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Abstract

Local graph clustering and the closely related seed
set expansion problem are primitives on graphs
that are central to a wide range of analytic and
learning tasks such as local clustering, commu-
nity detection, semi-supervised learning, nodes
ranking and feature inference. Prior work on local
graph clustering mostly falls into two categories
with numerical and combinatorial roots respec-
tively, in this work we draw inspiration from both
fields and propose a family of convex optimiza-
tion formulations based on the idea of diffusion
with p-norm network flow for p € (1, 00). In the
context of local clustering, we characterize the
optimal solutions for these optimization problems
and show their usefulness in finding low conduc-
tance cuts around input seed set. In particular, we
achieve quadratic approximation of conductance
in the case of p = 2 similar to the Cheeger-type
bounds of spectral methods, constant factor ap-
proximation when p — oo similar to max-flow
based methods, and a smooth transition for gen-
eral p values in between. Thus, our optimization
formulation can be viewed as bridging the numer-
ical and combinatorial approaches, and we can
achieve the best of both worlds in terms of speed
and noise robustness. We show that the proposed
problem can be solved in strongly local running
time for p > 2 and conduct empirical evalua-
tions on both synthetic and real-world graphs to
illustrate our approach compares favorably with
existing methods.
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1. Introduction

Graphs are ubiquitous when it comes to modeling relation-
ships among entities, e.g. social (Traud et al., 2012) and
biology (Tuncbag et al., 2016) networks, and graphs arising
from modern applications are massive yet rich in small-scale
local structures (Leskovec et al., 2009; Jeub et al., 2015;
Fortunato & Hric, 2016). Exploiting such local structures
is of central importance in many areas of machine learning
and applied mathematics, e.g. community detection in net-
works (Ng et al., 2001; White & Smyth, 2005; Leskovec
et al., 2009; Jeub et al., 2015) and PageRank-based spectral
ranking in web ranking (Page et al., 1999; Gleich, 2015).
Somewhat more formally, we consider local graph cluster-
ing as the task of finding a community-like cluster around
a given set of seed nodes, where nodes in the cluster are
densely connected to each other while relatively isolated
to the rest of the graph. Moreover, an algorithm is called
strongly local if it runs in time proportional to the size of
the output cluster rather than the size of the whole graph.

Strongly local algorithms for local graph clustering are pre-
dominantly based on the idea of diffusion, which is the
generic process of spreading mass among vertices by send-
ing mass along edges. This connection has been formalized
in many previous results (Spielman & Teng, 2013; Andersen
et al., 2006; Wang et al., 2017). Historically, the most pop-
ular diffusion methods are spectral methods (e.g. random
walks) based on the connection between graph structures
and the algebraic properties of the spectrum of matrices as-
sociated with the graph (Lovasz & Simonovits, 1990; 1993;
Chung, 2007b; Tsiatas, 2012). Spectral diffusion methods
are widely applied in practice due to the ease of implementa-
tion, efficient running time and good performances in many
contexts. However, it is also known in theory and in practice
that spectral methods can spread mass too aggressively and
not find the right cluster when structural heterogeneities ex-
ist, and thus are not robust on real-world graphs constructed
from very noisy data (Guattery & Miller, 1998; von Luxburg,
2006; Leskovec et al., 2009; Jeub et al., 2015). A more re-
cent line of work on diffusion is based on the combinatorial
idea of max flow exploiting the canonical duality between
flow and cut (Wang et al., 2017; Fountoulakis et al., 2017a;
Orecchia & Zhu, 2014). These methods offer improved the-
oretical guarantees in terms of locating local cuts, and have
been shown to be important for pathological cases where
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spectral methods do not perform well in practice. However,
combinatorial methods are generally accepted to be more
difficult to understand and implement in practice due to the
more complicated underlying dynamics.

In this paper, we propose and study a family of primal and
dual convex optimization problems for local graph cluster-
ing. We call the primal problem p-norm flow diffusion,
parameterized by the £,-norm used in the objective func-
tion, and the problem defines a natural diffusion model on
graphs using network flow. We refer the dual problem as
the g-norm local cut problem where ¢ is the dual norm of
p (i.e. 1/p+ 1/q = 1). The optimal solution to the g-norm
local cut problem can be used to find good local clusters
with provable guarantees. Throughout our discussion, we
use p-norm diffusion to refer both the primal and the dual
problems since our main inspiration comes from diffusion,
even though our results are technically for the g-norm local
cut.

‘We note that almost all previous diffusion methods are de-
fined with the dynamics of the underlying diffusion proce-
dure, i.e. the step-by-step rules of how to send mass, and the
analysis of these methods is based on the behaviors of the
algorithm. Although there are some efforts on interpreting
the algorithms with optimization objectives (Fountoulakis
et al., 2017a;b; Mahoney et al., 2012), this line of research
remains predominantly bottom-up starting with the algo-
rithmic operations. On the other hand, our work starts with
a clear optimization objective, and analyze the properties
of the optimal solution independent from what method is
used to solve the problem. This top-down approach is dis-
tinct in theory, and is also very valuable in practice since
the de-coupling of objective and algorithm gives the users
the freedom at implementation to choose the most suitable
solver based on availability of infrastructure and code-base.

