First, we provide an extended discussion of related work. Next, we provide a glossary of terms and notation that we use
throughout this paper for easy summary. Next, we discuss additional algorithmic details, and we give the proofs of our main
results (each theorem). Finally, we give additional experimental details.

A. Extended Related Work

The notion of the “triplet” of (conditionally) independent variables as the source of minimal signal in latent variable models
was observed and exploited in two innovative works, both using moments to deal with the challenge of the latent variable.
These are

* Joglekar et al. (2013), in the explicit context of crowdsourcing, and

* Chaganty & Liang (2014), for estimating the parameters of certain latent variable graphical models.

The “3-Differences Scheme” described in 3.1 of Joglekar et al. (2013) is equivalent to our approach in Algorithm 1 in the
basic case where there are no abstains and the signs of the accuracies are non-negative. Joglekar et al. (2013) focuses on
crowdsourcing, and thus offers two contributions for this setting: (i) computing confidence intervals for worker accuracies
and (ii) a set of techniques for extending the three-voters case by collapsing multiple voters into a pair ‘super-voters’ in order
to build a better triplet for a particular worker. Both of these are useful directions for extensions of our work. In contrast, our
approach focuses on efficiently handling the non-binary abstains case critical for weak supervision and develops theoretical
characterizations for the downstream model behavior when using our generated labels.

A more general approach to learning latent variable graphical models is described in Chaganty & Liang (2014). Here there is
an explicit description of the “three-views” approach. It is shown how to estimate the canonical parameters of a remarkably
wide class of graphical models (e.g., both directed and undirected) by applying the tensor decomposition idea (developed in
Anandkumar et al. (2014)) to recover conditional parameters. By comparison, our work is more specialized, looking at
undirected (in fact, specifically Ising) models in the context of weak supervision. The benefits of this specialization are that
we can replace the use of the tensor power iteration technique with a non-iterative closed-form solution, even for non-binary
variables. Nevertheless, the techniques in Chaganty & Liang (2014) can be useful for weak supervision as well, and their
pseudolikelihood approach to recover canonical parameters suggests that forward methods of inference could be used in
our label model. We also note that closed-form triplet methods can be used to estimate part of the parameters of a more
complex exponential family model (where some variables are involved in pairwise interactions at most, others in more
complex patterns), so that resorting to tensor power iterations can be minimized.

A further work that builds on the approach of Chaganty & Liang (2014) is Raghunathan et al. (2016), where moments are
used in combination with a linear technique. However, the setting here is different from weak supervision. The authors
of Raghunathan et al. (2016) study indirect supervision. Here, for any unlabeled data point z, the label y is not seen, but
a variable o is observed. So far this framework resembles weak supervision, but in the indirect setting, the supervision
distribution S(o|y) is known—while for weak supervision, it is not. Instead, in Chaganty & Liang (2014), the S distribution
is given for two particular applications: local privacy and a light-weight annotation scheme for POS tagging.

B. Glossary

The glossary is given in Table 1 below.

C. Further Algorithmic Details

In this section, we present more details on the main algorithm, extensions to more complex models, and the online variant.

C.1. Core Algorithm

We first present the general binary Ising model and the proof of Proposition 1 that follows from this construction. We also
prove another independence property over this general class of Ising models that can be used to factorize expectations over
arbitrarily large cliques. Next, we detail the exact setup of the graphical model when sources can abstain, as well as the
special case when they never abstain, and define the mappings necessary to convert between values over v, G and A, Ggep.



Symbol Used for

X Unlabeled data vector, X = [X1, X»2,...,Xp] € X

X* ith unlabeled data vector

X 1th data element

D Length of the unlabeled data vector

Y Latent, ground-truth label vector, Y = [Y1,Y5,...,Yp] € ), also referred to as hidden variables
Y? ith ground-truth label vector

Y; Ground-truth label for ith task, Y; € {—1, +1}

D Distribution from which we assume (X, Y") data points are sampled i.i.d.

Si ith weak supervision source

m Number of weak supervision sources

Ai Label of S; for X where A; € {—1,0,1}; all m labels per X collectively denoted A
n Number of data vectors

Y Probabilistic training labels for a label vector

fw Discrimative classifier used as end model, parametrized by w

Gdep Source dependency graph

G Augmented graph G = (V| E) used for binary Ising model, where V' = {Y", v}
v Observed variables of the graphical model corresponding to A

L Label matrix containing n samples of source labels A1, ..., Ap,

L Augmented label matrix computed from L

Yder(4) Task that ); labels

Y (i) Hidden variable that the observed variable v; acts on

Cdep Cliqueset (maximal and non-maximal) of G gep

édep, Saep  The maximal cliques and separator sets of the junction tree over Gaep

©o The label model parameters collectively over all jic, ps, the marginal distributions of C' € (fdep, S € Sdep
P(Y) Class prior for the Y label vector

a; E [v;Y (¢)], the unobservable mean parameters of binary Ising model G

Qa Set of vertices in V' to which the triplet method can be applied

C Cliqueset (maximal and non-maximal) of G

ac The expectation over the product of observed variables in clique C' € C and Y (C)

ac,., The expectation over the product of sources in clique Cgep € Caep and Y %P (Clye,)

Table 1. Glossary of variables and symbols used in this paper.

We then formalize the linear transformation from ac,,, to pc,,,, and finally we explain the RESOLVESIGNS function used
in Algorithm 1.

First, we give the explicit form of the density for the Ising model we use. Given the graph G = (V| E), we can write the
corresponding joint distribution of Y, v as

D
f(;(Y,’U) = %exp (ZQYkYk + Z 6Yk,Yz Y.V, + Z 91U1Y(Z) + Z Hk,lvkvl), (D)

k=1 (Yk,Yl)EE Vi €V (’Uk,’UL)EE

where Z is the partition function, and the 6 terms collectively are the canonical parameters of the model. Note that this is the
most general definition of the binary Ising model with multiple dependent hidden variables and observed variables that we
use.

C.1.1. PROOF OF PROPOSITION 1

We present the proof of Proposition 1, which is the underlying independence property of (1) that enables us to use the triplet
method. We aim to show that for any a,b € {—1, +1}2,

P(v;Y (i) = a,v;Y (i) = b) = P(v;Y (i) = a) - P(v;Y (i) =), (2)

where v; L v;]Y (¢). For now, assume that Y(j) # Y (¢).

Because v; and v; are conditionally independent given Y (¢), we have that P(v; = a,v; =b|Y (1) =1) = P(v; = a|Y (1) =



1) - P(v; = b]Y(¢) = 1), and similarly for v; = —a, v; = —b conditional on Y () = —1. Then

Pvi=a,v;=0Y()=1)-P(Y =1)=P(v; =a,Y (i) =1)- P(v; =b,Y (i) = 1)
P(v; = —a,v; ==bY(i)=—-1)- P(Y =-1) = P(v; = —a,Y (i) = —=1) - P(v; = —b,Y (i) = —1). 3)

Note that terms in (2) can be split depending on if Y'(¢) is 1 or —1, so proving independence of v;Y (i) and v;Y (4) is
equivalent to

P(v; =a,v; =b,Y (i) =1) + P(v; = —a,v; = —b,Y (i) = —1)
=(Pvi=a,Y(i)=1)4+P(v; = —a,Y (i) = —1)) - (P(v; = b,Y (i) = 1) + P(v; = =b,Y (i) = —1)).

We substitute (3) into the right hand side. After rearranging, our equation to prove is

Pv;=a,v; =5bY(i)=1)- P(Y(i) = —-1)+ P(v; = —a,v; = =b,Y(i) = -1) - P(Y (i) = 1)
=P(v;=—a,Y(i)=—-1) - P(v; =b,Y (i) =1)+ P(v; =a,Y (i) = 1) - P(v; = =b,Y (i) = —1).

Due to symmetry of the terms above, it is thus sufficient to prove

P(v; =a,v; =b,Y (i) =1)- P(Y(i) = —1) = P(v; = —a, Y (i) = —=1) - P(v; = b,Y (i) = 1). (4)

Let N(v;) be the set of v;’s neighbors in v, and N(Y;) be the set of Y;’s neighbors in Y. Let S be the event space for
the hidden and observed variables, such that each element of the set S is a sequence of +1s and —1s of length equal to
|V]. Denote S(v;,v;, Y (7)) to be the event space for V' besides v;, v;, and Y (3); we also have similar definitions used for
S(Y(#),S(vi, Y (@), S(vy, Y (7).

Our approach is to write each probability in (4) as a summation of joint probabilities over S(v;, Y (7)), S(v;,Y (7)), and
S(vs,v5,Y (7)) using (1). To do this more efficiently, we can factor each joint probability defined according to (1) into a
product over isolated variables and a product over non-isolated variables. Recall that our marginal variables are v;, v; and
Y (7). Define the set of non-isolated variables to be the marginal variables, plus all variables that interact directly with the
marginal variables according to the potentials in the binary Ising model. Per this definition, the non-isolated variables are
Vr = {vi, v, Y (4),Y(j), N(Y(2)), N(v:), N(vj),vy ;) } where vy ;) = {v : Y (v) = Y (i)} and the isolated variables
are all other variables not in this set, V; = V'\Vy;. We can thus factorize each probability into a term ¢ (-) corresponding
to factors of the binary Ising model that only have isolated variables and a term ((-) coresponding to factors that have
non-isolated variables.

1
P(o; = a0, =bY() =1) = > (M) - (s = a0 = b,Y (i) = 1,5)
s(@d) eS(v;,v;,Y(3))

P(s)) - (Y (i) = —1,5)
sV eS(Y (1))

. 1 a . a
P, =—a,Y(i)=-1)= A Z YY) (v = —a, Y (i) = —1,5)
s(@)eS(v;,Y (3))

> () (v =b,Y (i) = 1,57
S(v;

s eS(v;,Y (i)

To be precise, ¥(-) is

(s ) = exp (Z 0. Y 3 0y VYD 13T 00y (k)@ 3 Gl,kv;(ca’b)vl(a’b))
YN (Y (i) Yi,Y1¢ Y (k)N (Y (i))UY (i)UY (5), v, ¢ N (vi)Uv;
UY (9)UY (5) N (i)Y (§)UY (4) k¢ N (v;)Uv; UN (v;)Uv;



where s(®:t) = {Yl(a’b), ey Yl()a’b), vga’b), ...}, and similar definitions hold for 5@ s® and s). Then, (4) is equivalent
to showing

ST (@) p(sM) o = a0 = b Y (1) = 1,5D) (Y (i) = ~1,50))

s(a:b) 5(Y)

Z w(s(a)) "(/}(S(b)) : C(Ui = —a,Y(z’) = _175(a)) : C(Uj = va(l) =1, S(b))'

s(a) ,s(b)

We can show this by finding values of s() and s(*) that correspond to each 5(**) and s(*"). Note that the 1/ terms will cancel
each other out if we directly set s(*)[V;] = s)[V;] and sV [V;] = s(@)[V}]. Therefore, we want to set s(*)[Viy] and
5(") [Viy] such that the products of (s are equivalent. We write them out explicitly first:

