easy
to see that when ŝ1 > 0, the sequence {ŝt} is strictly in-
creasing w.r.t. t.

Now, in order to prove Claim 2, it suffices to prove:

∀t ≥ 2, ŝt is an increasing continuous function of ŝ1. (I)

In fact, we may ignore the constraint ŝn+1 = M for the
moment and set a small enough ŝ′1 such that ŝ′n+1 (which
is determined by (∗) and ŝ0 = 0) satisfies ŝ′n+1 < M .
Similarly, we can set a ŝ′′1 large enough (e.g., ŝ′′1 > M )
such that ŝ′′n+1 > M . Note that once (I) holds, then ŝn+1 is
an increasing continuous function of ŝ1, we may apply the
Intermediate Value Theorem and obtain the desired result.
That is to say, there exists a unique ŝ∗1 ∈ (ŝ′1, ŝ

′′
1) satisfying

ŝ∗n+1 = M .

Before entering the proof of (I), we first need to do some
useful transformations. Note that (∗) is equivalent to∫ ŝt+1

ŝt−1

xp(x)dx = ŝt−1

∫ ŝt

ŝt−1

p(x)dx

+ ŝt+1

∫ ŝt+1

ŝt

p(x)dx,

∀t = 1, 2, ..., n− 1

(∗∗)

Recall that p(x) = kxk−1 exp
(
−xk

)
=
(
exp(−xk)

)′
. De-

note f(x) = exp(−xk) and integrating the left hand side of
(∗∗) by part, we have

xf(x)|ŝt+1

ŝt−1
−
∫ ŝt+1

ŝt−1

f(x)dx =

ŝt−1f(x)|ŝtŝt−1
+ ŝt+1f(x)|ŝt+1

ŝt

⇔

∫ ŝt+1

ŝt−1
f(x)dx

ŝt+1 − ŝt−1
= f(ŝt) = exp(−ŝkt ).

(∗ ∗ ∗)

We are now ready to prove (I). Suppose there are two se-
quences of (∗ ∗ ∗), namely {at}, {bt}, statisfying a0 =
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b0 = 0 and a1 < b1. By induction, it suffices to prove that
∀t ≥ 1, at−1 ≤ bt−1 ∧ at < bt ⇒ at+1 < bt+1.

Denote F (x, y) =
∫ y
x
f(t)dt

y−x for x < y. Since f is strictly
decreasing, it is straightforward to see that F (x, y) is strictly
increasing w.r.t. x and strictly decreasing w.r.t. y.

Now, we have

F (bt−1, bt+1) = f(bt) < f(at) =

F (at−1, at+1) ≤ F (bt−1, at+1).

Thus, at+1 < bt+1 and (I) is proved. Therefore, Claim 2
holds. �

Combining Claim 1 and Claim 2 and recall the existence of
global minimum on D, it is straightforward to see that the
unique first-order stationary point is also the unique global
minimum. Further, by Claim 1 we know the unique global
minimum lies on the interior D◦. This finishes the proof of
Theorem 1.

Claim 3. [Proof of Equation 2] The partial derivative for
the minimum quantization variance problem has the form of

∂Vn̂
∂ŝt

=− Γ(1 + 1/k, ŝkt+1) + Γ(1 + 1/k, ŝkt−1)

+ ŝt+1 exp(−ŝkt+1)− ŝt−1 exp(−ŝkt−1)

− (ŝt+1 − ŝt−1) exp(−ŝkt ),

for t = 1, 2, ..., n− 1

Proof. Let p(x) = kxk−1 exp(−xk), the partial derivative
is given as

∂Vn̂
∂ŝt

=

∫ ŝt+1

ŝt−1

xp(x)dx

−

(
ŝt+1

∫ ŝt+1

ŝt

p(x)dx+ ŝt−1

∫ ŝt

ŝt−1

p(x)dx

)
.

(∗)

By substituting u = xk, we have∫ ŝt+1

ŝt−1

xp(x)dx =

∫ ŝkt+1

ŝkt−1

u1/k exp(−u)du

= −Γ(1 + 1/k, ŝkt+1) + Γ(1 + 1/k, ŝkt−1),

where Γ(·, ·) is the incomplete gamma function.