1.1. Our Main Contributions

We refer readers to Section 2 for formal discussion. Our first
main result is a novel theoretical analysis for local graph
clustering using the optimal solution of p-norm diffusion. In
particular, suppose there exists a cluster B with conductance
¢(B), and we are given a set of seed nodes that overlaps
reasonably with B. Then the optimal solution of p-norm
diffusion can be used to find a cluster A with conductance
at most O(¢(B)'/9). For p = 2, this result resembles the
Cheeger-type quadratic guarantees that are well-known in
spectral-based local graph clustering literature (Spielman &
Teng, 2013; Andersen et al., 2006). When p — oo, our con-
ductance guarantee approaches a constant factor approxima-
tion similar to max flow methods, while achieving a smooth
transition for general p values in between. We observe in
practice that our optimization formulation can achieve the
best of both worlds in terms of speed and robustness to noise

for when p lies in the range of small constants, e.g. p = 4.

On the algorithm side, we show that a randomized coordi-
nate descent method can obtain an € accurate solution of
p-norm diffusion for p > 2 in strongly local running time.
The running time of our algorithm captures the effect that
it takes longer for the algorithm to converge for larger p
values. Although the iteration complexity analysis is not
entirely new, we show a crucial result on the monotonicity
of the dual variables, which establishes the strongly local
running time of the algorithm.

Our analysis illustrates a natural trade-off as a function of p
between robustness to noise and the running time for solv-
ing the dual of the p-norm diffusion problem. In particular,
for p = 2 the diffusion problem can be solved in time lin-
ear in the size of the local cluster, but may have quadratic
approximation error O(1/¢(B)). On the other hand, the
approximation error guarantee improves when p increases,
but it also takes longer to converge to the optimal solution.
We believe the regime of p being small constants offer the
best trade-offs in general.

1.2. Previous Work

The local clustering problem is first proposed and studied
by (Spielman & Teng, 2013). Their algorithm Nibble is a
truncated power method with early termination, and their
result were later improved to O(+/¢(B)) conductance ap-
vol(B)
#(B)
sonalized PageRank (Andersen et al., 2006), which is one
of the most popular local clustering methods. The EvoCut

algorithm (Andersen & Peres, 2009) is the fastest spectral

based local clustering method with running time O( %).

proximation and @) ( ) time using approximate per-

In (Zhu et al., 2013) the authors analyzed the behavior of
approximate personalized PageRank under certain intra-
cluster well-connected conditions to give strengthened re-
sults. There are many other spectral based diffusions, ex-
amples include local Lanczos spectral approximations (Shi
et al., 2017), evolving sets (Andersen et al., 2016), seed ex-
pansion methods (Kloumann & Kleinberg, 2014) and heat-
kernel PageRank (Chung, 2009; Kloster & Gleich, 2014).
Note that the above methods based on spectral diffusion are
subject to the quadratic approximation error in worst case,
informally known as the Cheeger barrier.

Combinatorial methods for local graph clustering are mostly
based on the idea of max flow. Some examples include the
flow-improve method (Andersen & Lang, 2008), the local
flow-improve method (Orecchia & Zhu, 2014) and the ca-
pacity releasing diffusion (Wang et al., 2017). The former
relies on black-box max flow primitives, while the latter two
require specialized max flow algorithms with early termina-
tion to to achieve running time that is nearly linear in the
size of the local cluster. These algorithms achieve constant
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approximation error, i.e., the output cluster has conductance
O(¢(B)), as opposed to quadratic approximation error for
spectral methods.

The first graph clustering method to explicitly incorporate
norms beyond p = 2 is the p-spectral clustering proposed
by (Biihler & Hein, 2009), based on the notion of graph
p-Laplacians initially studied in (Amghibech, 2003). It
generalizes the standard spectral approach for global graph
partitioning and achieves tighter approximations beyond
the Cheeger barrier. Similar ideas are later extended to
the context of hypergraphs (Li & Milenkovic, 2018). All
these methods rely on global analysis and computation of
eigenvalues and eigenvectors, and thus do not enjoy the
same properties that local methods have.

2. Preliminaries and Notations

We consider un-directed connected graph G with V' being
the set of nodes and E' the set of edges. For simplicity we
focus on un-weighted graphs in our discussion, although
our result extends to the weighted case in a straightforward
manner. The degree deg(v) of a node v € V is the number

of edges incident to it, and we denote d as the vector of all
nodes’ degrees and D = diag(d). We refer to vol(C') =
> vec deg(v) as the volume of C' C V. We use subscripts
to indicate what graph we are working with, while we omit

the subscripts when the graph is clear from context.

A cut is treated as a subset S C V, or a partition (S, S)
where S = V \ S. For any subsets S,7 C V, we de-
note E(S,T) = {{u,v} € E | u € S,v € T} as the
set of edges between S and T'. The cut-size of a cut S is
§(S) = |E(S,S)|. The conductance of a cut S in G is

_ 3(S)
0c(9) = min(volg (5),volg (V\S))

when speaking of the conductance of a cut S, we assume
S to be the side of smaller volume. The conductance of a
graph G is ¢ = mingcy P(9).