C(Ui = a, Uj = b, Y(Z) = 1, S(G’b)) = exp (ey(z) + Z eykyk(a’b) + Z eyk’y(i)yk(a’b) —|- Z eylmyl Yk(a’b)Y}(a’b)

YR eN(Y(i)UY ()  YeeN(Y(4)) Y EN(Y (4))UY (5),
Yi¢N(Y (i))UY (1)UY (5)

+0ia+0;5Y ()@ + 37 o + Ze oY (k)@ + 37 ; avy”

k#i,j, k# v €N (vy)
Y (k)=Y(4) Y(k)EN(Y(i))UY(j)
|[kEN (vj)

+ > 0t

vk EN(v;)

C(Y (i) = —1,5M)) = exp ( S TR D DL PHUED RS AL S VRS AL AL
YR eN(Y (4))UY (§) YeeN(Y (7)) YR eN(Y (4))UY (5),
YI¢N (Y (2))UY (1)UY (5)
— Hivgy) + va§y) (Y) Zekv ¥) + Z 0rv Y)Y (Y) + Z 0 wk Uz
v EN(v;),

Y() Y(Z) Y(k)GN(Y(Z)) Y (5) viFv;
|kEN (vy)

2 )

vk €N (vj),
’Ul;é’U]‘

Clv; = —a,Y (i) = —1,5) = exp ( — Oy + Z GYkYk(a) — Z Gyhy(i)Yk(a) + Z Oy, v, Yk_(a)Yl(a)

YieN(Y()UY (j) YeeN(Y (i) Yie N(Y (6))UY (j),
YigN(Y (i))UY (i)UY (5)

+ bia + va](-a) )@ — Z 9kv + Z 911,(:) k)@ 4 Z O lv,(ca)vl «)

k#1,7, k#i,7, v EN (vy),
Y (k)=Y (i) Y(k)EN(Y (i))UY (5) V£V
|[kEN (v;)

— Z 9,;7kcw,ia))

v EN (v;)

C(Uj = b,Y( ) =1 s(b)) = exp (93/(2 + Z@yky + Zeyk Y (i )Y + ZQY’C’Y’ )Y(b)

YeeN(Y (D)UY () YieN(Y(4)) Yy eN(Y (1)UY (),
YigN (Y () VY ()UY (5)

+ 0; (b)+0 bY (j (b JrZ@kv(b)Jr 29 v(b)Y (b JrZlevk Ul(b)

ki ki j, vk EN (v;),
Y=Y (@) Y (DN (D)UY () v#vi
[kEN (v5)

+ Z ej’kbvl(cb))

v €N (vj)



We present a simple mapping from s(**) and s¥) to 5(*) and s(*) such that ((v; = a,v; = b, Y (i) = 1,s(®?) . (Y (i) =
—1,50) = ((v; = —a, Y (i) = —1,5)) - ((v; = b, Y (i) = 1,5") holds:

s@ 4
Vi — — EY)
o oM
Yi € N(Y (i) UY()) Yé” y
vg € N(v;) ,(Ca ) —v,(cy)
v € N(vj) (Y) v,(ca b)
o (a H )
Y (i) Uk

With this construction of s(*) and s(*), we have shown that v;Y (i) and v; Y (4) are independent. (In the case that Y (5) = Y (i),
the proof is almost exactly the same).
C.1.2. HANDLING LARGER CLIQUES

We discuss how arbitrarily large cliques can be factorized into mean parameters and observable statistics to compute values
of ac in Algorithm 2. This is due to the following general independence property that arises from construction of the Ising
model in (1):

Proposition 1. For a clique C of vy,’s all connected to a single Y (C), we have that [ [,,cvr L Y (C) if |C| is even, and
[licocvrY (C) LY(C)if|C|is odd.

Therefore, if |C| is even, then ac = E [[[,cc ve] - E[Y(C)]. If |C| is 0dd, then ac = E [[],cc vi] /E [V (C)].

Proof. We assume that there is only one hidden variable Y, although generalizing to the case where D > 1 is straightforward
because our proposed independence property only acts on the hidden variable associated with a clique of observed variables.

We first prove the case where |C| is even. We aim to show that for any a,b € {—1, +1}2,

P(Hvkza,Y:b):P<Hvk:a)p(y:b).

keC keC

Using the concept of isolated variables and non-isolated variables earlier, the set of all observed variables V; besides those in
C and their neighbors can be ignored. Furthermore, suppose that S(©:®) is the set of all k € C such that [] kec Yk = a. For

example, if C' = {i,j} and a = —1, S(@~Y = {(v;,v;) = (1, —1), (—1,1)}. We write out each of the above probabilities
as well as the partition function Z:

P( H v;i=a,Y = b) = % Z @[J(s(“’b)) Z exp <9yb + Z Hibsfl) + Z Qibvga’b)

icC s(a:0)eS(CY) 5(C1,2) £8(C) ieC i¢C
ab
I DRV IO SRR R
(i,5)eC i€C jEN (v;)\ve
1 a
P(Ilu=a)=7 X o6 3 (@ s T asvo s Y oalyo
1eC s(@)eS(0) S(Cz=a)e$(c) e igC

+ Z 0; JS(CQ) (Cz)+z Z G,Jsfjcl) (a))

(i,5)eC i€C jEN (vi)\ve



PY =b) = Z w(s(b)) exp <0yb + Z Gibvl@) + Z Hivgb)Y(b)

s eSY) ieC igC
Y 60 Y )
(i,5)eC i€C jeN (v;)\ve
Z = Z w(s(z)) exp (F)yY(Z) + Zé’wl(z)Y(Z) + Zﬂwgz)Y(Z) + Z eiijgz)v§z)
s(x) eS8 i€C ¢C (i,5)eC
S )
1€C jEN (v;)\ve

We want to show that we can map from each s(avb), ) and s(°V) t0 a respective s(a), s(b), and s(©2). The ¥(+) terms can
be ignored since we can just directly set s(*)[V;] = s(*®)[V;] and s(®)[V7] = s(*)[V}]. Using the above expressions for
probabilities and the cumulant function, our desired statement to prove for each s(@b) 5(2) and s(C1) is

exp (9y (b+Y®) 4 Z 0; (bs'C) + (Z)Y(Z) )+ Z 0; ( bo{*?) UEZ)Y(Z))

iec i¢C
+ Z 0. (s (Cl) _,_U(Z (2) +Z Z 0.5 (s (a 4Py (Z)))
(i,5)eC i€C jeN (vi)\ve
= exp (O (b+ Y @) + 37 0,(\DY @+ 00) + 37 6,1y @ + bo)
ieC i¢C
E Y OO ) 1T T 0 (0 o)) ©
()ec i€C jeN @ \ve

We can ensure that the above expression is satisfied with the following relationship between s(®?), s(2) s(C1) and
(@ s®) s(C2) I Y& = b, then we set Y@ = b, s = (% fori € C, and v!? = v/* o[ = v{*? for all
v;. Y () = —p, then we set V(@) = —p, 3(02) = —sq(fl) fori € C, and vl(b) = —v(z),vl(a) = —v§“’b) for all v;. However,

note that setting either all 31(, 2) to be s(cl) or —31(,?1) means that both s(“1) and —s(©1) are in S(©), This is only true when

|C|is even because [, (—v;) = (— )‘C| [Ticcvi = (-1)/%la.
Our proof approach is similar when |C| is odd. We aim to show that for any a,b € {—1,+1}2,

P( I1 ka:a,Y:b> :P( 11 ka:a)P(Y:b).
keC

keC

P(IIiccvrY = a,Y = b) can be written as P(][,..-vx = §,Y = b), which follows the same format of the probability
we used for the case where |C'| is even. We will end up with a desired equation to prove that is identical to (5), except that
we must modify s(¢1) and s(¢2). s(C1) is now from the set S(©:%/%) and s(“2) is from the set S(©:*/?) when Y(®) = p

and from the set s(©>=%/%) when Y (@) = —b. We can set 5(*), s and s(°2) the exact same way as before; in particular,
51(;?2) = S(Cl) when V(@) = p and s(cz) 51(, ) when Y@ = —p. Both sg, D y(@ = pand —sq(,icl), Y(@) = —p satisfy
[T,cc vi¥ = a,since [[,cc(—vi)(=Y) = (— lcl+ [T,cc vi¥Y = a when C| is odd. O

C.1.3. AUGMENTING THE DEPENDENCY GRAPH

We define the graphical model particular to how G, is augmented, which gives way to a concise mapping between each
ac and acdep .

In the case where no sources can abstain at all, \; takes on values {41} and thus the augmentation is not necessary. We
have that G = Gep, v = A, and the graphical model’s joint distribution (1) reduces to

D m
fg(Y, )\) = %exp (Z 9kak + Z eyk’yl Y.V, + Z 91)\1}/(2) + Z 6‘2,])\1)\]) (6)
k=1

(Yi,Y1)EE i=1 (Xi,Xj)EE



Figure 1. Example of mapping from Ggcp to G. Left: Ggep, where boxes indicate valid triplet groupings of sources. Right: G, where
boxes indicate the triplets of observed variables that are sufficient to recover all mean parameters.

All of Algorithm 2 will be done on {Y, A}. While the triplet method is still used for recovering mean parameters, the
mapping from ac to ac,,, is trivial, and the linear transformation back to jic,,, will have terms containing A; = 0 reduced
to 0.

In the case where sources abstain, we have discussed how to generate v from X and G from G g, of which an example is
shown in Figure 1. Most importantly, we suppose that when A\, = 0, we set (v2;_1, v2;) to either (1,1) or (=1, —1) with
equal probability such that

P((U2i—1702i) = (1, 1),V\{’U2i—1,1}2i}) = P((”UQz'—l,UQi) = (—=1,-1), V\{vai 1,1121}) P\ = 0,V\{vai_1,v2:}).
(7

The joint distribution over {Y, v} follows from (1):

f (Y 'U = —exp (ZGYkYk + Z oyk YLYkY + 29 _1 |:U2i1:| Ydep(i)

(Vi YI)EE V2
1 —1] |vg—
+Zou'021 1'021+ Z 9 U2z 1 U21] |:_1 1:| l:j}éjl]>7 3
J:(Xi,Aj)EEdep

where Eg.p, is Ggep’s edge set. Note that this graphical model has the same absolute values of the canonical parameters
for both vo; 1Y 9P () and for all four terms (vg;_1, va;) X (vgj—1, v2;) due to the balancing in (7). As a result, the mean
parameters also exhibit the same symmetry, which we show in the following lemma.

Lemma 1. For each \;, we have that E [)\Z'Ydep(i)] =FE [vgi,leep(i)] =-FE [vginEP(i)].

Proof. First, we can write out E [\;Y %P (i)] as

E [NY%P(i)] = P(\Y 9P (i) = 1) — P(\Y 4P (i) = —1) = P(\Y9P (i) = 1)
— (L= P\Y (i) = 1) = P(\Y?"(i) = 0))
=2P(\Y¥P(i) = 1) + P(\; = 0) — 1.

