Supplementary material for:
p-Norm Flow Diffusion for Local Graph Clustering

Kimon Fountoulakis~ Di Wang“ Shenghao Yang "

A. Missing Proofs of Section 4

Proof of Lemma 1. For p < 0o, the optimal routing will never push mass out of a node unless u’s sink is saturated, i.e.
f*(u,v) > 0 for u,v only if (BT f* + A)(u) = deg(u). To see this, take the optimal primal solution f*, and consider the
decomposition of f* into flow paths, i.e., the path that the diffusion solution used to send each unit of mass from its source
node to the sink at which it settled. If any node other than the last node on this path has remaining sink capacity, we can
truncate the path at that node, and strictly reduce the total cost of the diffusion solution. As each unit of mass is associated
with the sink of one node, the total amount of mass J - vol(S) upper-bounds the total volume of the saturated nodes since it
takes deg(v) amount of mass to saturate the node v. This observation proves the first claim.

The dual variable 2*(u) corresponds to the primal constraint (B f* + A)(u) < deg(u), and it is easy the check the third
claim of the lemma is just complementary slackness. The second claim follows from the first and the third claim. [

Proof of Lemma 3. By Assumption 1 there is least A(C') > 2vol(C') amount of source mass trapped in C at the beginning.
Since the sinks of nodes in C can settle vol(C') amount of mass, the remaining at least vol(C') amount of excess needs to
get out of C using the k cut edges. We focus on the cost of f* restricted to these edges alone. Since p > 1, the cost is the
smallest if we distribute the routing load evenly on the k£ edges, and it is simple to see this incurs cost

(k ' (VOIIC(C)Y) " vol(C) /=D,

The total cost of f* must be at least the cost incurred just by routing the excess out of C'. [J

Proof of Lemma 4.

S et w) -2t @) -l < Y o)t = (e)? +

e=(u,v) e=(u,v) e:l(e)=li(e) e:l(e)<l(e)

The second to last equality follows from the fact that our perturbation only increases the lengths to W. The last

inequality follows from that we only increase the length of an edge when its original edge is positive, which means at at
least one of its endpoints has positive dual variable value. From Assumption 1 that 6 = 2/« we know that the total amount
of mass is at most 2vol(.S). Together with the conditions in Theorem 2 we get 2vol(S) < Zvol(C). This upper-bounds

(03

volg (supp(z*)) by Lemma 1. Thus, the number of edges with positive (e) is also at most %VOl(C). O

Proof of Claim 1. Both claims follow from changing the order of summation to get
(A= d)Ta = [() - vol(Sh) dh,
h

and

Bl
*
—
<
=
|
&
*
—
<
-
—~
—~
(9]
~
5
—_
Il

/:0 > l(e)'dh,

e€E(Sp,V\Sh)

p-Norm Flow Diffusion for Local Graph Clustering

and then invoke Lemma 3 and Lemma 4 respectively. To see first claim, pick any node v in the first equation. v contributes
(A(v) — deg(v)) - *(v) to the left hand side, and the same amount to the right hand side as v is in the level cuts for all
h e (0,z*(v)].

For the second claim, pick any edge e = (u, v), the edge will cross the level cuts F (Sp,, V' \ Sp,) forall h € (z*(v), 2*(u)]
(assuming wlog x*(u) > x*(v)), so the contribution from any edge will be the same to both sides of the equation. (]
B. Constrained and penalized problems from Section 5
We are interested in solving the g-norm cut problem
max (A — J)Tw
s.t. [[Bzf, <1 (B.1)
xz > 0.

We turn the constrained formulation into a regularized problem and show their equivalence,

: —(d T, 1
min F(z):=(d - A) z + || Bx|]]. (B.2)

Lemma B.1 (Equivalence). The solution sets of problems (B.1) and (B.1) are scaled versions of each other.

Proof. First note that constant non-zero vectors cannot be solutions to any of the problems (B.1) and (B.2). This is because
we pick A such that . A(i) < >, deg(z) and an all-zero vector is feasible and has better objective function value than
any constant non-zero vector. Let * denote a non-constant solution of (B.2). Then x* satisfies the optimality conditions of
(B.2)

7 1 _
* —(A-d)-y+ V|Bzl|f =0
e y(i)ax(i) =0VieV
* 2,y 20,

for some optimal dual variables y*. The optimality conditions of problem (B.1) are

¢ (A d) -y +AV|Baly =0
e y(i)x(t) =0VieV

L]

AL —[[Bz[|g) =0

[Ballg <1

e z,y>0,A>0,

where y are the dual variables for the constraint 2 > 0, and \ is the dual variable for || Bz||7 < 1. Observe that by setting
x = z*/||Bz*

I\ = %(”BLL* [2)2=" and y := y*, then the triplet ;, A, y satisfies the latter optimality conditions.