Unless otherwise noted,

A routing (or flow) is a function f : £ — R. For each un-
directed edge e with endpoints u, v, we arbitrarily orient the
edge as e = (u,v), i.e. from u to v. The magnitude of the
flow over e specifies the amount of mass routed over e, and
the sign indicates whether we send flow in the forward or
reverse direction of the orientation of edge e, i.e. f(u,v) is
positive if mass is sent from « to v and vice versa. We abuse
the notation to also use f(v,u) = —f(u,v) for an edge
e = (u,v). We denote B as the signed incidence matrix of
the graph of size | E| x |V'| where the row of edge e = (u, v)
(again, using the arbitrary orientation) has two non-zeros
entries, —1 at column v and 1 at column v. Throughout
our discussion we refer to a function over edges (or nodes)
and its explicit representation as an |E|-dimensional (or
|V'|-dimensional) vector interchangeably.

3. Diffusion as Optimization

Given a graph G with signed incidence matrix B, and two
functions A, T : V — R, we propose the following pair
of convex optimization problems, which are the p-norm flow
diffusion
minimize || f||,
st. BTf+A<T

and its dual formulation with ¢ such that 1/g+ 1/p =1

(D

maximize (A — T)7
st. || Bzfl, <1 2)
x> 0.

The solution to the dual problem x € ]RLVOl gives an em-
bedding of the nodes on the (non-negative) real line. This
embedding is what we actually compute in the context of
local clustering, and we use the primal problem and its flow
solution f € RIZ| mostly for insights and analysis purposes.
We discuss the interpretation of the primal problem as a
diffusion next.

The Primal Problem. As mentioned earlier, we consider
a diffusion on a graph G = (V, E) as the task of spreading
mass from a small set of nodes to a larger set of nodes. More
formally, the function A will specify the amount of initial
mass starting at each node, and the function 7" will give the
sink capacity of each node, i.e. the most amount of mass we
allow at a node after the spreading. We denote the density
(of mass) at a node v as the ratio of the amount of mass at v
over deg(v), and when we use density without any specific
node, we mean the maximum density at any node. Naturally
in a diffusion, we start with A having small support and
high density, and the goal is to reach a state with bounded
density enforced by the sink function. This gives a clean
physical interpretation where paint (i.e. mass) spills from
the source nodes and spreads over the graph and there is a
sink at each node where up to a certain amount of paint can
settle!'.

In our work, we will always use the particular sink capacity
function where T'(v) = deg(v) for all nodes, i.e. den-
sity at most 1. We extend the notation to write A(S) =
Y veg A(v) and T'(S) = >~ g T'(v) for a subset of nodes
S, and for our particular choice of sink capacity we have
T(S) = vol(S). We also write |A| = A(V) as the to-
tal amount of mass we start with, which remains constant
throughout the diffusion as flow routing conserves mass.

Given initial mass A and routing f, the vector 7 = BT f +
A gives the amount of mass m(v) at each node v after the

!There is also a “paint spilling” interpretation for personalized
PageRank where instead of sinks holding paint, the paint dries
(and settles) at a fixed rate when it pass through nodes. These are
two very different mechanisms on how the mass settles.
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routing f, i.e. m(v) = A(v) + ), f(u,v) is the sum of
initial mass and the net amount of mass routed to v. We say
f is afeasible routing for a diffusion problem when m(v) <
T'(v) for all nodes, i.e. the mass obeys the sink capacity at
each node. We say v’s sink is saturated if m(v) > T(v)
and ex(v) = max (m(v) — T'(v),0) the excess at v. Note
there always exists some feasible routing as long as the total
amount of mass |A| is at most vol(G), i.e. there is enough
sink capacity over the entire graph to settle all the mass.
This will be the case in the context of local clustering, and
we will assume this implicitly through our discussion.

The goal of our diffusion problem is to find a feasible routing
with low cost. We consider the p-norm of a routing || f||,, =

(3>, f2)/P as its cost. For example, when p = 2 we can
view the flow as electrical current, then the cost is the square
root of the energy of the electrical flow; when p = oo the
cost corresponds to the most congested edge’s congestion
of the routing. For p < oo, the cost will naturally encourage
the diffusion to send mass to saturate nearby sinks before
expanding further, and thus our model inherently looks for
local solutions.

For reader familiar with the network flow literature, in the
canonical p-norm flow problem, we are given the exact
amount of mass required at each sink, i.e. the inequality
constraint is replaced by equality, and the high level question
is how to route mass efficiently from given source(s) to
destination(s). In our diffusion problem, as we have the
freedom to choose the destination of mass as long as we
obey the sink capacities, the essential question becomes
where to route the mass so the spreading can be low cost.
Despite their similarity and close connection, we believe the
distinct challenge of our p-norm diffusion problem poses
a novel and meaningful direction to the classic problem of
network flow.