We know that if we have vg;_1 = 1 or vg; = —1, then ), is either 1 or 0, but never —1; similarly, vy;_1 = —1 and vg; = 1
imply that \; # 1. We write out E [vg; 1Y %P (7)]:

E [v2i 1Y %P(i)] = 2 (P(vi—1 = 1,YP(i) = 1) + P(vgi—1 = —1,Y%*P(i) = —1)) — 1
= 2(P((vai—1,v2:) = (1,1), Y¥P(i) = 1) + P(\; = 1, Y %P () = 1)
+ P\ = —1,Y%P(3) = —1) + P((vgi_1,v2;) = (=1, —1),YP(i) = _1)) -1
=2(P\YP(i) =1)+ ;P(/\ =0,Y%(i) =1)+ %P(/\i =0,Y%P(j) = —1)) -1

=2P(\; Ydep( )=1)+P(\; =0) — 1 =E [\, Y*P(i)] .



Similarly, E [vy, Y %P (i)] is

E [vginEP(i)] = 2(P((’l}2i,1,'{}2i) = (1, 1),Yd6p(i) S ].) + P()\Z = —1,Yd6p(’i) = 1)
P\ =1, Y% (i) = —1) + P((vai—1,v2:) = (—1,-1), Y¥P(i) = —1)) — 1

+

2( (\Y %P (i) = —1) + 1P(A =0,Y%P(i) = 1) + 1P(A = 0,Y%P(j) = 1)) 1
2P(\YP(3) = —1) + P(\; = 0) — 1

= P(A (i) = =1) = (1 = P(\i = 0) = P(\,Y¥P(i) = —1))

= PO (i) = —1) — POLY®P(i) = 1) = —E [\ Y2(3)]

Ydep
Ydep
O

The triplets in Algorithm 1 thus only need to be computed over exactly half of v, each corresponding to one source, as shown
in Figure 1. Moreover, this augmentation method for v and G allows us to conclude for any clique of sources Cyep € Cep,

E{ 11 u%_lydep(cdep)} :IE{ 11 Akyd@p(cdep)].

kECdep kecde,,

In general, the expectation over a clique in G 4., containing {\; }scc,., is equal to the expectation over the corresponding
clique C in G containing {v2;_1 }iec,,, such that ac = ac,,, .

C.1.4. LINEAR TRANSFORMATION TO LABEL MODEL PARAMETERS

To convert these ac,,, into uc,,,, we present a way to linearly map from these product probabilities and expectations back
to marginal distributions, focusing on the unobservable distributions over a clique of sources and a task that the sources
vote on. We first restate our example stated in Section 3.2. Define j1;(a, b) = P(Y%P(i) = a, \; = b) fora € {—1,1} and
b e {—1,0,1}. We can set up a series of linear equations and denote it as Ay p; = r;:

1111 11 wi(1,1) 1

1 01 0 1 0| m(=1,1) P(Y?Pr(j) =1)

1 10000 pi(1,0) P\ =1)

1000 0 1| | m(=1,01]"1 PanY¥*r@E=1) | ©)
00 1 1 0 0] pm(,-1) P(\; =0)

00 1 0 0 0f [u(=1,-1) P(\i =0,YdP(i) = 1)

Note that four entries on the right of the equation are observable or known. P();Y %P (i) = 1) can be written in terms of a;,
and by construction of (vg;_1, v;) and (7), we can factorize P()\; = 0, Y'%P(7) = 1) into observable terms:

PX\i =0,Y%P(5) = 1) = P((vgi_1,v2:) = (1,1),Y%P(3) = 1) + P((vgi_1, v;) = (—1,—1),Y9P (i) = 1)

= (P((v2i—1,v2i) = (1,1)) + P((v2i-1,v2:) = (=1,—1)))P(Y*P(i) = 1)
P\ = 0)P(Y¥P(i) = 1).

Here we use the fact that v9;_1v9; and Ydep( ) are independent by Proposition 1. We can verify that A, is invertible, so
wi(a, b) can be obtained from this system.

There is a way to extend this system to the general case. We form a system of linear equations A;uc = r¢ for each clique
of sources C in G 4e,,, where s = |C'| is the number of weak sources J; in the clique and puc is the marginal distribution over
these s sources and 1 task. A is a 2(3°) x 2(3°) matrix of Os and 1s that will help map from r¢, a vector of probabilities
known from prior steps of the algorithms or from direct estimation, to the desired label model parameter ji. Define

11 00
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Then A and B can be recursively constructed with

As=D®As_1+ F® Bs_1
Bs:E®As—1+D®Bs—17

where ® is the Kronecker product. To define r¢, we first specify an ordering of elements of pc. Let the last A¢, in the joint
probability jic take on value Ao, = 1 for the first 2 x 3°~! entries, A\c, = 0 for the next 2 x 3°~! entries, and A\c, = —1
for the last 2 x 3°~! entries. In general, the ith A¢, in ¢ will alternate among 1,0, —1 every 2 x 3°~! entries. Finally, the
Y (i) entry of puc alternates every other value between 1 and —1.

The ordering of r¢ follows a similar structure. If we rename the Y and A variables to 21, ..., 2541 for generality, each
entry rc(U, Z) is equal to P([[, c, 2 = 1,2 =0Vz; € U),where UN Z =), and U C C\Y (i), Z C C. We also
write 7o (@, ) = 1. The entries of r¢ will alternate similarly to uc, for each Ag,, the first 2 X 3i=1 terms will not contain
A¢; in either U or Z, the second 2 x 3i~! terms will have A\¢, € Z, and the last 2 x 3'~! terms will have A\¢, € U. For
Y (i), elements of r¢ will alternate every other value between not having Y (¢) in Z and having Y (¢) in Z. (9) illustrates an
example of the orderings for o and r¢.

Furthermore, we also have the system B,uc = 7§, where r& (U, Z) = P([],,c; 2 = —1,2; = 0Vz; € U) when Z # 0,
and r§ (U, 0)) = 0. The ordering of 75 is the same as that of 7¢.

Lemma 2. With the setup above, Asuc = rc.

Proof. We prove that A, = r¢ and Bsue = rg by induction on s. For the base case s = 0, we examine a clique over

justa single V:
E (1)} [PPE;Y:?)] - LB(Y1 1)] [8 (1)] [PP(;Y:?)] - [P(Y i 1)} ’

which are both clearly true. Next, we assume that Apuc = r¢ and Bruc = rg for s = k. We want to show that
Apy1pcr = ror and By iper = r8, for alarger clique C” where C' C C' and |C’| = s + 1. By construction of A1 and
By 11,

A A Ap B, Bp B
Ak+1 = | A 0 By Bk+1 = | By 0 Ay
0 A, O 0 B, O
per, rer, and 18, can be written as
te(Aey,, =1)) ro ré
wer = MC()\CLH =0) ror = 7“0()\0};4rl ez rg, = Tg()\cl/cﬂ A ,
ne(Aey,, = —1) re(Acy,, €U') ré(Aey,, €U")

where “C()‘C;’Hl =1)=P(Y, )\Clw-w/\Cka)\C;Hl =1), TC(’\C;’CH €eZ)=rc(U,ZU {)‘C;’c+1})’ and so on. U’, Z' for
C' are constructed similarly to U, Z for C.

Then the three equations for A; we want to show are

Ap(pcAey,, = 1)+ pe(Aey,, =0) + pe(Aey,, = —1)) =rc
Ap(pc(Aey,, = 1)) + Be(pc(Aey,, = —1)) =rc(Agy,, € Z')
Ar(pc(Aey,, = 0)) =rc(Acy,, €U).

k+1 k+1



The first equation is true because /\Ci-,+1 is marginalized out to yield Axpuc = r¢, which is true by our inductive hypothesis.
In the third equation, the term )‘C£+1 = 0 is added as a joint probability to all probabilities in pc and r¢, so this also

holds by the inductive hypothesis. In the second equation, Ay (“C()‘C,Q+1 = 1)) is equal to r¢ with each probability
having Ac; = 1 as an additional joint probability, and similarly Bk(uc()\c;c+1 = —1)) is equal to 5 with each nonzero
probability having )‘C;2+1 = —1 as an additional joint probability. For entries where Z # (), summing these up yields

P( I1 2= tAep, :1,zj:0v,zjeU)+P( I 2 =-1.

k41
2 €Z zi€Z

= 1,2, =0Vz € U)

:P( H Zi/\cllc-u = 1,2]' :OVZJ' S U)

2, €EZ

And when Z = (), we have P(Acy,, =1,2z; = 0Vz; € U), so all together these probabilities make up rc(Acy, | € z".

The three equations for By, are similar:

Bie(pc(Aey,, =1) + pe(Aey

_ _ _..B
k41 Cryr — 0) (>\Cllc+1 - _1)) =Tc

=1)) + Ap(pc(Acy,, = -1)) = 7”0()\(7;,+1 €Z')

k+1

Bi(uc(hey,, =0)) =ré(Aoy,, €U").

Br(pc(Aer

k+1

Again, the first and third equations are clearly true using the inductive hypothesis, and the second equation is also true when

we decompose [, c 5 2; = —1into [[, ., 2i =1, A¢; = —Lland]], .,z = -1, Ac; , =L

We complete this proof by induction to conclude that Asuc = ¢ and Bsuc = r5, showing a recursive approach for
mapping from r¢ to pc for any clique or separator set C'. O

Finally, we note that each r¢ is made up of computable terms. Entries of the form ro (0, Z) = P([] .ez?i = 1) are
immediately calculated from a, for cliges ¢ C C, and entries where Y (i) ¢ Z can be directly estimated. Entries where
Z ={Y(i)},U # 0 can be factorized into known or directly estimated probabilities, and all other entries can be computed
by calculating each a. conditional on U.

As an example, to construct r;; for a clique {\;, A;, Y'9eP (i, §)}, the only entries of r;; that are unobservable from the
data are P(\;Y9P(i,5) = 1), P(\;Y%P(i,j) = 1), P(ANY%P(>i,5) = 1), P(\; = 0,Y%P(i,5) = 1), P(\; =
0,Y%P (i, 5) = 1), P(\; = 0,\;YP(i,5) = 1), P(\; = 0, \;,Y%P(i,j) = 1), and P()\; = 0,\; = 0,Y 9P (i, j) = 1).
We have discussed how to estimate all but the last three.

To estimate P(\; = 0, \;Y%P(i, j) = 1), we can write this as

POGY Ui, j) = 1, = 0) = POGY (i, ) = 1]\ = 0)P(\; = 0)
1+E [A\Y%P(i, )|\ = 0] — P(X; = 0|\; = 0)

_ . - P(\ =0)

1 1 1
=5P(i=0)+E [\ Y %P (i, §) |\ = 0] P(\; = 0) + 5P =0, =0).

We can solve E [A;Y %P (i, j)|A; = 0] using the triplet method conditional on samples where \; abstains. P(\; = 0, A; =
0,YdeP(i, j) = 1) can be written as P()\; = 0, \; = 0)P(YP(i, j) = 1), of which all probabilities are observable, by
Proposition 1.