Let us now prove the reverse. Note that because we pick A such that there exists at least one negative component in

—(A — d), then A = 0 can never be an optimal dual variable. Thus A > 0. Let &, A, § be a solution to the latter optimality
Ao 1

conditions. Observe that = := (¢gA)7—1& and y := § satisfy the former optimality conditions. This means that the solution

sets of the two problems are scaled versions of each other. O

Lemma B.1 is important because the output of the Sweep Cut procedure is equal for both solutions. This is because the
output of Sweep Cut depends only on the ordering of dual variables and not on their magnitude. Therefore, we can use the
solution of any of these problems for the local graph clustering problem.

p-Norm Flow Diffusion for Local Graph Clustering

Following Lemma B.1, it is easy to see that if one of (B.1) or (B.2) is unbounded, the other must also be unbounded.
Moreover, one can easily verify that the g-norm regularized problem (B.2) is the dual of an equivalent p-norm flow problem

21
min 1| 7]}2

- (B.3)
st. BTf+A<d

and that strong duality holds, as any « > 0 is a Slater point for (B.2). Throughout the discussions in this section, we assume
that |A| < vol(G), so (B.3) is feasible, and hence (B.2) is bounded.

Although the two formulations (B.1) and (B.2) are inherently equivalent, the computational advantage of (B.2) permits
the use of many off the shelf first order optimization methods, which is crucial for obtaining strongly local algorithms. In
subsequent discussions, our goal is prove the running time guarantee of Algorithm 1 in the main text that finds € accurate
solution to (B.2). For convenience we have copied the algorithmic steps from the main text to Algorithm B.1.

Algorithm B.1 Coordinate solver for smoothed g-norm cut problem
Initialize: xo =0
Fork=0,1,2,...,do
Set S), = {l eV | VzFM(l‘k) < 0}.
Pick iy, € Sk uniformly a; random.
—q
Update xj41 =z — dggi(z’k)vikF”(xk)ei’“'
If S, = () then return z;,.

C. Smoothed objective function from Section 5

In this section we smooth the original objective function F'(x) and we prove some important properties of the smoothed
problem that will be used to obtain a local running time result for Algorithm B.1.

The objective function F'(x) of the regularized g-norm cut problem (B.2) has non-Lipschitz gradient for any ¢ < 2, therefore
we smooth it by perturbing the g-norm term around zero. Consider the following globally smoothed problem

1 o
min Fy(z) =~ Y ((@(i) —2()* + p2)* —2"(A - d), (8
N (i,J)€EE

where p > 0 is a smoothing parameter.

Let z, denote an optimal solution of (C.1). We define a locally smoothed problem

-
min F, (), (C2)

1 . . . *
where F),(z) is obtained by perturbing the g-norm term around zero on the edges defined by supp(Bz},) C F,

Fla) == S (@) -2+ + =Y @) -2l — 2T(A—d).

q (4,5)ESUPP(B=?,) 9 (i,)Zsupp(Bz;,)

The conceptual construction of F‘i(a:) is useful because we can bound, for all x, the maximum gap between the values of
F(zx) and F/i (z) by a quantity that depends only on the cardinality of supp(Bx},) and not the dimension of the ambient
space. This is critical for establishing the local running time result claimed in Theorem 6 in the main text. Therefore, a
key step in our analysis is demonstrating the equivalence between the globally smoothed problem (C.1) and the localized
version (C.2). In particular, we prove in Theorem E.1 that the two objectives F),(x) and F/lL (z) share the same unique
minimizer,

argmin Fy,(z) = x,, = argmin FllL (z).
x>0 x>0

We start by establishing lower and upper bounds for the locally smoothed objective function Fi(x) with respect to the
original objective function F'(z). The following lemma gives an upper bound on the cardinality of supp(Bx},).

p-Norm Flow Diffusion for Local Graph Clustering

Lemma C.1 (Locality). The number of edges defined by supp(Ba:Z) is bounded by the total amount of initial mass, i.e.,
|supp(B),)| < |A].

Proof. By the first-order optimality condition of (C.1), for all i € supp(z},),
ViFu(x)) = > (@ (i) = 2,(7)* + p*) 7~ (@,(0) — 2,(4)) — Ay + deg(i) = 0.
i

Hence,
|supp(Bz;,)| < volg (supp(z;},))

=) deg(i)

iesupp(z;;)
= > AG = D> D (@) = 2 () +)2 @ () — 27(5)
z‘esupp(x;) z‘esupp(x;) gt
= Y AG) - D> (@) = 26)? + e @ 6) - 27()
iesupp(z;,) i,JESUPP(=},)
in~vg
=0
= Y (@) = @) +)P @ () — 2 ()
iesupp(z;,)
JESUpp(zy,)
i~
>0
<Al

Lemma C.2 (Local smooth approximation). For any x, we have that

F(x) < Fi(z) < F(z) + 1p7|A].

Proof. 1t suffices to show
1Bz < Yoo (@@ =GP+ Y (@) =z < Bz[§+ p!|A].
(4,5)€SUpP(Bz},) (4,5)¢SUpp(Bz},)
First of all, it is straightforward to see that
1Bally = > ((2(i) —2(j))*)? < Yoo (@) =)+)P+ Yo (@) -V
(i.J)€E (i,7)ESUPP(Bz7,) (i.7)#SUpp(Bz?,)

On the other hand, since ¢ € (1, 2], the function h : R>o — Rxq given by h(s) = s7/? is concave and h(0) = 0. So h is
sub-additive. Thus

Yo (@) —2(G)? +p) P+ Yo (@) -2

(i,5)eSUpp(Bz;,) (i,5)Supp(Bzy,)

< > ((x()) —2()*)Y* + > (1*)9? + > ((x(i) — 2(5)))"?
(i,5)€SUPP(Bz},) (i,5)€SUPp(Bz},) (4,4)¢supp(Bz},)

= Y (@) =) + > e
(i,J)EE (i,5)ESUPP(Bzy,)

=[|Bx[|g + pn|supp(Bz,,)|
<||Bx[|§ 4+ n?|Al,

where the last inequality is due to Lemma C.1. O

p-Norm Flow Diffusion for Local Graph Clustering

The approximation bound in Lemma C.2 means that, by setting out inversely proportional to |A|, a minimizer of FIIL (x)
can be easily turned into an approximate minimizer of F'(x), up to any desired e accuracy. Therefore, in order to obtain an e
accurate solution to the regularized g-norm cut problem (B.2), it suffices to minimize Flﬁ (). In Theorem E.1 we show that,
solving the globally smoothed problem (C.1) effectively minimizes F[L (z).