The Dual Problem. It is straightforward to check prob-
lem (2) is the dual of p-norm flow diffusion, and strong
duality holds for our problems so they have the same op-
timal value. For the dual problem, we view a solution z
as assigning heights to nodes, and the goal is to separate
the nodes with source mass (i.e. seed nodes) from the rest
of the graph. This is reflected in the objective where we
gain by raising nodes with large source mass higher but
loss by raising nodes in general. If we consider the height
difference between an edge’s two endpoints as the length of
an edge, i.e. |z(u) — z(v)|, we constrain the separation of
nodes with a budget for how much we can stretch the edges.
More accurately, the g-norm of the vector of edge lengths
(ie. [[Bz|,) is at most 1. This naturally encourages stretch-
ing edges along a bottleneck (i.e. cut with small number
of edges crossing it) around the seed nodes, since we can
stretch each edge more when the number of edges is smaller
(and thus raise seed nodes higher). The dual problem also

inherently looks for local solutions as raising nodes far away
from the source mass only hurts the objective.

In contrast to random walk based linear operators such
as personalized PageRank and heat kernel, even 2-norm
diffusion is non-linear due to the combinatorial constraint
BT f 4+ A < T. More generally, introducing non-linearity
has proved to be very successful in machine learning, most
notably in the context of deep neural networks. This may
offer some intuition why 2-norm diffusion achieves better
results empirically comparing to personalized PageRank de-
spite the connection between 2-norm diffusion and spectral
methods.?

4. Local Graph Clustering

In this section we discuss the optimal solutions of our diffu-
sion problem (and its dual) in the context of local graph
clustering. At a high level, we are given a set of seed
nodes S and want to find a cut of low conductance close
to these nodes. Following prior work in local clustering,
we formulate the goal as a promise problem, where we as-
sume the existence of an unknown good cluster C C V
with vol(C') < vol(V)/2 and conductance ¢ (C) = ¢*.
We consider a generic fixed G = (V, E) and p € (1,00)
through our discussion. We keep our discussion at a high
level, and defer missing proofs and technical details to the
supplementary material.

4.1. Diffusion Setup

To specify a particular diffusion problem and its dual, we
need to provide the source mass A, and recall we always set
the sink capacity T'(v) = deg(v). Given a set of seed nodes
S, we pick a scalar § and let

A(v) = {6 ~deg(v) ifves, 3)

0 otherwise.

Note this gives the total amount of mass |A| = ¢ - vol(S).
We will discuss the choice of § shortly, but we start with a
simple lemma on the locality of the optimal solutions for
the primal and dual problems.

Lemma 1. Let f* and x* be optimal solutions of (1) and (2)
respectively, supp(f*) be the subset of edges with non-zero
mass crossing them (i.e. the support of vector f*), and
supp(x™*) be the subset of nodes with strictly positive dual
value. We have

1. |supp(f*)| < & - vol(S),

2We note that algorithms (e.g. (Andersen et al., 2006)) based
on random walks nonetheless introduce non-linearity (and also
strong locality) to the underlying linear model in the form of
approximation or regularization, whereas our model is intrinsically
non-linear and strongly local.
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2. volg(supp(z*)) < § - vol(S), and

3. z*(u) > 0 only if (BT f* + A)(u) = deg(u).

Proof sketch. For p < oo, the optimal routing will never
push mass out of a node u unless u’s sink is saturated, i.e.
f*(u,v) > 0 for u,v only if (BT f* + A)(u) = deg(u),
since otherwise we can reverse the mass routed out of the
un-saturated node to reduce the cost of the routing. The total
amount of mass ¢ - vol(.S) upper-bounds the total volume of
the saturated nodes since it takes deg(v) amount of mass to
saturate the node v. This observation proves the first claim.
The second claim also follows from the same observation
and the additional property of complementary slackness,
which is exactly the third claim. []

Now we discuss how to set 4. The intuition is that we want
the total amount of source mass starting in C' to be a constant
factor larger than the volume of C, say A(C) > 2vol(C)
(any constant reasonably larger than 1 would work). The
reason is that in such scenario, at least A(C') — vol(C') >
vol(C') amount of mass has to be routed out of C' since the
nodes in C' have total sink capacity vol(C'). When C'is a cut
of low conductance, any feasible routing must incur a large
cost since vol(C') amount of mass has to get out of C using
a relatively small number of discharging edges. In this case,
the optimal dual solution x* will certify the high cost of any
feasible primal solution. Naturally, the appropriate value of
d to get A(C) > 2vol(C') depends on how well the seed set
S overlaps with C. Suppose vol(S N C) > avol(C), then
we can set § = 2/«. Without loss of generality, we assume
the right value of ¢ is known since otherwise we can employ
binary search to find a good value of J.

More formally, we derive a low conductance cut from z*
using the standard sweep cut procedure. In our case, because
x* has bounded support, the procedure can be implemented
in O(0 - vol(.S)) total work.

1. Sort the nodes in decreasing order by their values in z™.

2. For each ¢ > 1 such that the i-th node still has strictly
positive dual value, consider the cut containing the first ¢
nodes. Among all these cuts (also called level cuts) output
the one with the smallest conductance.

Figure 1. The Sweep Cut Procedure.