C.1.5. RESOLVESIGNS

This function is used to determine the signs after we have recovered the magnitudes of accuracy terms such as |E[v; Y (7)]].
One way to implement this function is to use one known accuracy sign per Y. We observe that if we know the sign of
a;, = E[v;Y (¢)], then we are able to obtain the sign of any other term a; = E[v,;Y (j)] where Y (j) = Y (¢). If v; and v,
are conditionally independent given Y (¢), we directly use a;a; = E [v;v;] and knowledge of a;’s sign to get the sign of
a;. If v; and v; are not conditionally independent given Y (), we need two steps to recover the sign: for some vy, that is



conditionally independent of both v; and v; given Y (i), we first use a;E [v,Y (2)] = E [v;v5] to get the sign of E [v,Y (4)].
Then we use a;E [v;Y ()] = E [v;v] to get the sign of a;. Therefore, knowing the sign of one accuracy per Y is sufficient
to recover all signs.

The RESOLVESIGNS used in Algorithm 1 uses another approach and follows from the assumption that on average per Y, the
accuracies a; are better than zero. We apply this procedure to the sets of accuracies corresponding to each hidden variable;
for each set, we have two sign choices, and we check which of these two produces a non-negative sum for the accuracies. In
the common case where there is just one task, there are only two choices to check overall.

C.2. Extensions to More Complex Graphical Models

Recall that our Ising model is constructed for binary task labels, with sufficient conditional independence on G and G 4ep,
such that )¢ = V, and without singleton potentials. We address how to extend our method when each of these conditions
do not hold.

Multiclass Case We have given an algorithm for binary classes for Y (and ternary for the sources, since these can also
abstain). To extend this to higher-class cases, we can apply a one-versus-all reduction repeatedly to apply our core algorithm.

Extension to More Complex Graphs In Algorithm 1, we rely on the fact 2 = V to compute all accuracies. However,
certain a;’s cannot be recovered when there are fewer than 3 conditionally independent subgraphs in GG, where a subgraph
Vo is defined as a set of vertices such that if v; € V, and v; ¢ Vg, v; L v;|Y (i). Instead, when there are only 1
or 2 subgraphs, we use another independence property, which states that v;Y (¢) 1L Y (¢) for all v;. This means that
E [v;Y (i)] - E[Y (i)] = E [v;Y (i)?] = E [v;], and thus a; = %. This independence property does not require us to
choose triplets of sources; instead we can directly divide to compute a;. However, this approach fails in the presence of
singleton potentials and can be very inaccurate when E [Y'(4)] is close to 0. One can use this independence property in
addition to Proposition 1 on G with 2 conditionally independent subgraphs, and when G only consists of 1 subgraph, we
require that there are no singleton potentials on any of the sources.

Dealing with Singleton Potentials Our current Ising model does not include singleton potentials except on Y; terms.
However, we can handle cases where sources are modeled to have singleton potentials. Proposition 1 holds as long as either
v; or v; belongs to a subgraph that has no potentials on individual observed variables. Therefore, the triplet method is able
to recover mean parameters as long as we have at least two conditionally independent subgraph with no singleton potentials
on observed variables. For example, just two sources conditionally independent of all the others with no singleton potential
suffices to guarantee that this modified graphical model still allows for our algorithm to recover label model parameters.

In the case where we have singleton potentials on possibly every source, we have the following alternative approach. We use
a slightly different parametrization and a quadratic version of the triplet method. Instead of tracking mean parameters (and
thus accuracies like IE [v;Y(7)], we shall instead directly compute parameters that involve class-conditional probabilities.
These are, in particular, for v;,

i = [ P(v; =1Y (i) =1)  P(v; =1Y (i) = —1) }
P =1V (i) =1) Py =—1Y (i) = -1)]°

Note that these parameters are minimal (the terms P(v; = 0|Y (i) = +1), indicating the conditional abstain rate, are
determined by the columns above.

e (=10 =1) POy =103 = 1) v =1
| Pa=1A =1 P =1 =~-1 _|P(Y =1 0
Oij = {P()\i — 1\ =1) POy=-1]\ = _1)] and P = [ 0 PY= _1)}
For a pair of conditionally independent sources, we have that
T _

Because we can observe terms like O;;, we can again form triplets with 4, j, k as before, and solve. Note that this alternative
parametrization does not depend on the presence or absence of singleton potentials in the Ising model, only on the conditional
independences directly defined by it.



Moreover, there is a closed form solution to the resulting system of non-linear equations. To see this, consider the following.

Note that b v — 1) P;=1)  Pu=1Y0G)=1)PY @G =1)
(v; = 1|Y (i) = ) = P(Y (i) = —1) P(Y (i) =-1) '

Note that everything is observable (or known, for class balances), so that we can write the top row of p; as a function of a

single variable. That is, we set « = P(v; = 1|Y (i) = 1), ¢; = % and d; = %. Then, the top row of p;

becomes [« ¢; — d;al, and ¢; and d; are known.

Next, consider some triplets ¢, j, k, with corresponding p’s. Similarly, we set the top-left corner in the corresponding 1’s
to be a, 3, v, and the corresponding terms for the top-right corner are ¢;, ¢;, ¢ and d;, d;, dj,. Then, by considering the
upper-left position in (10), we get the system

(1 + dldj)ozﬁ + cicj — Cidjﬂ — deia = O,]/P(Y = 1)7
(1 + didg)ay + cicp, — cidy — cpdija = Oy /P(Y = 1),
(1+djd) By + cjen — cjdey — cxd; 8 = Oji/P(Y = 1).

To solve this system, we express « and «y in terms of /3, using the first and third equations, and then we can plug these into
the second and multiply (for example, when using «, by ((1 + d;d;)53 — c;jd;)?) to obtain a quadratic in terms of 3. Solving
this quadratic and selecting the correct root, then obtaining the remaining parameters («, ) and filling in the rest of the
i, 45, (g terms completes the procedure. Note that we have to carry out the triplet procedure here twice per ;, since there
are two rows. Lastly, we can convert probabilities over v into equivalent probabilities over A as discussed in Appendix
C.1.3.

C.3. Online Algorithm

The online learning setting presents new challenges for weak supervision. In the offline setting, the weak supervision
pipeline has two distinct components: first, computing all probabilistic labels for a dataset and then using them to train an
end model. In the online setting however, samples are introduced one by one, so we see each X* only once and are not able
to store it.

Fortunately, Algorithm 1 and Algorithm 2 both rely on computing estimates of expected moments over the observable weak
sources. Since these are just averages, we can efficiently produce an estimate of the label model parameters at each time step.
For each new sample, we update the averages of the moments using a rolling window and use them to output its probabilistic
label; then the end model is trained on this sample, and the data point itself is no longer needed for further computation.
Our method is fast enough that we can “interleave” the two components of the weak supervision pipeline, in comparison to
Ratner et al. (2019) and Sala et al. (2019), which require a full covariance matrix inversion and SGD.

The online learning environment is also subject to distributional drift over time, where old samples may come from very
different distributions compared to more recent samples. Formally, define distributional drift as the following property:
for (Xt Y") ~ P,, the KL-divergence between P; and P; 1 is less than K L(P;, P,11) < A for any ¢. If there were no
distributional drift, i.e., A = 0, we would invoke Algorithm 1 or 2 at each time step ¢ for the new sample’s output label,
where the estimates of I [v;v;] and other observable moments would be cumulatively over ¢ rather than n. However, because
of distributional drift, it is important to prioritize most recent samples. We propose a rolling window of size W, which can
be optimized theoretically, to average over rather than all past ¢ samples. Algorithm 1 describes the general meta-algorithm
for the online setting.

C.3.1. THEORETICAL ANALYSIS

Similar to the offline setting, we analyze our method for online label model parameter recovery and provide bounds on its
performance. First, we derive a bound on the sampling error ||t — fi¢]|2 in terms of the window size W, concluding that
there exists an optimal W* to minimize this error. Then, we present an online generalization result that describes how well
our end model can “track” new samples coming from a drifting distribution.

Controlling the Online Sampling Error with W The sampling error at each time step ¢ ||+ — fi¢||2 is dependent on
the window size W which we average samples over to produce estimates. On one hand, a small window will ensure that the



Algorithm 1 Online Weak Supervision
Input: dependency graph G g, window W for rolling averages
fort=1,2,...:do
Receive source output vector /; and distribution prior P;(Y").
Run Algorithm 1 and Algorithm 2 with estimates computed over W samples /;_yy 1.+ and their augmented equivalents
to output fi;. _
Use junction tree formula to produce probabilistic output Y ~ Py, (- [l¢).

Use Y to update wy, the parametrization of the end model f,.
end for

estimate will be computed using samples from distributions close to P, but using few samples results in a high empirical
estimation error. On the other hand, a larger window will allow us to use many samples; however, samples farther in the past
will be from distributions that may not be similar to P,. Hence, W must be selected to minimize both the effect of using
drifting distributions and the estimation error in the number of samples used.

Theorem 1. Let fi, be an estimate of py, the label model parameters at time t, over W previous samples from the product
distribution Pry, = Hf:FW 11 Pi, which suffers a A-distributional drift. Then, still assuming cliques in G gep, are limited
to 3 vertices,

. 2 A 3/2
(31901 ﬁ + 6 3502 m ) + c(|cd€p| + |Sdep|) W .
W VW VBar,

where ap, is the minimum non-zero probability that P; takes. A global minimum for the sampling error as a function of W
exists, so the window size can be set such that W* = argminy, E [||ft: — pe]|2)-

. 1
Epry [|[f: — pel]2] = a5

min

Proof. Denote PV = P, x ... P;. We first bound the difference between Epy.,, [||ft; — p¢||2] and Epw [|[fe — pel]2].
w

Epey, [l — pell2] = Epw ([l — prell2] \ =1 > M= pallz - (Prw (zs—wirs - 30) = PV (g, -, 71))
{wi}§=t7W+l
< max || — pell2 - Z Prw (Te—wity - 2t) — P (Te—wi1, - @)
{w’i}f=t7W+1

= max ||ty — |2 - 2TV (Pry, PY).

Since the label model parameters are all probabilities, ||, — tti]|2 is bounded by ¢ - (|Caep| + |Saep|), where ¢ is a constant.
To compute TV (Pry,, PV), we use Pinsker’s inequality and tensorization of the KL-divergence:

1 1
TV(PI'W,PtW) S \/2KL(PI'W|PfW) = \/2KL(Pt_W+1 X oo X Pt||Pt X oo X Pt)

t

5 Y KLEIR).

i=t—W+1

Each K L(P;||P;) can be bounded above by %TV(PZ»,Pt)2 by the inverse of Pinsker’s inequality, where ap, =
minge v p, ()0 Pr(x). Since the triangle inequality is satisfied for total variation distance, TV (P;, P;) < A(t — ).
Plugging this back in, we get

t

%.lAQ Z (t—i)? =

TV (Prw, PV) -~
t i=t—W+1

IN

AT (W-DWEW-1) _ AW3/2
ap, 6 — Vbap, ’



Therefore,

20(|Cdep| + |Sdep|)AW3/2

Epry (1At = prello] = Epw [l — pel2] | < Joar,

Furthermore, the offline sampling error result applies over PV, so Epw [l — pell2] < L (3.1901 o 8350 \/%)

- a?nin \/F
Hence,
. 1 m  6.35Cy m 2¢(|Caep| + |Saep|) AW3/2
Ep; — < 3190/ — + £ L ,
Pry ([ — pell2] < @ ( W w NG \/W) NS
and we set a window size W* to minimize this expression. O

Online Generalization Bound We provide a bound quantifying the gap in probability of incorrectly classifying an unseen
t + 1th sample between our learned end model parametrization and an optimal end model parametrization.