In the following discussions we analyze important properties of F),(x) which also extend to F/i(x) on supp(z},). Lem-
mas C.3, C.4 and C.5 provide some technical results which will be used to prove Theorem E.1.

Lemma C.3 (Lipschitz continuity). VF,,(z) is Lipschitz continuous with coordinate Lipschitz constant L; = deg(i)pd~>.

Proof. The first and second order derivatives of F),(x) are
VF,(z) = BTC(z)Bx — A + d,
V?F,(z) = BTC(x)B,

where both C'(z) and C(z) are diagonal matrices of size |E| x |E| whose diagonal entries correspond to edges (i, j) € E,

[C(@)] g,y = (@) — z(5))* + MQ) 7
O = (@) =2(G)) +#2) 7 (0 = D(@li) () +42).

In order to obtain coordinate Lipschitz constant L; of V;F}, (), we upper bound [C ()] (i.5),¢i.5) bY

(C@) i = (@60) —2()? +12)* 7 ((a = D) — 2())* + 4?)

q__
2

—
—~
Q

\
—_
S~
8
—~
.
~
\
8
—
<
~—

Since ¢ € (1,2], we get that

and thus
This means that

Therefore
L; = n%%e] B Be; = deg(i)u?™2.

Lemma C.4 (Monotone gradients). For any z, the following hold

o hyi(t) .=V, F,(z + te;) is strictly monotonically increasing in t,
* hij(t) == V;F,(x + te;) is strictly monotonically decreasing in t if j ~ i and constant if j # i.
Proof. Expand V,F),(z) as
: . 2-1,
ViFu(@) = > ((@(0) — 2()® + 12)"* 7 (i) — 2(5)) — A) + deg(i).
ji

So
hia(t) =S (@) + = 2(7)* + 1) "> (2(0) + ¢ — 2(5)) — AG) + deg(i).

gri

p-Norm Flow Diffusion for Local Graph Clustering

Each term in the above sum is a function g(y) := (y2 + MQ)Q/Q—l y. The derivative of g(y) is

9y =" +p*)* (¢ - Da? +p?) > 0,
therefore, g(y) is strictly monotonically increasing, and hence so it h;;(t). Similarly, h,;(¢) is equal to

. . /2-1,

hig(8) =Y (@) =t —2(5)) +1°)" 7 (@(i) — t — 2(4)) — AF) + deg(i).
ji

Using the same reasoning as above we get that function h;;(¢) is strictly monotonically decreasing if j ~ 4 and is constant if
j#iand j L. O
Lemma C.5 (Non-positive gradients). For any iteration k and node i in Algorithm B.1, V;F,,(z,) < 0, Vi € supp(xy).

Proof. Suppose for some iteration & > 0 we have that V,;F),(x)) < 0 for every i € supp(xy), and that Si, # (. Say we
have picked to update some ij, € Sj. This means V;, F, () < 0. It follows from Lipschitz continuity (cf. Lemma C.4)
that

Viu Fi41) = Vi Fyon)| = |vz-kF< Vi Fu(i)eq,) = Vi Fuan)

ng('Lk)

Vi Fu(er)| = Vi, Flu(zk)l.

IN

Liy deg(lk)

Since V;, F,(x1) < 0, we must have V;, F,(x,41) < 0. Moreover, since

g1 (ig) = g (i) — deg(zk Vsz (zx) > xp(ix),

and zy41(j) = xx(j) for all j # ix, by Lemma C.4 we know that V; F},(z511) < V;F,(x) < 0 for every j ~ i, and
V,;F,(zk+1) = VjF,(ay) for every j o is. The proof is complete by noting that VF“(xO) < 0 holds trivially. O

D. Strong convexity from Section 5

In this section we prove that the smoothed objective function F),(x) is strongly convex on a strict subset of RVl that contains
x;,, and we provide a lower bound on the strong convexity parameter. The results in this section will be used to obtain a
local running time result for Algorithm B.1.

Although not entirely necessary, we provide an equivalent, but more intuitive, combinatorial description of Algorithm B.1,
as shown in Figure D.1. With this combinatorial interpretation we obtain a trivial upper bound on the gap |z (i) — zx(7)]
for any (¢, j) € E at any point in the sequence {x }7° , generated by Algorithm B.1. We will use it to demonstrate a strong
convexity result for the smoothed objective functions.

The basic setting is as follows. Each node v maintains a height z:(v). For any fixed g € (1, 2], the flow of mass from node u
to node v is determined by the relative heights z(u) and x(v) and a smoothing parameter 1 > 0,

flowg (u, v; 2, 1) = ((2(u) — 2(v))* + p)* 7 (@ (u) — 2(v)).