4.2. Local Clustering Guarantee

Theorem 2. Given a set of seed nodes S, suppose there
exists a cluster C such that

1. vol(S N C) > avol(C) for some o € (0,1],

2. vol(§ N C) > Bvol(S) for some 3 € (0,1].

Then the cut C returned by the sweep cut procedure on the
optimal dual solution x* satisfies

$(C) <0 (W)

where q € (1,00) is the norm used in (2)

Note the sweep cut computation only requires the dual so-
lution z*, while the primal solution f* and the values of
«, (B are only for analysis. Recall we want to set § = 2/«
in (3) to formulate the dual problem, but we assume J is
known via binary search. We also assume the entire graph
is larger than the total amount of source mass so the primal
is feasible and the dual is bounded. As summarized below,

Assumption 1. The source mass function A in our problem
Sformulation as specified in (3) satisfies § = 2/«, which
gives A(C) > 2vol(C) and |A| = A(S) < 2vol(C) /5 <
vol(G).

Not surprisingly, our theorem is more meaningful when
the given seed set S has a good overlap with some low
conductance cut C, i.e. when a,  are bounded away from

. 1
0. In particular, suppose «, 3 are both at least oz (Vol(0))

fgr some constant ¢, then the bound in our theorem becoLneS
O(¢(C)'/9), where we follow the tradition of using O to
hide poly-logarithmic factors. In particular, for 2-norm
diffusion (i.e. p = ¢ = 2) this matches the bound achieved
by spectral and random walk based methods in this setting,
and for p-norm diffusion with p approaches oo (i.e. g tends
to 1), this matches the guarantees of previous flow based
methods in this setting, e.g. (Wang et al., 2017; Orecchia &
Zhu, 2014). We prove Theorem 2 in the rest of the section.
We will keep the discussion at high-level and defer details
to the supplementary material.

We start with the simple lemma stating that the objective
value of the optimal dual (and primal) solution must be
large.

Lemma 3. Suppose k = |E(C,V \ C)| is the cut-size of C,
then
(A= d)Ta" = ||f*[l, > vol(C) /K1,

Proof sketch. This directly follows from Assumption 1
that at least 2vol(C) amount of source mass is trapped in
C at the beginning, so vol(C) amount of excess needs to
get out of C using the k cut edges, and we focus on the
cost of f* restricted to these edges alone. Since p > 1,
the cost is the smallest if we distribute the routing load
evenly on the k edges, and it is simple to see this incurs cost
vol(C)/kP~1)/P_ The total cost of f* must be at least the
cost incurred just by routing the excess out of C.[J
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Recall that we define the length of an edge ¢ = (u, v) to be
l(e) = |z*(u) — 2*(v)|. The actual dual solution may incur
edges with tiny non-zero length which causes difficulties
in the analysis. Thus, we define the following perturbed
edge length so that any non-zero edge length is at least
1/vol(C)*/4. Note this is only for analysis purpose and
doesn’t require changing =*.

1 .
Z(e):{max(vohml/q’”e)) ifi(e) >0,

0 otherwise.

Note the constraint in the dual problem gives

Yo et ) et @) - Ue)t

e=(u,v)

= Y fet(w) -2 @)|7 = | Ba*]|? < 1.

e=(u,v)

The next lemma states that the perturbations on edges
lengths are small enough so the above quantity remains
small.

Lemmad. 3 _, . |2*(u) —2*(v)| - 1(e)T™F < 14 2.

Proof sketch. This follows from Assumption 1 that the
total amount of mass is at most %VOI(C ), which also upper-
bounds volg (supp(z*)) by Lemma 1. Thus, the number
of edges with positive [(e) cannot be too large, and our
perturbation only increases the lengths for these edges by

at most ——-——. The lemma follows from these two facts.
vol(c)1/q

Consider the sweep cut procedure where we order the nodes
by their dual values in 2*, and for any & > 0 denote the
cut Sy, = {u|z*(u) > h} to be the set of nodes with dual
value larger than h. We only need to consider S;, when h
equals to the strictly positive dual value of some node in the
support of x*, and the sweep cut procedure will examine all
such cuts. We proceed to argue that among these level cuts,
there must exists some h where ¢(S},) satisfies the bound
in Theorem 2, and thus prove the main theorem.

We start with rewriting the dual objective and constraint
using the level cuts.

Claim 1. With level cuts Sy, as defined above, we have

/OO (A(Sh) — vol(Sy)) dh > vol(C) kY1,

h=0

r

=0 e B(Sh,V\Sh)

and )
I(e)9™'dh < 1+ 5

Proof Sketch. Both claims follow from changing the order
of summation to get

(A — d)Ta* = /h i (A(Sh) — vol(Sy)) dh,

and

Yo et (w) —at ()] - Ue)

e=(u,v)

:/hm

=0 e B(Sh,V\Sh)

I(e)7tdh,

and then invoke Lemma 3 and Lemma 4 respectively. To
see the change of summation, pick any node v in the first
equation. v contributes (A(v) — deg(v)) - *(v) to the left
hand side, and the same amount to the right hand side as v is
in the level cuts for all & € (0, 2*(v)]. The second equation
follows similar reasoning.[]