Because the online learning setting is subject to distributional drift over time, our methods must be able to predict the next
time step’s label with some guarantee despite the changing environment. The A drift is aggravated by (1) potential model
misspecification for each P; and (2) sample noise. However, we are able to take into account these additional conditions by
modeling the overall drift A* to be a combination of intrinsic distributional drift A, model misspecification, and estimation
error of parameters.

Recall that X ~ P; is drawn from the true distribution at time 4, while ¥; ~ Py, (-|A(X")) is the probabilistic output of
our label model. Define the joint distribution of a sample to be (X, Y") ~ P, ;.. At each time step ¢, our goal is train our
end model f,, € F and evaluate its performance against the true (X, Y'*) ~ P, given that we have ¢ — 1 previous samples

drawn from P 4.

We define a binary loss function L(w, z,y) = | fu(x) — y| and choose 1; to minimize over the past s samples such that

t—1

1 o
b = argmin, = > L(w, X', ¥").
Wy = argmin,, . (w, X", Y")

1=t—s

We present a new generalization result that bounds the probability that f,;, (X ) does not equal the true Y'* and also accounts
for model misspecification and error from parameter estimation.

Theorem 2. Define A" := drv (P p,, Piy1,4,,,) to be the distributional drift between the two samples and D" :=
max; dpy (P, P, ”) to be an upper bound for the total variational distance between the true distribution and the noise

_epk)3 . N
aware misspecified distribution. If A¥* < % for some constant ¢ > 0, there exists a w; computed over the past

s = LT&BTD:J samples such that, for any time t > s and € € (8D*, 1),

Prj (L, X', Y") =1) < e+ min P(L(w*, X", Y") = 1),

w*

t—1
where Pry ; = Hi:tis P; s, - Py. Furthermore,

1
D# <\ L e KLROVIX) 1 P (130) 5 b/ — s
7 K3

min

Proof. We adapt Theorem 2 from Long (1999). Choose € < 1. Let s = L%J and A* = A +2DF < %,

where d is the end model’s VC dimension. Let L(w, z,y) = |y — fu(2)| € {0, 1}, where f,,(z) is the output of the end
model parametrized by w when given input .

At time ¢, the sequence of inputs to the end model so far is (X1, Y1), (X2,Y?2),... (X1, Y*" 1), where (X', Y?) ~
P; ;3,. We evaluate the end model’s performance by using a parametrization w; that is a function of the ¢ — 1 inputs so far



and computing L(w,‘7 X ,Y') where (X*,Y") ~ P,. In particular, let w; = argmin,,E x¢ y+).p, [L(w, X*,Y")], and
Wy = argmin,, + ZZ .o L(w, z;, §;) where z;, ; are the values of the random variables X’ and Y.

Suppose that TV (P;, Piy1) < A. Then TV (P; a,, Pit1,4,.,) 18

TV(H»l]i’B+1vﬂi+l) < TV( [N 78) ) +A+ TV( i+1 Pi+1aﬂi+1) <A +2D" = AF.

Let f > 6A"s +4D*, and o = § — 2D > 3AMs. Note that TV (P 5, Py p,) < Ats = kforanyi =t —s,...,1 — 1.
Denote Pry = Ht._l Pg,. Then by Lemma 12 of Long (1999),

i=t—s

L i i t vt d (a —r)s
Prﬂ{aw : ‘g > Lw, XY ~E gy p,, L, XY )} ‘ > a} <8 41%exp (—1600 .

For any real numbers a,b,c, and © > vy, if |[a — b] > z and |b — ¢| < y, then |a — b] — |b — ¢| > = — y and thus
la—c|=]la—b+b—c|>|la—bl—|b—c|| >z —y. Applying this,

t—1
Prﬂ{aw : E S° L(w, X', Y) = Exeyoyup, [Llw, X', Y")] ‘ > a+ 2D,

‘E(Xt,yt)wpt [L(w, XY D] = E x50y, . {L(w,Xt,f’t)} ‘ < 2D“}
e = i i t vt d (a*“)z
< Prﬂ{flw. ’g S L, XY ~E x5y p, [L(w,X Y )} ’ > a} <8 41exp (— ).

i=t—s
By Lemma 3, the difference in the expected loss E[L(w, X, Y*)] when X *, Y is from P, versus P, z, is always less than
2D*, so the above becomes
t—1

1 o
Prﬂ{aw : ‘; S Lw, X', YY) — Exe yoyup, [L(w, X', Y")] ’ > a+2D”}
i1=t—s
2
T N Clat A
= eXp( 1600

We can write this in terms of 3. Note that A¥s < % 2D " The RHS is equivalent to

8- 41% exp _lo—wPmy o 41%exp [ ——— é—2D” N i
1600 1600

5 B 2D* 2
< d __ S (P _opn_P_ 27 —8.419 —_ADM
8-41 exp( 1600( 2D 6+ 3 8-41 exp( 14400(ﬁ 4D ))

So the probability becomes

t—1

Prﬂ{ﬂw : E S L(w, X', YY) — E(xeyoyon, [Llw, X', YY) ’ > g} <8 41%exp (—
1=t—s

S 2
14400 (8 —4D") ) '

Next, note that the probability that at least one of w; or w; satisfies ’%Zt.:lf L(w,Xi,?i) —

1=t—s

Ext,yty~p, [L(w, X LY ‘ > g is less than the probability that there exists a w that satisfies the above inequality. In



general, if |a — b] > 3, then |a| > 5 5 or [p] > ﬂ (or both). Then

t—1
1 = )
Praf{|= 3 Lawi, XYY — Eixeyoon [L(wf, X', YY)
i=t—s

t—1

1 ~ i i N

— g Z L(wt7X’,Y’) —‘rE(Xt’Yt)NPt [L(tht,Yt)}‘ > 6}

i=t—s

1 t—1 o ﬁ
< Prﬁ{’; Lwf, X, ¥Y7) = Eqxeyoon L], X Y] > 5, U
i=t—s
1 t—1

— = L, XY +Exey o, [L(u)t,Xt,Yt)]‘ > g}
i=t—s
<g8.41¢ (—L _4pr 2).
§ - 4l%exp (=6 (8 )

By definition of w; and 1y, 2 202} |
Ext ytywp, [L(wf, X", Y?)]. Therefore,

L(w;, X1, YY) > LS Ly, X4, YY) and E(xe yoyp, (Lo, X1, Y1) >

Prﬁ{E(XHY‘)NPt [L(ﬁ)t,Xt,Yt)] — E(Xt,yt),wpt [L(w:,Xt,Yt)} > B}
_5 (g_ )2
14400(/8 4D%) )

Now we apply Lemma 13 from Long (1999). Define

<8. 414 exp (—

6(8) = {f A1 exp (— 355 (8 — 4D#)?) 6 5 6As +4D"

Let ag = 0 and a; = 6AFs + 4D*. For all other a; where ¢ > 1 until some a,, where a,,1 > 1, define a; =
\/14400(1n 8+(15n41)d+i n2) 4 4D, This way, ¢(a;>1) = 2. Then Lemma 13 states

E -1 [P(L(iy, X', YY) = 1) — Py(L(w}, X", Y") =1)]

i=t—s

o1 aﬁz (\/14400 In8 + (In4l)d + i1n2) +4DH> gi

(XL Y )~Pig,

S

< 6AFs+4D* + 341\/E + 4D* = 6A*s + 8D* + 341 \/E
s s

Plugging in our values of s and A¥, we get that 6A* s+ 8 DH + 341 \/g < e. Therefore, if the drift between two consecutive

(e—8D")3

samples is less than TV (P; a;, Piv1,4,.1) < A" < 5500000

s = LG(E%%'D“)J inputs to the end model, such that

there exists an algorithm that computes a w; over the past

Pry (L, X', Y") =1) < e+ min P(L(w*, X", Y") = 1),
e

where DF < \/% max; Exp, [KL(P;(Y|X) || P, (Y|X))] —|—m1/4\/ L max; ||p; — fi;]|2 by Lemma 4. O

Omin

Lemma 3. The difference in the expected value of L(w, X ,Y") when samples are drawn from P, ;, versus Py is

‘E(X,y,l)wpm [L(w, X', Y] = Ext yo)op [Llw, X1, Y1) < 2D".



Proof. We use the definition of total variation distance:

[E e 570y, L0, X Y] = B oy [L(w, X, Y]

= ’ ZL(w7m7y)(Pt’ﬂt (x,y) - Pt(wvy))

x,Y

< ZL(’LU,.”L’,:Z/NPt’p,t(-T,y) - Pt(xay>|

< Z |Pt7ﬂt (Jf, y) - Pt(x7y)| = 2TV(Pt7ﬂt’ Pt) < 2D*".

Lemma 4.

1
D" < \/ 5 max KL(P(Y|X) || Py, (Y]X) +m1/4¢ max |p; — 2

min

Here, 0. s the minimum singular value of the covariance matrix 3 of the variables V. = {Y v} in the graphical model.

Proof. We first use the triangle inequality on TV distance to split D* into two KL-divergences.

D“<maxTV( ) <1naxTV( 1H1,37H1)+maxTV( i Pi)

< |/ S KL(PL1Poa) + | S mas KL(RIIP. ).

To simplify the first divergence, we use the binary Ising model definition in (1), which for simplicity we write as fo(Y,v) =
+ exp(0T¢(V')), where ¢ (V) is the vector of all potentials.

T
KL(Pi,;LiHPi,ﬂi) _ (éz o QZ)T]E[(b(V)] + lng < |9A1 n 91‘1 +1n Zses eXp(ai (b(s))

< Vml|0; — 6;|> + In > ecs xp(0T(s))

< Viml|f; = 0l + = Zexp 6T (s) expgaw

7z = exp(6 ¢(s))
< V/ml|6; — 0]z + = ZGXP (67 p(5))((0: — 0:) ¢(5))
SES
< Vm||f; = 02 + = ZGXP 07 6(s))v/ml|0; — 6:|2 < 2v/ml|0; — 6|2
sES
2
Y gl

Here we used ¢(s),E [¢(V)] € [-1, +1], the log sum inequality, and Lemma 8. The second divergence can be simplified
into a conditional KL-divergence.

P;(y|lx)P;(x
L(P[| P ;) ZP ,y)1 ZP z.9)1 PlHELZ:I;P'L(IJ/f(I)
R L oy Lille)

—ZP Pi(Y[2)|| Py (le))ZKL( i(Y\X) | Pu. (Y]X)),



where

KL(P(Y|X) || Pu,(Y[X)) = Ep, [KL(P(Y |2) || Pu, (Y |2))].