Since
∫
p(x)dx = − exp(−xk) + Constant, we have

ŝt+1

∫ ŝt+1

ŝt

p(x)dx+ ŝt−1

∫ ŝt

ŝt−1

p(x)dx

= −ŝt+1 exp(−ŝkt+1) + ŝt−1 exp(−ŝkt−1)

+ (ŝt+1 − ŝt−1) exp(−ŝkt )

Consequently, by substituting the above equations into Equa-
tion (∗), we achieve the final result.

A.2. Proofs for Section 4.1

We first migrate the definition of asymptotic equivalence
moment from (Vladimirova et al., 2018):

Definition 1. Two sequences ar and br are called asymp-
totic equivalent and denoted as ar � br if there exist con-
stants A > 0 and B > 0 such that

A ≤ ar/br ≤ B, for ∀r ∈ N.

According to the equivalent sub-Weibull distribution proper-
ties defined in (Vladimirova et al., 2018), if the r-th moment
of r.v. X satisfies

||X||r = (E[|X|r]))1/r � rθ,

then X ∼ subW(θ).

Before we start to prove the theorems in Section 4.1, we
need to introduce the following lemmas.

Lemma 1. Assume w1, w2, ..., wn are independent vari-
ables drawn from a normal distribution with zero mean, and
x1, x2, ..., xn are variables drawn from an identical distri-
bution. Let y =

∑n
i=1 wixi, then y follows a distribution

symmetric about 0.

Proof. Since w1, w2, ..., wn are independent with each
other, we have

P(w1 = w1,0, ..., wn = wn,0) =

n∏
i=1

P(wi = wi,0)

=

n∏
i=1

P(wi = −wi,0) = P(w1 = −w1,0, ...,−wn = wn,0)

Therefore, y follows a distribution symmetric about 0.

Lemma 2. Assume there is a distribution x ∼ X , and
variable y = px, where p ∼ Bernouli( 1

2 ) is independent
from X . Then we have
(a) if xi, xj ∼ X , and Cov[(xi)

s, (xj)
t] ≥ 0 holds for any

s, t ∈ N, then Cov[(yi)
s, (yj)

t] ≥ 0;
(b) if ||X||r � rθ, then ||Y ||r � rθ.

Proof. (a) Since p is independent of xi, xj and E[pi] =
1

2i+1 for any integer i, we have

Cov[(yi)
s, (yj)

t] = E[(yi)
s(yj)

t]− E[(yi)
s]E[(yj)

t]

= E[ps+t(xi)
s(xj)

t]− E[ps]E[(xi)
s]E[pt]E[(xj)

t]

= E[ps+t]E[(xi)
s(xj)

t]− (E[ps]E[pt])E[(xi)
s]E[(xj)

t]

=
1

2s+t+1
(E[(xi)

s(xj)
t]− E[(xi)

s]E[(xj)
t])

=
1

2s+t+1
Cov[(xi)

s, (xj)
t]

≥ 0.
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(b) According to the definition of asymptotic equiva-
lence moment, there exist constants A,B such that A ≤
||X||r/rθ ≤ B. Since p and X are independent, we have

||Y ||r = (E|Y |r)(1/r) = (E|pX|r)(1/r)

= (E|p|rE|X|r)(1/r) =
1

2
(E|X|r)(1/r) =

1

2
||X||r.

Therefore, A/2 ≤ ||Y ||r/rθ ≤ B/2.

Lemma 3. Assume ŵ1, ŵ2, . . . , ŵn, w̃1, w̃2, . . . , w̃n are in-
dependent variables drawn from the same normal distri-
bution with zero mean and x1, x2, . . . , xn are variables an
identical distribution satisfying Cov[xsi , x

t
j ] ≥ 0 for any

s, t ∈ N. Let ŷ =
∑n
i=1 ŵixi and ỹ =

∑n
i=1 w̃ixi. Then

we have Cov[ŷs, ỹt] ≥ 0.

Proof. This lemma is actually one part of the Theorem 3.2
of (Vladimirova et al., 2019). Therefore, we refer to their
proof for simplicity.

Now we present the proofs for theorems in Section 4.1.
Theorem 3. Assume the MLP model in Theorem 2 satisfies
Assumption 2, then for any 1 ≤ l < L, 1 ≤ i ≤ Cl, we have
m

(l)
i , n

(l)
i ∼ subW((L− l)/2).