Using Claim 1, we take the ratio to get

S0 e B(SnV\Sn) [(e)1"dh
[iZ o (A(Sk) = vol(Sy)) dh

3k1/a
< b
~ Bvol(C)

which means there must exist some i with S}, non-empty
and

ZeeE(sh,V\sh)l(@)q_l - 3k1/4
A(Sy) —vol(Sy)  — Bvol(C)’

All it remains is to connect the left hand side in the above
inequality to the conductance of S;,. For the denominator,
since the source mass has density at most 6 = 2/« at any
node, we get

&)

A(Sh) — vol(Sh) < %VO](Sh). (6)

For the numerator, any edge e = (u, v) crossing a level cut
Sy, must have dual values 2*(u), 2*(v) on different sides of

h, thus having non-zero length I(e), which means I(e) is at
least 1/vol(C)'/9. This gives

Z Z(@)q71 > |E(S’L7V\Sh)| (7)

(¢=1)/q °
e€E(Sh,V\Sh) VOI(C)

Put (5), (6) and (7) together we get

6p(C)/1

|E(Sh, V\ Sh)| - 6k1/4
af

9(Sh) = vol(Sy) ~ aBvol(C)t/4 -

which proves our main theorem.

5. Strongly Local Algorithm

For general constrained convex optimization problem, the
state of the art solvers are by interior point techniques. How-
ever, these methods start with a fully dense initial point and
then iteratively solve a linear system to obtain the update
direction, which quickly become prohibitive when the input
size is only moderately large. For example, the iterates of
CVX (Grant & Boyd, 2014) fail to converge when solving
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Algorithm 1 Coordinate solver for smoothed dual problem
Initialize: o =0
For £k =0,1,2,...,do
Set S, ={i e V| Vz‘Fu(l'k) < 0}.
Pick iy, € Sy uniformly at random.

2—q

i

Updat =x — ——— Vi, Fu(zi)e;, .
pdate iy = a1 — oS Vi p(Tr)ei,

If S, = () then return z;,.

the dual problem (2) on a 60 x 60 grid graph with initial
mass |A| = 12000 and p = 4.

As noted in Lemma 1, the support of optimal primal and
dual solutions are bounded by the total amount of initial
mass |A|. Hence, we exploit locality and propose a random-
ized coordinate descent variant that solves an equivalent
regularized formulation® of (2) (for a formal argument on
the equivalence see supplementary material):

min F(z):= L[| Bzl - 2T(A = d). (8)

x>0 T

Our algorithm is strongly local, that is, its running time
depends on |A| rather than the size of the whole graph.

Because the function F'(z) in the objective of (8) has non-
Lipschitz gradient for any ¢ < 2, directly minimizing F'(x)
requires step-sizes that go to zero to guarantee convergence,
which leads to slow practical and worst-case convergence
rate. To cope with this, we smooth F'(x) by replacing

x|l wit x , where
Bal|j with || Bz[f ;. wh

g = Z (y7 + p?)e/2.

)

lyl

The proposed numerical scheme in Algorithm 1 solves the
smoothed problem

T

min £, (2) = L Bel, —2T(A - d). O

In the context of p-norm flow diffusion, coordinate method
enjoys a natural combinatorial interpretation*: each coor-
dinate update corresponds to sending mass from a node to
its neighboring nodes along incident edges. This combina-
torial characteristic of coordinate method distinguishes it
from other gradient type methods and ensures the solution
path is strongly local. Note that the iterative construction

30ne can easily verify that the regularized formulation (8) is
the dual of our primal p-norm flow diffusion problem with the
objective || f||» replaced by %H flI5. Moreover, (8) and (2) have
identical solutions, up to a constant scaling of variable values.

*From primal-dual optimality condition, for any node v, the
coordinate gradient V,, F' measures the difference between the cur-
rent mass at node v and its sink capacity deg(v), i.e., =V, F(z) =
m(v) — deg(v). Hence Sy, can be viewed as the set of nodes that
have positive excess mass (cf. Section 3) at iteration k.

of Si in Algorithm 1 guarantees that the algorithm always
produces monotonic iterates that satisfy z; < xy41 and
supp(x) C supp(zk1) for all k. In the supplementary ma-
terial we show that the iterates indeed converge to a unique
optimal solution m;; of (9). We state the following lemma
which justifies the definition of Sj in Algorithm 1. The
claim follows a straightforward gradient computation and
Lipschitz continuity, and we include details in the appendix.

Lemma 5. For any iteration k and node i in Algorithm 1,
ViFu(x) <0, Vi € supp(xy).

Lemma 5 guarantees that coordinates with strictly positive
partial derivatives all have value 0 in « (i.e. not in the
support), and thus should not be selected for an update due
to the x > 0 constraints.

Note that F),(z) is not strongly convex in general, but lo-
cality gives us strong convexity: when restricting F},(x) to
the iterates generated by Algorithm 1, F),(z) has a strong
convexity parameter v which is the minimum eigenvalue
of the sub-matrix of the Laplacian defined by the nodes in
supp(z},) (Chung, 2007a), multiplied by a positive weight
constant, and satisfies

v > (10)

(p— DA’
where p is such that 1 /p+1/q = 1. The result is pessimistic
because we do not make any assumption about the internal
conductance of the target cluster. Lower bounding -y under
stronger assumptions are beyond the scope of this paper.
In practice, we observe much better performance, because
most clusters are well connected internally.