This result suggests that, with a small enough A*, our parametrization of the end model using past data will perform only €
worse in probability than the best possible parametrization of the end model on the next data point. Furthermore, note that s
is decreasing in D*; more model misspecification and sampling error intuitively suggests that we want to use fewer previous
data points to compute w;, so again having a simple yet suitable graphical model allows the end model to train on more data
for better prediction.

D. Proofs of Main Results
D.1. Proof of Theorem 1 (Sampling Error)

We first present three concentration inequalities - one on the accuracies estimated via the triplet method, and the other two
on directly observable values. Afterwards, we discuss how to combine these inequalities into a sampling error result for p
when G gep, has small cliques of size 3 or less.

Estimation error for a; using Algorithm 1

Lemma 5. Denote M as the second moment matrix over all observed variables, e.g. M;; = E [v;v;]. Let G be an estimate
of the m desired accuracies a using M computed from n samples. Define ayi, = min{min; |d;|, min; |a;|}, and assume
sign(a;) = sign(a;) for all a;. Furthermore, assume that the number of samples n is greater than some ng such that
Qmin > 0, and Mij = 0. Then the estimation error of the accuracies is

. 1 m
A =E[l|a —allz] < Ca—s—1/—,
Amin n

for some constant C,.

Proof. We start with a few definitions. Denote a triplet as T;(1), 7;(2), T;(3), and in total suppose we need 7 number of
triplets. Recall that our estimate of a can be obtained with

. My M ore)
laz, ()| = - :
| M, 2y1;(3)]

Because we assume that signs are completely recoverable,

T 2
la —all2 = [l|a] — a2 < (Z(&Tiuﬂ = laz,))? + (lar,@)| = laz,@))? + (lar.@)| — aﬂ(s))Q) - an
i=1
Note that |a? — a?| = |a; — a;||a; + a;|. By the reverse triangle inequality, (|a;| — |a;|)? = |la:| — |a:||* < |a; — ai|* =

a2 —a2 ~ R R . .
(“ZHZ?\) < g—laf — af|?, because |@; + a;| = |@;| + |a;| > 2amin. For ease of notation, suppose we examine a

min



particular 7; = {1,2,3}. Then

N ~ 2
|Mg||Mys| | Mia|| M)

. 1 . 1
(la1| = las])* < laf —ai|* =

4a12nin C2 |M23| a ‘M23‘
~ ~ ~ N ~ N N ~ 2
_ L |[Mip||Mis| _ [Muof[Mis| | [Mio||Mis| _ | Maof|Mis| | [Mia|[Mis| _ [Miof| Mis]
dadin| | Mos| | Mo | M3 | M| | Mo | M3
2
1 Mo M M M N
< ( e 1| = Mg+ | 2] = M1 + | 13\|M12|—M12||>
amin M
2
1 Mo M M M
< (M” 13\|M237M23|+\ 12’|M13—M13|+] 13]|M12M12|> (12)
mm 23

Clearly, all elements of M and M must be less than 1. We further know that elements of | M| are at least amm, since
E [vivj] = E [v;Y]E [v;Y] > a2,,,. Furthermore, elements of | M | are also at least a2,;, because | M;;| = a;d; > a2, by
construction of our algorithm. Define Aij = M;; — M. Then

(Jaa] — far])? < — (1|A|+ LAl A |)2
ay| —|ax >~ T 5 —a 23 5 13 5 12
4arznin a;lnin arznin ilin

1 1 2

Amin min min
(11) is now

1
T 2

) 3 1 2
IIaa|2§<42 <as_ + )Z(A2<>T<z>+AT(1 3)+AT<2>T<>)>
i=1

min min min

To bound the maximum absolute value between elements of M and M , note that the Frobenius norm of the 3 x 3 submatrix
defined over T; is

Nl

”ME - MTi

= (2 (A T, (1)T;(2) +A7, T (1)T (5)""A T (5)))

Moreover, || My, — My,

= \/ijl a?(]\ZfTi — My,) < V/3||Myp, — My, ||5. Putting everything together,
3
N 3 1
Ja—all> < <4 — (7 +7) 3 Z |, Mnn%)

min min mlIl
1
> 2

3 1
<
<4am1n ( ainn amlll ) Z H MT
]>

Lastly, to compute E[||é — al|2], we use Jensen’s inequality and linearity of expectation:

. 3 1
E||a—a||2]§<42 (as. ) ZEHMT

min min

[N

We use the matrix Hoeffding inequality as described in Ratner et al. (2019), which says

~ n’)/Q
P(||M — M2 > ~v) < 2mexp 392 )



To get the probability distribution over || M — M ||2, we just note that P(||M — M|y > ~) = P(||M — M||2 > ~?) to get

P(IM — M|2>~) <2 (—ﬂ)
(1 — M3 2 7) < 2mexp (- 22

From which we can integrate to get

64(3)3

E[|[ M, — My, 2] = / P(| Mz, — My |2 > 7)dy <

Substituting this back in, we get

1
. 3 1 2 371728\ 2
]E[Ha B a||2] S (4 I21’1111 (als;lin * a?‘ﬂin) ' 7 n )

(M (1 2T z
- a?nin arsnin afnin n .

Finally, note that

1 1 2 1 142 3

2 '(8 +4):2 +8amm<10'
a’min amin a‘min a’min a’mln amin

Therefore, the sampling error for the accuracy is bounded by
1
. 1944 -3 1\?2 1 m
Ella - alel < (> 2) < Cug—y /2.
amin n min n

This is because at most we will use a triplet to compute each relevant a;, meaning that 7 < m. The term C, here is 18/6.

O

Remark 1. Although a lower bound on accuracy awin invariably appears in this result, the dependence on a single
low-accuracy source Apmin can be reduced. We improve our bound from having

of order in

f’ while other terms are not dependent on an,i, and are overall ofOrder W/ 2=L I (12), the 4. can be

tightened to 4af for each \;, and M3 and M23 are not in terms of amin if neither of the two labelzng functions at hand
are A\min. Therefore, for any \; # Amin, we do not have a dependency on ay;y, if we ensure that the triplet used to recover
its accuracy in Algorithm 1 does not include Ayin. Then only one term in our final bound will have a — 1 Tn dependency

1 m
ab n'
min

Concentration inequalities on observable data

Lemma 6. Define p¥)(z) = P(\; = z) and pV (z) = L 377, {L(Z }, and let p(x),p(x) € R™ denote the vectors
over all i. Then

Ap = E[[p(x) — p(e)]2] <

BE

Proof. Note that E []l {LS) = xH = P(\; = 1). Then using Hoeffding’s inequality, we have that

262

PUF @)~ p9(0)| 2 0 < 2exp (- 2015 ) < 2exp (20,



This expression is equivalent to

P(p9(x) = pP (@) > ) < 2exp (~2n0).

We can now compute E [ (z) — p® (z)|?]:

E {|ﬁ(i)(a:) —p® (x)\Q] < /0 2exp (—2ne) de = -2 - 2i exp (—2ne)

The overall L2 error for p(z) is then

E () ~ p(a)2] = E [(Z 9 @)~ O )2) ] < | E 1996 - 0w <[

i=1

O

Lemma 7. Define M(a,b) to be a second moment matrix where M (a,b);; = E [a;b;] for some random variables
a;,b; € {—1,0,1} each corresponding to \;, \j. Let || - ||;; be the Frobenius norm over elements indexed at (3, j), where
i and \j share an edge in the dependency graph. If G qep has d conditionally independent subgraphs, the estimation error
of M is

_ 2
m—d+1) Scmﬂ-
n vn

N d—1+
A 1= B[ (0,) = Ma,Blly] < G| 1
For some constant C,,.

Proof. Recall that the subgraphs are defined as sets V1,...,Vy, and let Ey, ..., E4 be the corresponding sets of edges
within the subgraphs. We can split up the norm || M (a, b) — M (a, b)||;; into summations over sets of edges.

310~ M by = (3 (@b - Mab)y)?)° (Z > ((ab)i; — M(a,b);,)?)

(ivj)eEdep k= 1(1J €Ex

< (f > (W(a,b)y — M(a.b)y)*)” = (f SI01(a, by, — M(a,b)v, 17

k=14ijeVi k=1

[N

N
ol

We take the expectation of both sides by using linearity of expectation and Jensen’s inequality:

N

E[|18(a,b) = M(a,b) 5] < (Z SElIV (0, D)y, — M(a,b)v,I3])

We are able to modify Proposition A.3 of Bunea & Xiao (2015) into a concentration inequality for the second moment matrix

R 2
rather than the covariance matrix, which states that E[|| M (a, b)y, — M (a,b)v, ||%] < (32¢™* + e + 64) ( %ng) for
some constant c;. We are able to use this result because our random variables are sub-Gaussian and have bounded higher
order moments. Then our bound becomes

d

. 1 _ 16¢2 |V |2\ % 8c2(32e~% + e + 64)
{101 (0.0) — Mab)l] < (30 S2e0 4 020l E o (Bl 'S i)

n
k=1 k=1

[N

22:1 |Vi|? is maximized when we have d — 1 sugraphs of size 1 and 1 subgraph of size m — d + 1, in which case the
summation is d — 1 + (m — d + 1)2. Intuitively, when there are more subgraphs, this value will be smaller and closer to an
order of m rather than m?. Putting this together, our bound is

d— 1+(m7d+1)2)%

B[N (a,6) — M(a,b) 5] < (83(32¢ ™" + ¢ + 64) -

Where C,,, = 1/8¢3(32e~4 + ¢ + 64). O



Estimating ;;; We first estimate p; = P(\;, Y9P(4)) for all relevant \;. For ease of notation, let Y refer to Y4P (i) in
this section. Denote p; to be the vector of all u; across all A. Note that

/i = pillz < lldiagm (ATH)2l1p = pll2-

p is the vector of all r; fori = 1,...,m, and diag,,(A; ") is a block matrix containing m Ay ! on its diagonal; note that
the 2-norm of a block diagonal matrix is just the maximum 2-norm over all of the block matrlces which is || A" ||2. Recall
thatr; = [I P(\; = 1) P(\; = 0) P(Y =1) P(\,Y =1) P(\; = 0,Y = 1)]7. For each term of 7;, we have a
corresponding sampling error to compute over p:

P(\; = 1): We need to compute P(\; = 1) — P(\; = 1) for each \;. All together, the sampling error for this term is
equivalent to ||p(1) — p(1)]|2.

« P()\; = 0): The sampling error over all P(\; = 0) — P()\; = 0) is equivalent to ||[5(0) — p(0)||2.

=
>/
'.<:
Il
—

): Since a; = E [vg;—1Y] = E[NY] = P(\Y = 1) — P(\Y = 71) =2P(\Y = 1)+ P(\
9) - 1 and the sampling error over all P(\;Y = 1) — P(\;Y = 1) is at most 1l(@ = a) — (p(0) — p(0))]l2
3 (la = all2 + [[p(0) = p(0)[[2)-

* P(A\; =0,Y = 1): This expression is equal to P(\; = 0)P(Y = 1), so the sampling error is P(Y = 1)||p(0) —
PO)[l2 < [15(0) = p(0) 2.