Therefore, given x and i, the mass and the excess at node v are

m(v;x, 1n) = A(v) + Z flow, (u, v; z, 1),

u~v

ex(v; x,) = max{0, m(v;z, u) — deg(v)}.
One can easily verify that, under these definitions,
—V,F,(z) = m(i;z,) — deg(3),
and that the steps we layout in Figure D.1 are indeed equivalent to the steps in Algorithm B.1.

Let {z1}72, be a sequence generated by Algorithm B.1. Let & > 0 be arbitrary. By Lemma C.5, we know that
ex(i; 2, u) > 0 for all nodes ¢ with nonzero height x (i) > 0. This means that at iteration k¥ when we route a flow around

p-Norm Flow Diffusion for Local Graph Clustering

1. Initially, all nodes have height 0, i.e., 2(v) = 0 for all v.

2. While ex(v; x, i) > 0 for some node v:
(a) Pick any v where ex(v; z,) > 0 uniformly at random.

(b) Route the flow around node v by raising it to a new height

2 CX(U; z, :U’)

o(v) = (o) + =2

3. Return z.

Figure D.1. A combinatorial description of Algorithm B.1

node iy, we never remove more mass from iy, than its current excess ex(ix; T, i), S0 m(v; g, 1) > 0 for all node v. On
the other hand, since the directions of flow, i.e., sign(flow,(u, v; x, 1)), are completely determined by the ordering of
current heights xj, we know that flows cannot cycle. This is because if there is a directed cycle in the induced sub-graph on
supp(Bzy), where edges are oriented according to the directions of flow, then it means that there must exist a set of heights
{zr(7;)} where 2 (i1) < xp(i2) < ... < x(i1), which is not possible. Now, since all nodes have non-negative mass and
there is no cycling of flows, the net flow on any edge (¢, j) € E cannot be larger than the total amount of initial mass |A|
minus one (one is the lowest possible degree of a node in the underlying connected graph),

((w(d) = ar())? + p*)??Han (i) = ()| = [flowy (i, jiax, p)| < |A| =1, forall (i,j) € E. (D.1)

Lemma D.1 (Strong convexity parameter). Let xj, € argmin, s F),(z). We have that
2 *
Fu(y) 2 Ful@) + VE(2)" (y =) + 5 ly = 2[5, Y,y € U}), (D.2)

where
U(a:;) = {:c e RIVI ‘ supp(z) C supp(z},) and (2(i) — () + p® < |APPT2V(i,5) € E} ,
and the strong convexity parameter -y satisfies
1

> .
BT ING

Proof. Recall the second order derivative of F),(z) is
V?F,(z) = BTC(x)B,

where C'(z) is a diagonal matrix of size | E| x |E| whose diagonal entries correspond to edges (i, 7) € E,

C@) iy = (@60 — 22 +52) 272 (g = V(@) — 2())? + 42)
> (g—1) ((2(i) — 2())? + u2) ¥

Let S := supp(z},). Let Bg denote the sub-matrix of B with columns chosen such that they correspond to nodes in

supp(z},). In order to lower bound v, it suffices to lower bound the smallest eigenvalue of BLC(x)Bs forallz € U (z},)-
Note that

mer{}i(gz) Amin(BEC(2)Bs) > Amin(BE Bs) zéﬁi&;;) (i,j)esrﬁlélﬁ(mm[C(x)]“’”’“*”'
Let 5 := (2(i) — 2(j))* + p°, then by definition, s < |A[*’~2 for all 2 € U(z},) and for all (¢, j) € supp(Bz},). Each
diagonal entry in C(z) is lower bounded by a function h(s) = (¢ — 1)s%/2~, and since h/(s) < 0 for all s > 0, we know
that
1
(p—D)|AP=2

C@) gy > h(s) = (g—1) (AP =

min

min min
{L’EU(JL’:‘L) (i,j)eSUpp(Bw;) 0<s<|A|2r—2

p-Norm Flow Diffusion for Local Graph Clustering

Finally, the result follows because

1
Amin BTB > =5
(S S) ‘A‘Q
which can be easily shown by using the local Cheeger-type result in (Chung, 2007). O

Note that the same argument also apply to F’ L(x) as VF,(z) = VF L (z) for all z € U(x},). The strong convexity result
implies that the minimizer of the smoothed objective is unique.

E. Convergence, iteration complexity and running time from Section 5

Theorem E.1 (Convergence). Let x;, denote the optimal solution for the globally smoothed problem (C.1), i.e.,

x;, = argmin F},(v).
x>0

The iterates {x} } 72, generated by Algorithm B.1 converge to x,,. Moreover,

z* = argmin F'(z).
" z>0 #()

Proof. Recall the optimality conditions of (C.1),

(a) Dual feasibility': = > 0;
(b) Primal feasibility: VF,(z) > 0.

(c) Complementary slackness (under primal feasibility): V,;F},(x) < 0 for every ¢ € supp(z).