Finally, the optimal solution z, of (9) also minimizes a
locally smoothed function F/ lﬂ(m) subject to = > 0, where

1 . .
F(x) = p S (@) —2()? + )Y +
(i.j)esupp(zs)
1 , _ .
p > (i) — x(4)|Y — 2" (A - d).
(i,5)Zsupp(z;,)

Since 1 < ¢ < 2, the scalar mapping s — s9/2 is concave
on R, and so |s|? < (|s|2+u2)?/? < |s|9+pu9. Therefore,
for all z,

F(zx) < Fy(x) < F(x) + ;u[supp(Bz},)|

11
< F(z) + zpfAl. ()

Details on the equivalent minimization of F),(x) and FllL (z)
and the above inequality are provided in the supplementary
material.

Lipschitz continuity and strong convexity give us linear con-
vergence rate to the smoothed problem (9), and with locality
and error bound (11) we obtain the following running time
guarantee for solving the original regularized problem (8).
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Theorem 6 (Running time). If we pick u = O((T;I) 1/q),
the total running time of Algorithm 1 to obtain an € ac-

curate solution of (8) is O(% (@)2@71

d = max;esupp(:) deg(7), and -y is the strong convexity
parameter that satisfies (10).

log %) where

We remark that Algorithm 1 is easily parallelizable, as all
coordinates in Sy can be updated at the same time, without
sacrificing locality.

6. Empirical Results

We implemented Algorithm 1 in Julia®. Implementation de-
tails are given in the supplementary material. The goal of our
experiments is two-fold. First, we carry out experiments on
various LFR synthetic graphs (Lancichinetti et al., 2008) and
demonstrate that the theoretical guarantees of p-norm flow
diffusion are well reflected in practice. Second, we show
the advantage of p-norm diffusion for local graph clustering
tasks on four real datasets. We compare the performance of
p-norm flow diffusion with ¢/;-regularized PageRank (Foun-
toulakis et al., 2017b) and nonlinear diffusion under power
transfer (Ibrahim & Gleich, 2019). Although our theoretical
analysis holds for p € (1, 00) and Algorithm 1 converges
linearly for any p > 2, we think in practice the most inter-
esting regime is when p is a small constant, e.g. p € [2, 8],
as our theory suggests that the marginal gain in terms of
conductance guarantee diminishes as p grows large. We
elaborate this in the synthetic experiment by comparing
marginal improvements in the performance by raising p
from 2 to 4, and from 4 to 8.

The LFR model (Lancichinetti et al., 2008) is a widely used
benchmark for evaluating community detection algorithms.
It is essentially a stochastic block model with the additional
property that nodes’ degrees follow the power law distribu-
tion, and there is a parameter p controlling what fraction of
a node’s neighbours is outside the node’s block. Our theory
(and also experiment on LFR graph in the supplementary
material) indicates (not surprisingly) that better overlap of
the input seed set and a target cluster will result in output
cluster having better conductance and F1 measure. In all
subsequent experiments, however, when we compare re-
covery results with /; -regularized PageRank and nonlinear
power diffusion, we always start the diffusion process from
one seed node, as this is the most common practice for semi-
supervised local clustering tasks. We set the parameter for
p-norm diffusion so |A| is a constant factor of the volume
of some target cluster (recall from Assumption 1 this is
WLOG). We use the same parameter setting of nonlinear
power diffusion as what the authors suggested (Ibrahim &
Gleich, 2019). For ¢;-regularized PageRank, we allow it to

SThe code is available at github.com/s—h-yang/
pNormFlowDiffusion.

“cheat” in the sense that we use ground truth to choose the
parameter giving the best conductance result.

We compare these methods on 5 datasets. First on LFR syn-
thetic graphs with different mixing parameter p. We pick p
between 0.1 and 0.4 as this range gives rise to graphs that
contain reasonable noisy (but not completely noise) clusters.
For each graph, we start from a random seed node and we re-
peat the experiment 100 times. Figure 2 shows the mean and
the variance for the conductance and the F1 measure while
varying p. Notice that p-norm diffusion behaves similarly
to the tuned ¢, -regularized PageRank in both conductance
and F1 measure when p = 2, whereas it significantly outper-
forms other methods when p = 4 and p = 8. We observe
a slight gain in terms of conductance by raising p = 4 to
p = 8, but such improvement is marginal. This is not really
surprising, since qualitatively the 4-norm unit ball is already
very close to the co-norm unit ball (i.e. the box).

0.6 1,
-=-nonlinear power
05 L1-reg. pr
g |%p=8 008
go4p ~p=4 @
o -o-p =
§ 03 ’ Eos P : 2
S T p=4
0 L |ep=8
0.2 0.4] ~LLlreg.pr
-=-nonlinear power
0.1

0.1 0.2 03 0.4 01 0.2 03 0.4
p 1

Figure 2. Conductance and F1 measure of various models on LFR
synthetic datasets. The bands show the variation over 100 trials.