IA I

Putting these error terms together, we have an expression for the sampling error for p:

16— plla = I1) ~ pCDIE + 2150) ~ p(O)I3 + (12— all + 1(0) — p(O)])
< 115(1) = p(Dll2 + VEI5(0) = p(O)ll2 + 5 (a — all + [15(0) ~ p(O)1)
=nmw—mnm+(§+¢®mm»—mmm+§m—wu

where we use concavity of the square root in the first step. Therefore,

E (15— ) < E (1) — p(1) ] + (5 + V2)E15(0) ~ p(O)]12] + 5E [Ja ~ all]
(sl

Plugging this back into our error for p; and using Lemmas 5 and 6,

3 m, _Ca Jm
E [[|f; — pall2] < |AT 2 2 n a n)
(146 — pall2] < |A7 ]2 ((2 + f) n * 2a|5min\ n)

Therefore, if there are no cliques of size 3 or greater in G ey, the sampling error is O(1/m/n).

Estimating all ;1;; Now we estimate 11;; = P(\i, \j, Y %P (4, )) for \;, \; sharing an edge in G 4, For ease of notation,
let Y refer to V%P (4, 5) in this section. Denote p;; to be the vector of all y;;. Note that

feij — mijll2 < |l diagis (A2) " 2l — ¥ll2 = |47 2l — 2

4 is the vector of all r;; for all (i, ) € E. Recall that a; = E [1;Y], a;; = E [v;0;Y]. We also define X' = 1 {); = a}

and M(X(@) X®), =& [X(Q)X(b)] P(\; = a,\; = b). For each term of r;, we have a corresponding estimation
error to compute.



P()\; = 1): We need to compute P()\; = 1) — P()\; = 1) overall (4, j) € E, so the sampling error for this term is
VEen (PO = 1) = PO = 1) < 3/S0, m(P(h = 1) = P\ = 1))? = yal[p(1) - p(1)]|z

P(\; = 0): The sampling error is equivalent to \/m||p(0) — p(0)||2-

P()\; = 1): The sampling error is equivalent to /m|[p(1) — p(1)||2.
P()\; = 0): The sampling error is equivalent to y/m||p(0) — p(0)||2.
P(A

A = 1) This probability can be written as P(\; = 1,A; = 1) + P(A\; = —1,A; = —1), so we would need
to compute P(\; = 1,\; = 1) = P(\; = 1,\j = 1) + P(\; = =1, \; = —=1) — P(\; = —=1,\; = —1). Then the
sampling error is equivalent to || M (XM, X(M) — (XD, x Wy 4 pr(x D x D) — p(XED, X ED)||;

P(\;i = 0,\; = 1): Using the definition of M, the sampling error over all (i, j) € E for this is | M (X, X)) —
M(X©, X D).

P(\i = 1,); = 0): Similarly, the sampling error is || M (XM, X(©) — M(X D) X ©)]],;.

P\ = = 0): Similarly, the sampling error is || M (X, X)) — M(X©) X (©)]|,;.

P(A\;Y = 1): Similar to before, the sampling error is 3+/m ([|a — al|2 + [|p(0) — p(0)[2).

P(X\; =0,Y = 1): Similar to our estimate of p;, the sampling error is v/m||p(0) — p(0)]|2.

P(\;Y = 1): The sampling error is 2/m (||a — al|2 + [|(0) — p(0)||2).

P(\; =0,Y = 1): The sampling error is /m||p(0) — p(0)||2.

P(\; 1): Note that E [\; ;Y] = 2P(\\,;Y = 1) + P(A\A; = 0) — 1. Moreover, E [A\; ;Y] can be expressed

as E [ ] EE [Ai);]. Then the sampling error over all P(A\;\;Y = 1) — P(\;\;Y = 1) is at least LE [Y] (E [MAj] —
E [AiAj]) — (P(AZ)\j = 0) — P(A\;Aj = 0))]|i;. Furthermore, we can write P(A\;\; = 0) as P(\; = 0) + P(\; =
0) — P(\; = 0,\; = 0), so our sampling error is now less than % || A/(X\, \) — M (A, \)s; + 3+/m|[H(0) — p(0) |2 +
3vmp(0) — p(0 )I|2+%||M(X(O)7X(O))—M(X(O)»X(O))Hij-
P(\; =0, ;Y = 1): Note that this can be writtenas 1 (P(X\; = 0) + E [\;Y[\; = 0] P(\; = 0) — P(\; = 0,\; = 0)).
Then the sampling error over all P(\; = 0,\;Y = 1) P()\Z 0,A;Y = 1) is equivalent to

SVIH0) ~ p(O) 2 + SIE YA = 0] PO = 0) ~ E[\Y A = 0] Py = 0)

~ (X0, XO) ~ M(x @, XO))
= SVAlH0) = p(O) 2 + IV, XO) ~ A(xXO, XO) 5 + SB[ YIA = 0] (P = 0) ~ PO = 0))
— (B YA = 0] = E[\Y [N = 0)P(A = 0)]l3;
S

15(0) ~ p(O)]a + L [31(X®, XO) — a1(X O, XO) 4y + Y 5(0) ~ p(0)]]

IN

1 .
+SIE YA = 0] = EX YA = 0]
R 1 - 1 .
= Vm||p(0) — p(0)]2 + §||M(X(O),X(0)) = MO, XO); + SIE YA = 0] = E[A;Y A = 0] [li;
P(\j = 0,\;Y = 1): Symmetric to the previous case, the sampling error is v/m[(0) — p(0) |2 + 3 | M (X (@), X ©)) —
M(XO, XO)ij + 3IE DY A = 0] = EY |\ = 0] |35

P(A\; = 0,A\; = 0,Y = 1): This expression is equal to P(A\; = 0,\; = 0)P(Y = 1), so the sampling error is
P(Y = D M(X©, X©) = M(X O, XO)||i; < | M (X, XO) = MO, XO)];



After combining terms and taking the expectation, we have that

N 1 1
E [||¢ - wuz} < 2V2mA, + 20y + 30 + 5 (Vimda+ Vindy) + VamA, + 5 (Aar +2VmA, + M)

1 A

\ﬁ@vmﬁp + [E[AY[A; = 0] = E [MY[A = 0] i + An) + An
1 9 / 1 -

= <7+ \/5) A]\{ + <2V 2m + \/m> Ap + %Aa + EHE P\ZY|AJ = O] —E [)\ZYP\J = O] Hij'

For E [\;Y|\; = 0], this term is equal to 0 when no sources can abstain. Otherwise, suppose that among the sources that do
abstain, each label abstains with frequency at least r. Then ||E [\;Y|\; = 0] —E [\ Y |A; = 0] ||l;; < vVm - a?‘_‘ \/ 7= since
there are rn samples used to produce the estimate. Using Lemma 5, 6, and 7, we now get that -

E [l — pisa] < A;n((u 5 )On e+ (g*f b)) :| (g ¢12*>>

Finally, we can compute || A7 '|| and || A5 *| since both matrices are constants, so the total estimation error is

Efla = pl2] <3.19 ((Z + \/§> \/T+ za%ml ﬁ) +
e CE ) 3 )

D.2. Proof of Theorem 2 (Information Theoretical Lower Bound)

+

For Theorem 2 and Theorem 3, we will need the following lemma.

Lemma 8. Let 01 and 05 be two sets of canonical parameters for an exponential family model, and let py and py be the
respective mean parameters. If we define e, to be the smallest eigenvalue of the covariance matrix X for the random
variables in the graphical model,

|61 — 62 < |l — peal|

emzn

Proof. Let A(6) be the log partition function. Now, recall that the Hessian V2 A(6) is equal to 3 above. Next, since €,,in, is
the smallest eigenvalue, V2 A(0) — epinl = ¥ — €minl is positive semi-definite, so A(6) is strongly convex with parameter

Emin-

Note that since A(-) is strongly convex with parameter e,,;,,, then A*(-), its Fenchel dual, has Lipchitz continuous gradients
with parameter —— (Zhou, 2018). This means that

1

VA" (1) = VA* (n2)]| < 11 = peall.

Emin

But VA*(u) is the inverse mapping from mean parameters to canonical parameters, so this is just

1
|61 — 62 <
o

min

|11 — pall

O

Now, we provide the proof for Theorem 2. Consider the following family of distributions for a graphical model with one
hidden variable Y, m observed variables that are all conditionally independent given Y, and no sources abstaining:

1 m
P={P=_exp(tyY + D 0;0Y) 0 e R

Jj=1



We define a set of canonical parameters 6, = dv, where 6 > 0, v € {—1,1}™ (fy is fixed since it maps to a known mean
parameter), and P, is the corresponding distribution in P. P induces a \/%-Hamming separation for the L2 loss because

m 1 T‘n—ll' 9]‘ — 6, j
10 — 0,2 = (Z 0; — [ev]j|2> " 2 Z](Zm| 12)1[/2 !

0, — [0,);] > jmg 1{sign(0;) £ ;).

<.
Il
—

I
3~
Djs

We use Cauchy-Schwarz inequality in the first line and the fact that if the sign of §; is different from v;, then §; and [6,,],
must be at least § apart. Then applying Assouad’s Lemma (Yu, 1997), the minimax risk is bounded by

6 PeP

6 m
Ma(B(P), L2) = inf sup Ep[|0(Xs,... X) ~ 6(P)la] > 5 g 1= |[P2; = P2z

0(X1,...,X,) is an estimate of 6 based on the n observable data points, while §(P) is the canonical parameters of a
distribution P. P, = = 2m =T ZU i s where P"i j is the product of n distributions parametrized by 6, with v; = £1.
We use the convexity of total variation distance, Pinsker’s inequality, and decoupling of KL-divergence to get

1 n
Pr.— P34, <  max PP— P2, <> max KLP?|P%) == max KL(P,|P,).
|| +J —jHTV = dh,am(UvU/)SlH v v HTV =9 dnam (0,0/)<1 ( v || 11) 9 dpam (0,0)<1 ( UH U)

v and v’ above only differ in one term. Then our lower bound becomes

M, (0(P), L2) Z\Fi \/ max _ KL(P||Py) = 5\F( \/” max KL(PUHPU,))‘ (13)

2 dham(vv) 2 dham(v v)<1

We must bound the KL-divergence between P, and P/. Suppose WLOG that v and v’ differ at the ith index with

v; = 1,v; = —1, and let z, and z,/ be the respective terms used to normalize the distributions. Then the KL divergence is
KL(P,|Py) = Ey[(0y — 0, AY)] + In 22 = 20E, [\;Y] + In 22 (14)
2y Zv

We can write an expression for E, [\;Y]:

E,[AY] =2(P,(\ =1,Y =1) + P,(\; = —1,Y = —1)) — 1

= (Zexp9y+5+25vj )+ exp(—fby +9 — Zév] >71

J#i J#i

= — exp ZQcosh 0y + Z 0vj)A . (15)
J#i

Similarly, z,, and z, can be written as

2y = exp(d ZQcoshﬂerZ&v] +Zexp0y75+25vj +Zexp —0y — 6 — Zévj

J#i J#i J#i
= (exp(0) + exp(— Z 2 cosh(fy + Z dv;j)A;) = 4cosh(d Z cosh(fy + Z dvj)A
J#i J#i

2y = 4 cosh(d Zcosh Oy + Z 51}
J#i



Plugging z, back into (15), we get:

() Ty cohlly + SN epld)
B YT =4 ) 5, cohlBy + 55 00,)%,) - cosh(®)

Also note that % = 1 since v;- = v; for all j # i. The KL-divergence expression (14) now becomes

KL(P,|Py) = 26 <:§Sﬁ’1((?) - 1> +1n(1) =20 (:;i((?) - 1> .