By the definition of index set Sy, in Algorithm B.1, the iterates zg, x1, T2, ... are monotone, i.e., 0 < z1 < z9 < ..., 50 Tk
satisfies item (a) for all k. By Lemma C.5, x, also satisfies item (c), for all k. We may assume S, # () for all k, as otherwise
Algorithm B.1 terminates with the optimal solution that satisfies item (b). So assume that S, #) for all k, we argue that the

sequence {x, }7° , converges. Suppose not, then by Lemma C.3,

e

- _ 1
Thi1 = Tk — goziy VinFu(@r)es, = o — . Vi Fu(wr)ei,

for all k, and hence by coordinate Lipschitz continuity we get
2
Et(xk-‘rl) < Fu(xk) - ﬁ (vlkﬂt(xk)) s

for all k. Because the sequence of iterates {x}, } ;> , does not converge, the sequence of gradients {V;, F),(xy)} 3, must be
bounded away from zero. This means that the sequence of function values {F),(x)}72 , does not converge, either. But then
this implies that F},(x) is unbounded below, contradicting our assumption that an optimal solution to (C.1) exists. Therefore
the sequence {zj }72 , must converge to a limit point Z. Now, because V F},(x) is continuous, and since each z, satisfies
optimality conditions (a) and (c), £ must also satisfy items (a) and (c). It is easy to see that Z satisfies item (b), too, because
otherwise there must be some x3, where x(7) > Z () for some coordinate ¢, which is not possible. Thus, Z is a minimizer
of F,(z), and by uniqueness we have that 7 = zj,.
1 .

Furthermore, for all 2 such that supp(z) C supp(z},), we have that F},(z) = Fj,(z) — 714(|E| — [supp(Bz},)]), that is,

F,(x) and Fft(x) only differ by a constant. Hence VFllL(x) = VF,(x). But this means that z}, must also satisfy the

optimality conditions of the locally smoothed problem (C.2). This means x7, is also the optimal solution of (C.2). O

A direct result of Theorem E.1 is that we can use F),(z) and F/i (x) interchangeably in the iteration complexity and running
time analysis of Algorithm B.1.

"We call z > 0 dual feasibility because F,(z) smoothes the dual problem of p-norm flow diffusion.

p-Norm Flow Diffusion for Local Graph Clustering

Corollary E.2 (Interchangeability). Let {xy}32 be any sequence of iterates generated by Algorithm B.1. Let F; and F, }i*
be optimal objectives values of (C.1) and (C.2), respectively. Let X := {xy}32 U {x},}. Then for any x € X, we have that

Fu(z) — Fi = Fl(z) - F".

Proof. 1t immediately follows by noting that F}, (z) and F}, (z) differ by a constant value, i.e., F},(z) = Fj,(z) — s pu?(|E| —
supp(Bx*)|), forall z € X. O
[supp(B],

The convergence of monotonic iterates generated by Algorithm B.1 also guarantees that F), () is strongly convex on the
iterates.

Corollary E.3 (Strong convexity on iterates). Let {x}}32, be any sequence of iterates generated by Algorithm B.1. If
p < 1, then F,(z) is strongly convex on X := {wy}32, U {z],}.

Proof. By Lemma D.1, we just need to verify that X C U(z},). Following Theorem E.1, the sequence {z}72 is
monotonically increasing and converges to x},, so supp(xg) C supp(x:;) for all k. It suffices to show that

(x(i) — 2(4))* + 1* < |AP72, V(i,j) € E, VzeX.

We use the flow upper bound (D.1) and the assumption p < 1 to get that, for all z € X and for all (4,5) € E,

(i) = 2(7)* + p) D2 = ((@(i) — 2())* + 1*) > (@) — 2(5))* + p*)?

< (i) = () + 1*) 27 (2 (6) — 2 ()| + p)
= ((2(0) = 2(7))* + p) M (i) — 2()] + ((@(0) — 2())* + 4*)> '
< (i) = () + p®) 2 (i) = 2()] + (1*)*
= (1) = 2(7)* + p*) > (i) — ()| + u? ™"
<JAl-1+1
= 4],

and thus we have
(2(i) = 2(5))® + p? < AP/ = [APP2,

as required. O

Theorem E.4 (Iteration complexity). Let x;, and F; denote the optimal solution and optimal value of (C.1), respectively.
For any k > 1, let xj, denote the kth iterate generated by Algorithm B.1. Let ~y be the strong convexity parameter as
described in Lemma D. 1, and let L,, = MAaX;esupp () L;, where L; = deg(i)u??2 be the coordinate Lipschitz constants

of Fu(x). After K = O(w# log %) iterations, one has
E[F,(zx)] — F; <e

1/q), then after

Furthermore, let F* denote the optimal objective value of (B.2). If we pick . = O ((ﬁ)

7 2/q—1
=0 <|A|d <A> 10g1>
vy € €

iterations, where d = max;esupp(a) deg(7), one has
E[F(LEK/)] — F* S €.
Proof. Using coordinate Lipschitz constants given in Lemma C.3 we have that

Fu(zrgr) = Fu(oe — £ ViFu(er)e) < Fu(er) — £ViFu(ar)® + 55 ViFu(or)? = Fu(or) — 55 ViFu(ar)?.

p-Norm Flow Diffusion for Local Graph Clustering

Let Lg, := max;cgs, L;, and take conditional expectation

E[Fu(zrs1) | 24] < Fulzr) = 5) 1oy 1 ViFu(ew)”
iev
= F,(zy) QIékl L%VzFu(xk)z
1ESk
< Fu(zg) — WHV&F#(%M@
< Fu(zy) — mllvﬂ(rk)lli

From strong convexity of F,(z) on {z}72, U {z},} (Lemma D.1 and Corollary E.3) we have that
IVEu(zi)ll3 < 2v(Fu(ar) — Fp).