Proof. Throughout our proof, we use ma,mb (na, nb) to
indicate arbitrary element of m (n).

With Assumption 2, m(l) is independent with u(l). Accord-
ing to Lemma 1, u(l) has a symmetric distribution, hence
we introduce a r.v. p ∼ Bernouli( 1

2 ) which is independent
with m(l), and assume n(l)i = pm

(l)
i .

We first prove that the following inequality

Cov[(m(l)
a )s, (m

(l)
b )t] ≥ 0,Cov[(n(l)a )s, (n

(l)
b )t] ≥ 0

hold for any s, t ∈ N and 1 ≤ l ≤ L − 1. The proof is
performed by induction w.r.t. network layers.

Base Step:
Consider the backward units of the (L − 1)-th layer.
Since model weights W

(L)
a and W

(L)
b are independently

drawn from an normal distribution, and n(L) is indepen-

dent with W (L). Therefore, m(L−1)
a = W

(L−1)
a

T
n(L)

and m
(L−1)
b = W

(L)
b

T
n(L) are independent, which

means (m
(L−1)
a )s and (m

(L−1)
b )t are also independent.

Hence Cov[(m
(L−1)
a )s, (m

(L−1)
b )t] = 0. According to

Lemma 2(a), Cov[(n
(L−1)
a )s, (n

(L−1)
b )t] = 0.

Induction step:
According to Lemma 3 and Lemma 2(a), we know the non-
negative conditions also hold for the l-th layer.

Now we prove Theorem 3. We only need to prove
||m(l)

a ||r � r(L−l)/2 and ||n(l)a ||r � r(L−l)/2 for 1 ≤ l ≤
L− 1 and r ∈ N by induction w.r.t. to network layers.

Base step:
Consider the backward units of the (L− 1)-th layer.

Since m(L−1)
a = W

(L)
a

T
n(L), where the weights W

(L)
a

follow normal distribution and n(L) is a vector independent
with W

(L)
a , therefore

m(L−1)
a = W (L)

a

T
n(L) ∼ N (0, σ(l)2||n(L)||2).

According to Lemma A.1 (lemma of Gaussiam moments)
from (Vladimirova et al., 2019), we have ||m(L−1)

a ||r �
√
r.

Then in accord to Lemma 2(b), we have ||n(L−1)a ||r �
√
r.

Induction step:
Suppose the backward units of the (l+ 1)− th layer satisfy
||m(l+1)

a ||r � r(L−l−1)/2, ||n(l+1)
a ||r � r(L−l−1)/2. Since

n(l+1) satisfies the non-negative covariance condition and

m
(l)
a = W

(l+1)
a

T
n(l+1), according to Lemma A.2 (lemma

of multiplication moments) from (Vladimirova et al., 2019),
we have ||m(l)

a ||r � r(L−l)/2. By Lemma 2(b), ||n(l)a ||r �
r(L−l)/2. This completes the proof.

Theorem 4. Considering the MLP model in Theorem 2, 3,
for any 1 < l < L, 1 ≤ i ≤ Cl−1, 1 ≤ j ≤ Cl, we have
∇W

(l)
ij ∼ subW((L− 1)/2).

Proof. Assume X ∼ subW(θ1), Y ∼ subW(θ2) are inde-
pendent variables. Let Z = XY , then we have

||Z||r = E(|Z|r)1/r = E(|XY |r)1/r

= E(|X|r)1/rE(|Y |r)1/r

= ||X||r||Y ||r.

By the definition of asymptotic equivalence moment, there
exist constants A1, B1, A2, B2 such that

A1r
θ1 ≤ ||X||r ≤ B1r

θ1 , A2r
θ2 ≤ ||X||r ≤ B2r

θ2 .

Therefore, we have A1A2r
θ1+θ2 ≤ ||Z||r ≤ B1B2r

θ1+θ2 ,
which means Z ∼ subW(θ1 + θ2).

Back to the proof of Theorem 4. By Theorem 2 and 3, for
1 ≤ i ≤ Cl−1, 1 ≤ j ≤ Cl, we have

v
(l−1)
j ∼ subW((l − 1)/2), n

(l)
i ∼ subW((L− l)/2).