We finally show that this expression is less than 252. Note that for positive d, f(§) = CC;IL((?) — 1 < 6, because f(9) is
concave and f’(0) = 1. Then we clearly have that K L(P,|P,) < 2. Putting this back into our expression for the

minimax risk, (13) becomes

M, (6(P),L2) > @(1 —Vnd?).

Then if we set § = we get that

1
2v/n’

B

M, (6(P), L2) >

E

Lastly, to convert to a bound over the mean parameters, we use Lemma 8 to conclude that

. ~ Emin m
inf sup Ep [[|@(X1,..., Xn) — u(P)l|2] > \/7
n PepP 8 "

From this, we can conclude that the estimation error on the label model parameters ||z — p||2 is also at least “zin /.

D.3. Proof of Theorem 3 (Generalization Error)

We base our proof off of Theorem 1 of Ratner et al. (2019) with modifications to account for model misspecification. To
learn the parametrization of our end model f,,, we want to minimize a loss function L(w, X,Y") € [0, 1]. The expected
loss we would normally minimize using some w* = argmin,, L(w) is

L(w) = Ex,y)~p [L(w, X,Y)].

However, since we do not have access to the true labels Y, we instead minimize the expected noise-aware loss. Recall that
1 is the parametrization of the label model we would learn with population-level statistics, and fi is the parametrization we
learn with the empirical estimates from our data. Denote P,, and P as the respective distributions. If we were to have a
population-level estimate of p, the loss to minimize would be

However, because we must estimate f& and further are minimizing loss over n samples, we want to estimate a w that
minimizes the empirical loss,

N 1 <& ~
La(w) = =3 By p, iy | L Xi V).
1=1



We first write L(w) in terms of L, (w).

L(w) = Ex y)~p [L(w, X, Y)] = Ex/ y)~up [Ex,v)~p [L(w, X', Y )| X = X']]
= E(X’,Y’)ND [E(X,?)NPM [L(U}, X,7 Y)|X = XI] + ]E(X,Y)ND [L(IU,X,, Y)‘X = XI]

o E(X,}‘;)NPM [L(U},X,’Y”X == X’]:I

< E(xrynen [Egy 5y, [0, X, Y)IA = X))

+Ex7,y/)~D U > Lw, X' )(D(X =2,Y =y|X =X') - Pu(X =2,Y =y|X = X’))”
x!y
< Ly(w) +Exr yryop {ZL(w,X’,y) DX =2,Y =y X =X') - P, (X =2,Y =y|X = X’)”
w’y
< Lu(w) + Exr yryp [Z ID(X =2,Y =y|X = X') — P,(X =2,Y = y|X = X’)”

z,Y

Here we have used the fact that L(w, X’,y) < 1. Notethat D(X = z,Y = y|X = X’) = D(Y = y|X = X’) only
when X’ = z, and is 0 otherwise. The same holds for P,,, so

L(w) < Ly (w) + Ex/ vy [Z DY =y|X = X') - P(Y =y|X = X')\] :

Y

Note that the expression ) ID(Y = y|X = X') - P,(Y = y|X = X’)| is just half the total variation distance between
D(Y|X’) and P, (Y| X’). Then, using Pinsker’s inequality, we bound L(w) in terms of the conditional KL divergence
between D and P,:

L(w) < Ly(w) + Exrop [2- TV(D(Y]X), P (Y|X"))]

< Luw) +2- B | /12 KLDYIX) | F(11X)]

< Lu(w) +1/2- KL(D(Y|X) || Pu(Y|X)).

There is a similar lower bound on L(w) if we perform the same steps as above on the inequality L(w) > L, (w) —

Ex/yn~p H]E(X,Y)~D [L(w, X", Y)|X = X'] = Ex gy.p, [L(w, X", Y)|X = X] H This yields

L(w) > Ly(w) — /2 KL(D(Y|X) || Pu(Y|X).

Therefore,

L(i)  L(w’) < Ly () = Ly(w*) +2,/2- KL(D(Y|X) || Pu(Y]X)).

We finish the proof of the generalization bound with the procedure from Ratner et al. (2019) but also use the conversion from
canonical parameters to mean parameters as stated in Lemma 8, and note that the estimation error of the mean parameters is
always less than the estimation error of the label model parameters. Then our final generalization result is

8|V .
38—l + 80, P,

min

L(w) — L(w®) < ~(n)

where §(D, P,) = 2y/2 - KL(D(Y|X) || Pu(Y|X)), €min is the minimum eigenvalue of Cov [A, Y] over the construc-
tion of the binary Ising model, and (n) bounds the empirical risk minimization error.



E. Extended Experimental Details

We describe additional details about the tasks, including details about data sources, supervision sources, and end models.
We also report details about our ablation studies. All timing measurements were taken on a machine with an Intel Xeon
E5-2690 v4 CPU and Tesla P100-PCIE-16GB GPU. Details about the sizes of the train/dev/test splits and end models are
shown in Table 2.

E.1. Dataset Details
Dataset End Model Nirain Naev  Niest
Spouse LSTM 22,254 2,811 2,701
Spam Logistic Regression 1,586 120 250
Weather Logistic Regression 187 50 50
Commercial ResNet-50 64,130 9,479 7,496
Interview ResNet-50 6,835 3,026 3,563
Tennis Rally ResNet-50 6,959 746 1,098
Basketball ResNet-18 3,594 212 244

Table 2. We report the train/dev/test split of each dataset. The dev and test set have ground truth labels, and we assign labels to the
training set using our method or one of the baseline methods.

Spouse, Weather We use the datasets from Ratner et al. (2018) and the train/dev/test splits from that work (Weather is
called Crowd in that work).

Spam We use the dataset as provided by Snorkel' and those train/dev/test splits.
Interview, Basketball We use the datasets from Sala et al. (2019) and the train/dev/test splits from that work.
Commercial We use the dataset from Fu et al. (2019) and the train/dev/test splits from that work.

Tennis Rally We obtained broadcast footage from four professional tennis matches, and annotated segments when the two
players are in a rally. We temporally downsampled the images at 1 FPS. We split into dev/test by taking segments from each
match (using contiguous segments for dev and test, respectively) to ensure that dev and test come from the same distribution.

E.2. Task-Specific End Models

For the datasets we draw from previous work (each dataset except for Tennis Rally), we use the previously published
end model architectures (LSTM (Hochreiter & Schmidhuber, 1997) for Spouse, logistic regression over bag of n-grams
for Spam and over Bert features for Weather (Devlin et al., 2018), ResNet pre-trained on ImageNet for the video tasks).
For Tennis Rally, we use ResNet-50 pre-trained on ImageNet to classify individual frames. We do not claim that these
end models achieve the best possible performance for each task; our goal is the compare the relative imporovements that
our weak supervision models provide compare to other baselines through label quality, which is orthogonal to achieving
state-of-the-art performance for these specific tasks.

For end models that come from previous works, we use the hyperparameters from those works. For the label model baselines,
we use the hyperparameters from previous works as well. For our label model, we use class balance from the dev set, or
tune the class balance ourselves with a grid search. We also tune which triplets we use for parameter recovery on the dev set.
For our end model parameters, we either use the hyperparameters from previous works, or run a simple grid search over
learning rate and momentum.

"https://www.snorkel.org/use-cases/01-spam-tutorial



Spouse Spam Weather

Random abstains 20.9 64.1 69.1
FLYINGSQUID 49.6 92.3 88.9

Single Triplet Worst 4.5 67.0 0.0

Single Triplet Best 51.2 83.6 77.6

Single Triplet Average 37.9 73.4 31.0
FLYINGSQUIDLabel Model 47.0 89.1 77.6

Table 3. End model performance in terms of F1 score with random votes replacing abstentions (first row), compared to FLYINGSQUID,
for the benchmark applications.

E.3. Supervision Sources

Supervision sources are expressed as short Python functions. Each source relied on different information to assign noisy
labels:

Spouse, Weather, Spam For these tasks, we used the same supervision sources as used in previous work (Ratner et al.,
2018). These are all text classification tasks, so they rely on text-based heuristics such as the presence or absence of certain
words, or particular regex patterns.

Interview, Basketball Again, we use sources from previous work (Sala et al., 2019). For Interview, these sources rely
on the presence of certain faces in the frame, as determined by an identity classifier, or certain text in the transcript. For
Basketball, these sources rely on an off-the-shelf object detector to detect balls or people, and use heuristics based on the
average pixel of the detected ball or distance between the ball and person to determine whether the sport being played is
basketball or not.

Commercial In this dataset, there is a strong signal for the presence or absence of commercials in pixel histograms and
the text; in particular, commercials are book-ended on either side by sequences of black frames, and commercial segments
tend to have mixed-case or missing transcripts (whereas news segments are in all caps). We use these signals to build the
weak supervision sources.

Tennis Rally This dataset uses an off-the-shelf pose detector to provide primitives for the weak supervision sources. The
supervision sources are heuristics based on the number of people on court and their positions. Additional supervision
sources use color histograms of the frames (i.e., how green the frame is, or whether there are enough white pixels for the
court markings to be shown).

E.4. Ablation Studies

We report the results of two ablation studies on the benchmark applications. In the first study, we examine the effect of
randomly replacing abstains with votes, instead of augmenting G 4.,,. In the second study, we examine the effect of using a
single random selection of triplets instead of taking the mean or median over all triplet assignments.

Table 3 (top) shows end model performance for the three benchmark tasks when replacing abstains with random votes (top
row), compared to FLYINGSQUID end model performance. Replacing abstentions with random votes results in a major
degradation in performance.

Table 3 (bottom) shows label model performance when using a single random assignment of triplets, compared to the
FLYINGSQUID label model, which takes the median or mean of all possible triplets. There is large variance when taking a
single random assignment of triplets, whereas using an aggregation is more stable. In particular, while selecting a good seed
can result in performance that matches (Weather) or exceeds (Spouse) FLYINGSQUID label model performance, selecting
a bad seed result in much worse performance (including catastrophically bad predictors). As a result, FLYINGSQUID
outperforms random assignments on average.



As a final note, we comment on using means vs. medians for aggregating accuracy scores. For all tasks except for Weather,
there is no difference in label model performance. For Weather, using medians is more accurate, since the supervision
sources have a large abstention rate. As a result, many triplets result in accuracy scores of zero (hence the 0 F1 score in
Table 3). This throws off the median aggregation, since the median accuracy score becomes zero for many sources. However,
mean aggregation is more robust to these zero’s, since the positive accuracy scores from the triplets can correct for the
accuracy.
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