Therefore, we get
E[Fu(@rin) | 2] < Fuler) = reps (Fu(ze) = o),

and so
B[Ry o] = B < (U= sy) (Fulow) =).

Note that Sj, € supp(z},), thus [Si| < |supp(z})| < [supp(Bz},)| < [A|. Let L, := maX;esupp(az) Li» then L, > Lg,.
Using these simple inequalities we get

E[Fu(arin) 2] = By < (1= 5) (Fuox) = F).

Take conditional expectations over all x5_1, T—2, ..., T1, To We get

k
E (o))~ Fr < (1= iz) (Fulao) = F).

Therefore, after K = O (% log %) iterations, one has

E[F, (e1)] - F} <

Nl

Using Corollary E.2 we get that, after K iterations,

)

E[F. (21)] — Fi* = E[Fu(ai)] - F} <

rolm

where F}L* is the optimal objective value of (C.2). It then follows from Lemma C.2 that
E[F(ex)) — F* < E[FL(ax)] - Fi + LAl < §+ 1u9|A],

Hence setting u = O ((ﬁ) 1 ?) gives the required iteration complexity. O

Corollary E.5 (Running time). Ifwe pick p = O ((ﬁ) Y q), the total running time of Algorithm B.1 to obtain an € accurate
solution of (B.2) is O(% (@)2/(171 log 1).

€

Proof. This is straightforward by noticing that at each step in Algorithm B.1, we touch only the nodes j such that j ~ g,
for updating gradient vector to VF),(2+1) and for obtaining Sy . O

p-Norm Flow Diffusion for Local Graph Clustering

F. Empirical Set-up and Results
F.1. Computing platform and implementation detail

We implemented Algorithm B.1 in Julia’>. When p = ¢ = 2, the objective function of the regularized g-norm cut
problem (B.2) has coordinate Lipschitz constants L; = deg(i), therefore we can directly solve (B.2) in linear and strongly
local running time. As discussed earlier, coordinate methods enjoy a natural combinatorial interpretation as routing mass in
the underlying graph. Algorithm F.1 provides a direct specialization of Algorithm B.1 to the case ¢ = 2, where we describe
the algorithmic steps in the equivalent combinatorial setting as diffusing excess mass in the graph.

Algorithm F.1 Coordinate solver for (B.2) when g = 2

1. Initially, 2(v) = 0 and ex(v) = max{A(v) — deg(v),0} forallv € V.
2. While ex(v) > 0 for some node v:

(a) Pick any v where ex(v) > 0.
(b) Apply push(v).

3. Return x.

push(v):

Make the following updates:
I. z(v) + z(v) + ex(v)/ deg(v).
2. ex(v) « 0.

3. For each node u ~ v: ex(u) + ex(u) + ex(v)/ deg(v).

For general p > 2 and 1 < ¢ < 2, our implementation adds an additional line-search step. More specifically, instead of
using the fixed step-sizes 12~%/ deg(is,) given in Algorithm B.1, we use binary search to find step-sizes oy, such that

Vi F, (xk — akvikFu(a:k)eik) =0.

This leads to coordinate minimization steps that can improve practical convergence. Computing the required step-sizes oy,
through binary line-search is possible because the partial gradients are monotone (cf. Lemma C.4).

Finally, for efficient implementation that avoids iteratively sampling with replacement the indices for coordinate updates,
we adopt a sampling without replacement approach that is seen in random-permutation cyclic coordinate updates (Lee &
Wright, 2018). That is, every time an index set Sy, is constructed, we loop over all coordinates in Sy, randomly without
replacement, before computing a new index set Sy 1.

F.2. Diffusion on a dumbbell

The best way to visualize p-norm flow diffusions for various p values is to start the diffusion processes on the same graph
and the same set of seed nodes, with equal amount of initial mass. To this end, we run p-norm diffusions for p € {2, 4, 8}
on a synthetic small scale “dumbbell” graph obtained by removing edges from a 7 x 7 grid graph. We pick a single seed
node which locates on one side of the “bridge”, and set |A| = 121. For each p, we plot optimal dual variables in Figure F.1,
where we use color intensities and circle sizes to indicate the relative magnitude of dual values, i.e., brighter colors and
larger circles size represent higher dual values for a fixed p, and no circle means the corresponding node has zero dual value.

Recall that a dual variable is nonzero only if the corresponding node is saturated (i.e., the mass it holds equals its degree).
Observe that 2-norm diffusion leaks a lot of mass to the other side of dumbbell, whereas 4-norm and 8-norm diffusions
saturate entire left-hand side, without leaking much mass to the right. The reason that this happens is because p = 4 and
p = 8 put significantly larger penalty on the flow that passes through the “bridge”, making it difficult to send mass over to
the other side.

2Qur code is available at https: //github.com/s-h-yang/pNormFlowDiffusion.

https://github.com/s-h-yang/pNormFlowDiffusion

p-Norm Flow Diffusion for Local Graph Clustering

(a) 2-norm diffusion (b) 4-norm diffusion (c¢) 8-norm diffusion

Figure F 1. Diffusion on a dumbbell: color intensities and circle sizes are chosen to reflect relative magnitude of optimal dual variables

Note that, if we were to perform the sweep cut procedure described in Section 4, then 2-norm diffusion would fail to recover
the “correct” cluster, while both 4-norm and 8-norm diffusions return the entire left-hand side of dumbbell, which is the best
possible result in terms of low conductance. Although this example is overly simplistic, it does demonstrate that p-norm
flow diffusion with higher p values are more sensitive to bottlenecks when routing mass around a seed node, and, on the
other hand, it is possible to overcome such bottleneck even when p is slightly larger than 2, say p = 4 and p = 8. Indeed,
our subsequent experiments show that there is already a significant improvement in the context of local graph clustering,
when raising p = 2top = 4.