With Assumption 2, v(l−1)j , n
(l)
i are independent from each

other. Thus we have

∇W
(l)
ij = v

(l−1)
j n

(l)
i ∼ subW((L− 1)/2).
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A.3. Proofs for Section 4.2

Theorem 5. Suppose we run SGD with quantization on
an object satisfying Assumption 3 with constant step size
α < 2/L2. Assume quantization satisfies E[||x̃ − x||] ≤
QE[||x||] for any x ∈ RD. After T runs, select wT ran-
domly from {w0,w1, ...,wT−1}. Then we have

E[||∇f(wT )||2] ≤ 2(f(w0)− f∗)
(2α− α2L2)T

+
αL2(σ2 +Q2σ2

0)

2− αL2
.

Proof. By Taylor’s Expansion Formula with Lagrangian
Remainder,

f(wt+1) = f(wt − αg̃it)
= f(wt − αgit + α(git − g̃it))

= f(wt − αgit) + α(git − g̃it)
T∇f(wt − αgit)

+
1

2
α2(git − g̃it)

T∇2f(ξt)(git − g̃it)

≤ f(wt − αgit) + α(git − g̃it)
T∇f(wt − αgit)

+
1

2
α2L2||git − g̃it ||2,

where the last inequality is due to the property of Lipschitz
continuity. Notice that E[g̃it ] = g̃it , taking expectation on
both sides, we have

E[f(wt+1)] ≤ E[f(wt − αgit)] +
1

2
α2L2Q

2σ2
0 . (∗)

Again, using Taylor’s Expansion Formula with Lagrangian
Remainder,

f(wt − αgit) = f(wt)− αgTit∇f(wt)

+
1

2
α2gTit∇

2f(ηt)git

≤ f(wt)− αgTit∇f(wt) +
1

2
α2L2||git ||2

= f(wt)− αgTit∇f(wt)

+
1

2
α2L2||∇f(wt) + (git −∇f(wt))||2

≤ f(wt)− αgTit∇f(wt)

+
1

2
α2L2(||∇f(wt)||2 + ||git −∇f(wt)||2).

Notice that E[git ] = ∇f(wt), taking the expectation on
both sides, we have

E[f(wt − αgit)] ≤ E[f(wt)]− (α− 1

2
α2L2)E[||∇f(wt)||2]

+
1

2
α2L2E[||git −∇f(wt)||2]

≤ E[f(wt)]− (α− 1

2
α2L2)E[||∇f(wt)||2]

+
1

2
α2L2σ

2.

(∗∗)

Plugging (∗∗) into (∗) and summing over t from 0 to T − 1,
we have

T−1∑
t=0

(α− 1

2
α2L2)E[||∇f(wt)||2] ≤

f(w0)− E[f(wT )] +
1

2
Tα2L2(σ2 +Q2σ2

0).

Thus,

E[||∇f(w)||2] =
1

T

T−1∑
t=0

E[||∇f(wt)||2]

≤ 2(f(w0)− E[f(wT )])

(2α− α2L2)
+
αL2(σ2 +Qσ2

0)

2− αL2

≤ 2(f(w0)− f∗)
(2α− α2L2)

+
αL2(σ2 +Q2σ2

0)

2− αL2
.

B. More Experiments
Sensitivity To address the concerns on the sensitivity to
hyper-parameters, We further examine TINYSCRIPT on
varying learning rates from 0.005 to 0.1 (we also change
batch size accordingly) and the do not observe notable accu-
racy drop (within 1% of FP32).

Runtime Quantization inevitably incurs extra overhead. For
instance, training ResNet50 on ImageNet without quantiza-
tion (to be fair, we also apply the checkpointing technique)
takes 124 hours, whilst TINYSCRIPT (n = 8) and Vanilla
(n = 16) take 167 and 165, respecitively. This verifies
our analysis that our method has the same complexity as
uniform quantization. Therefore, we believe it is valuable
to shirnk more memory with similar cost, especially when
memory is limited.

Number of GPUs To assess the influence of number of
GPUs, we train WRN34 on Cifar10 with 2 and 8 GPUs.
TINYSCRIPT (n = 4) achieves 5.85 and 5.62 error, and the
results of Vanilla (n = 8) are 5.80 and 5.71, respectively. It
shows that the accuracy of training with quantization does
not vary significantly w.r.t. number of GPUs.