The other four datasets are real-world graphs: the Face-
book college graphs of John Hopkins (FB-Johns55) and
Colgate (Colgate88) (Traud et al., 2012)), the social net-
work Orkut (Yang & Leskovec, 2012)) and the biological
network Sfld (Brown et al., 2006). For each dataset, we filter
the ground truth clusters by setting reasonable thresholds
on volume, conductance, and the ratio between its internal
connectivity and cut conductance. We include the statistics
of the ground truth clusters in the supplementary material.
For each dataset, we run algorithms starting at each vertex
in each cluster and report the average conductance and F1
measure. We omit nonlinear power diffusion for Orkut, as
it does not scale well to reasonably large graphs.

The Facebook datasets contain ground truth clusters ranging
from low to medium conductance. For almost all clusters, p-
norm flow diffusion methods have both the best F1 measure
and conductance result. The six clusters in the biological
dataset Sfld are very noisy, having median conductance
around 0.8. The performance of the algorithms is mixed.
The nonlinear power diffusion yields the lowest conductance
but at the same time the lowest F1 measure for most cases.
On the other hand, local methods, i.e., p-norm flow diffusion
and /; -regularized PageRank, are more robust and give rise
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to the best F1 measures. On Orkut dataset, 4-norm diffusion
gives best result on all clusters. We defer more details and
discussions to the supplementary material.

Table 1. Results for real-world graphs

dataset feature measure p = p=4 [{y-reg. pr nonlinear
fl 036 035 031 031
year 2006 cond 034 034 050 0.40
- fl 039 0.39° 038 036
G year 2007 cond 031 030 045 041
£ - fI 051~ 0.51 0.51 037
Lo % o 034 03 0w o4
= ear 2009 fI 084~ 7 0.85 0.83 049
Y cond 023 022 0.24 0.40
) 1;&1}0;;;6;271; T ft 085 087 083 075
cond 023 022 025 0.29
fl 050 051 0.43 0.25
year 2004 cond 066 066 071 0.36
fi 045 045 041 037
year 2005 cond 051 051 053 0.37
% 777;;211'7250767 T fl 045 045 043 039
2 I ___f cond _ 037 036 050 038
e year 2007 fI 049~ 049 0.51 045
3 cond 034 034 045 0.39
fI 076~ 0.80° ~ 0.74 035
year 2008 cond 031 030 0.35 0.40
fI 096~ 097 ~ 096 032
year 2009 cond 0.3 012 0.3 0.24
rease fl 074 076 072 0.63
cond 044 045 0.44 0.48
fI 083~ 0.83° 083 0.83
AMP cond 041 041 042 0.43
phosphotriesterase 1 093 093 L.00 0.13
= cond 081 081 081 049
& denosine fl 044~ 044 044 034
cond 046 046 046 0.44
dihydroorotase fl 096 096 096 0.07
cond 084 084 084 0.44
) fl 039 70.39 020 020
dihydroorotase2 ond 077 078 0.85 0.48
A fl 056 058 049
cond 048 047 051
’7777787777777?1777707771776.773777706677’
cond 035 033 037
’77777C7777777?177770763776.67477763777’
cond 033 032 035
’77771)7777777?177770773776.77677767277’
cond 049 048 051
’77777E*777777?1777707671776.67277765677’
- cond _ 052 051 054
5 . fl 079~ 0.81 0.76
cond 0.52 0.51 0.54
’7777707777777?177770777776.77377766877’
cond 052 050 053
’77777}_17777777?177770763776.77077766777’
cond 0.52 0.51 0.54
’7777717777777?17777076()776.67277763677’
cond 049 048 052
’7777}7777777?177770755776.574777621777’
cond 053 052 056
’7777;{777777?17777075?1776.57677763177’

7. Conclusion

In this work we draw inspiration from spectral and com-
binatorial methods for local graph clustering. We propose
a new method that is naturally non-linear and strongly lo-
cal, and offers a spectrum of clustering guarantees ranging
from quadratic approximation error (typically obtained by
spectral diffusions) to constant approximation error (typi-
cally obtained by combinatorial diffusions). We note that

the proposed diffusion is different from previous methods,
since we analyze the optimal solution of a clearly defined
family of optimization problems, rather than the output of
an algorithmic procedure with no optimization objective,
e.g. methods based on random walk. Furthermore, we pro-
vide a strongly local algorithm that solves the optimization
formulation efficiently, which enables our method to scale
to real-world large graphs with billions of nodes and edges.

We point out that a major advantage of this work is the sim-
plicity of the proposed optimization formulation, clustering
analysis, and algorithm design. Our model requires very
few parameter tuning, and hence, it is extremely easy to use
in practice and delivers consistent results. The algorithm is
simple and has a very intuitive combinatorial interpretation,
which facilitates possible future extension of p-norm flow
diffusion to other applications and in much broader contexts,
e.g., in community detection and graph semi-supervised
learning (Fountoulakis et al., 2020), in defining localized
network centrality measures (Yang et al., 2020).
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