F.3. Missing plots from LFR synthetic experiments

The following experiment on an LFR synthetic graph with » = 0.3 demonstrates that, not surprisingly, the more overlap
between an initial set of seed nodes and the target cluster, the better result we can get from p-norm flow diffusion. Note that
the parameter ;1 = 0.3 means that 30% of all edges of a node from some target cluster links to the outside of that cluster.
Because of such noise level, the goal is not to recover the ground truth exactly, but to obtain a cluster that overlaps well with
the target (e.g., has a good F1 score). We have chosen ;1 = 0.3 because it represents reasonably noisy clusters that are not
completely noise. For target clusters that have lower conductance and are connected better internally, the results of p-norm
diffusion are already very good even when we start from a singe node (cf. Figure 2).

We randomly pick a set of seed nodes .S from some target cluster C' in the graph and vary the percentage overlap of S in C,
i.e., |S]/|C|. Note that this results in different values of « in Theorem 2. Then for each p € {2, 4, 8}, we run p-norm flow
diffusion and use the sweep cut procedure to find a smallest conductance cluster. Figure F.2 shows the mean and the variance
for the conductance and the F1 measure while varying the ratio |S|/|C|. As expected, as the percentage overlap |S|/|C]|
increases, which also means « decreases, we recover clusters with lower conductances and higher F1 scores. Observe that
we have a large gap in both conductance and F1 measure when p = 2 is increased to p = 4, but while there is some gain in
raising from p = 4 to p = §, but it is very marginal.

0.5r 0.95¢
-o-p=2
E -4 0.9f
0.45| -
8 “p=8 4t 2085
s - - ground trut 7
o 041 T 08
>
2 E 0.75
e} L o
O 0.35 w “p=2
0.7 D=4
03fF --======---=--- - mm - - - 0.65} -e—p =8
1% 5% 10% 15% 20% 1% 5% 10% 15% 20%
Overlap Overlap

Figure F.2. The conductance and the F1 measure on varying overlaps on an LFR synthetic graph. The black dashed line show ground truth
conductance. The bands show the variation over 100 trials.

p-Norm Flow Diffusion for Local Graph Clustering

F.4. Datasets

To compare the performances of different methods on graph clustering tasks, we use four real datasets consisting of both
social and biological networks. The graphs that we consider are all unweighted and undirected. Table F.1 shows some basic
characteristics of these graphs.

Table F.1. Summary of real-world graphs

dataset number of nodes number of edges description
FB-Johns55 5157 186572 Facebook social network for Johns Hopkins University
Colgate88 3482 155043 Facebook social network for Colgate University
Sfid 232 15570 Pairwise similarities of blasted sequences of proteins
Orkut 3072441 117185083 Large-scale on-line social network

The two Facebook graphs are chosen from the Facebook100 dataset based on their assortativity values in the first column
of Table A.2 in (Traud et al., 2012), where the data were first introduced and analyzed. Each of these comes with some
features, e.g., gender, dorm, major index and year. We consider a set of nodes with the same feature as a ground truth cluster,
and filter the “ground truth” clusters by setting a 0.6 threshold on maximum conductance. We also omit clusters whose
volume is larger than one third of the volume of the entire graph, since discovering clusters whose sizes are close to the
entire graph is not the purpose of local clustering.

The biology dataset Sfld contains pairwise similarities of blasted sequences of 232 proteins belonging to the amidohydrolase
superfamily (Brown et al., 2006). A gold standard is provided describing families within the given superfamily. According
to the gold standard the amidrohydrolase superfamily contains 29 families. We consider each family as a ground truth
cluster, and filter them by setting a 0.9 threshold on the maximum conductance.

The last dataset Orkut is a free on-line social network where users form friendship each other. It can be downloaded
from (Leskovec & Krevl, 2014). This network comes with 5000 ground truth communities, which we filter by setting
minimum community size 50, maximum cut conductance 0.5, and minimum ratio between internal connectivity (i.e., the
smallest nonzero eigenvalue of the normalized Laplacian of the subgraph defined by the cluster) and cut conductance to
0.85. This resulted in 11 reasonably noisy clusters, having conductances between 0.4 and 0.5.

We include the statistics of all ground truth clusters that we used in the experiments in Table F.2.

F.5. Methods and parameter setting

We compare the performance of p-norm flow diffusion with ¢;-regularized PageRank (Fountoulakis et al., 2017) and
nonlinear diffusion under power transfer (Ibrahim & Gleich, 2019). Given a starting node v, teleportation probability «, and
tolerance parameter p, the ¢;-regularized PageRank is an optimization problem whose optimal solution is an approximate
personalized PageRank (APPR) vector (Andersen et al., 2006). This ¢;-regularized variational formulation allow us to apply
coordinate method and obtain an APPR vector in linear and strongly local running time. The nonlinear diffusion model
applies a nonlinear transformation to node values after each matrix-vector products between the Laplacian matrix and the
current node values. Since it is demonstrated in (Ibrahim & Gleich, 2019) that a nonlinear transfer defined by the power
function u — u*-> has the best overall performance when compared to other nonlinear functions like tanh or heat kernel,
we only compare p-norm flow diffusion with nonlinear diffusion governed by this power function. We choose p € {2, 4} for
p-norm diffusion and demonstrate the advantage of our method even when p is a small constant.

Our goal here is to compare the behaviour of different algorithms under a unified setting, and not to fine tune any particular
model. Therefore, we always start p-norm diffusion from a single seed node, and set |A| = ¢ - vol(C') for some constant
factor ¢ and some target cluster C' (recall from Assumption 1 this is WLOG). In particular, on the Facebook datasets we set
t = 3 because the target clusters already have a large volume, and on Orkut dataset we set £ = 5. On the other hand, because
the clusters in Sfld are very noisy, we vary ¢t € {1,2,...,10} and pick the cluster with the lowest conductance. In all cases,
we make sure the choice of ¢ is such that |A] is less than the volume of the whole graph. For the nonlinear diffusion model
with power transfer, we use the same parameter setting as what the authors suggested in (Ibrahim & Gleich, 2019). The
{1 -regularized PageRank is the only linear model here for comparison, so we allow it to use ground truth information to
choose the teleportation parameter « giving the best conductance result. We tune « by picking o € {\/8,\/4, A/2, A, 2)},
where) is the smallest nonzero eigenvalue of the normalized Laplacian for the subgraph that corresponds to the target cluster.

p-Norm Flow Diffusion for Local Graph Clustering

Table F.2. Filtered “ground truth” clusters for real-world graphs

dataset feature volume nodes conductance
year 2006 81893 845 0.54
year 2007 89021 842 0.49
FB-Johns55 year 2008 82934 926 0.39
year 2009 33059 910 0.21
major index 217 10697 201 0.26
year 2004 14888 230 0.54
year 2005 50643 501 0.50
year 2006 62065 557 0.48
Colgate88 year 2007 68382 589 0.41
year 2008 62430 641 0.29
year 2009 35379 641 0.11
urease 31646 100 0.42
AMP 3186 28 0.53
Sfid phosphotriesterase 381 7 0.78
adenosine 1062 10 0.83
dihydroorotase3 494 7 0.83
dihydroorotase2 3119 13 0.90
A 49767 383 0.42
B 31912 202 0.45
C 16022 141 0.45
D 11698 113 0.46
E 26248 194 0.47
orkut F 4617 64 0.47
G 13786 128 0.47
H 14109 107 0.48
| 18652 195 0.49
J 41612 318 0.50
K 20204 223 0.50

Since the support size of APPR vector is bounded by 1/p (Fountoulakis et al., 2017), and the support size of dual variables
for p-norm diffusion is bounded by |A|, for comparison purposes, we set the tolerance parameter p for ¢;-regularized
PageRank so that p = 1/|A].

F.6. Additional discussion

The clustering results are already listed in Table 1 in the main text. We comment on some observations from the results of
the biological dataset Sfld. The six ground truth clusters in this dataset are very noisy, having median conductance around
0.8. Hence it is highly likely that a ground truth cluster is contained in some larger sets (but not one of the 29 true families)
that have much lower conductances. This partially explains why nonlinear power diffusion returns low conductance clusters
but has poor recovery performance in terms of F1 measures. Note that the nonlinear diffusion model is the only global
method that we compare with. Both p-norm flow diffusions and ¢;-regularized PageRank are local methods, and they take
advantage of locality to find local clusters that align well with the ground truth. Therefore, the results for the Sfld dataset
demonstrate the advantage of local methods at recovering relatively small ground truth clusters.

References

Andersen, R., Chung, F., and Lang, K. Local graph partitioning using pagerank vectors. FOCS 06 Proceedings of the 47th
Annual IEEE Symposium on Foundations of Computer Science, pp. 475-486, 2006.

Brown, S. D., Gerlt, J. A., Seffernick, J. L., and Babbitt, P. C. A gold standard set of mechanistically diverse enzyme
superfamilies. Genome biology, 7(1):R8, 2006.

Chung, F. Random walks and local cuts in graphs. Linear Algebra and its Applications, 423(1):22-32, 2007. ISSN
0024-3795. Special Issue devoted to papers presented at the Aveiro Workshop on Graph Spectra.

p-Norm Flow Diffusion for Local Graph Clustering

Fountoulakis, K., Roosta-Khorasani, F., Shun, J., Cheng, X., and Mahoney, M. W. Variational perspective on local graph
clustering. Mathematical Programming, 174:553-573, 2017.

Ibrahim, R. and Gleich, D. Nonlinear diffusion for community detection and semi-supervised learning. WWW’19: The
World Wide Web Conference, pp. 739-750, 2019.

Lee, C. and Wright, S. J. Random permutations fix a worst case for cyclic coordinate descent. IMA Journal of Numerical
Analysis, 39(3):1246-1275, July 2018. ISSN 0272-4979.

Leskovec, J. and Krevl, A. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/
data, June 2014.

Traud, A. L., Mucha, P. J., and Porter, M. A. Social structure of facebook networks. Physica A: Statistical Mechanics and
its Applications, 391(16):4165-4180, 2012.

http://snap.stanford.edu/data
http://snap.stanford.edu/data

