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Abstract

We introduce a new algorithm for online linear-
quadratic control in a known system subject to
adversarial disturbances. Existing regret bounds
for this setting scale as /T unless strong stochas-
tic assumptions are imposed on the disturbance
process. We give the first algorithm with logarith-
mic regret for arbitrary adversarial disturbance
sequences, provided the state and control costs
are given by known quadratic functions. Our algo-
rithm and analysis use a characterization for the
optimal offline control law to reduce the online
control problem to (delayed) online learning with
approximate advantage functions. Compared to
previous techniques, our approach does not need
to control movement costs for the iterates, leading
to logarithmic regret.

1. Introduction

Reinforcement learning and control consider the behavior
of an agent making decisions in a dynamic environment
in order to suffer minimal loss. In light of recent practical
breakthroughs in data-driven approaches to continuous RL
and control (Lillicrap et al., 2016; Mnih et al., 2015; Silver
et al., 2017), there is great interest in applying these tech-
niques in real-world decision making applications. However,
to reliably deploy data-driven RL and control in physical
systems such as self-driving cars, it is critical to develop
principled algorithms with provable safety and robustness
guarantees. At the same time, algorithms should not be
overly pessimistic, and should be able to take advantage of
benign environments whenever possible.

In this paper we develop algorithms for online linear-
quadratic control which ensure robust worst-case perfor-
mance while optimally adapting to the environment at hand.
Linear control has traditionally been studied in settings
where the dynamics of the environment are either governed
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by a well-behaved stochastic process or driven by a worst-
case process to which the learner must remain robust in
the Ho, sense. We consider an intermediate approach in-
troduced by Agarwal et al. (2019a) in which disturbances
are non-stochastic but performance is evaluated in terms
of regret. This benchmark forces the learner’s control pol-
icy to achieve near optimal performance on any specific
disturbance process encountered.

Concretely, we consider a setting in which the state evolves
according to linear dynamics:

Ty = Axy + Bug + wy, (D

where z; € R% are states, u; € R% are inputs, and
A e R&*dx and B € R%&*% are system matrices known
to the learner. We refer to w; € R% as the disturbance
(or, “noise”), which we assume is selected by an adaptive
adversary and satisfies ||w;| < 1; we let w refer to the en-
tire sequence wy.7. We consider fixed quadratic costs of
the form ¢(x,u) = 2" Ryx + " R,u, where R, R, > 0
are given. This model encompasses noise which is uncor-
related (H2), worst-case (Ho ), or governed by some non-
stationary stochastic process. The model also approximates
control techniques such as feedback linearization and tra-
jectory tracking (Slotine & Li, 1991), where A and B are
the result of linearizing a known nonlinear system and the
disturbances arise due to systematic errors in linearization
rather than from a benign noise process.

For any policy 7 that selects controls based on the current
state and disturbances observed so far, we measure its per-
formance over a time horizon 7" by

T
Jr(mw) = 3 0], up),
t=1

the total cost incurred by following u; = (2, w1:-1).
Letting 7€ denote a state-feedback control law of the form
7K (x) = =K for all t, the learning algorithm’s goal is to
minimize

Regy = Jr ("% w) - inf Jr (™ w),

where 72!¢ denotes the learner’s policy and K is an appro-
priately defined set of stabilizing controllers. Thus, 7% has
low regret when its performance nearly matches the optimal
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controller K € K on the specific, realized noise sequence.
While the class /C contains the optimal H., and Hs control
policies, we also develop algorithms to compete with a more
general class of stabilizing linear controllers, which may
fare better for certain noise sequences (Appendix B).

Logarithmic regret in online control. Agarwal et al.
(2019a) introduced the adversarial LQR setting we study
and provided an efficient algorithm with \/T-regret. Sub-
sequent works (Agarwal et al., 2019b; Simchowitz et al.,
2020) have shown that logarithmic regret is possible when
the disturbances follow a semi-adversarial process with per-
sistent excitation. Our main result is to achieve logarithmic
regret for fully adversarial disturbances, provided that costs
are known and quadratic.

1.1. Contributions

We introduce Riccatitron (Algorithm 1), a new algorithm for
online linear control with adversarial disturbances which
attains polylogarithmic regret.

Theorem 1 (informal). Riccatitron atrains regret
O(log3 T), where O hides factors polynomial in relevant
problem parameters.

Riccatitron has comparable computational efficiency to pre-
vious methods. We show in Appendix B that the algorithm
also extends to a more general benchmark class of linear con-
trollers with internal state, and to “tracking” loss functions
of the form 4;(z,u) := £(x — as,u — b;). Some conceptual
contributions are as follows.

When is logarithmic regret possible in online control?
Simchowitz & Foster (2020) and Cassel et al. (2020) inde-
pendently show that logarithmic regret is impossible in a
minimax sense if the system matrices (A, B) are unknown,
even when disturbances are 1.i.d. gaussian. Conversely, our
result shows that if A and B are known, logarithmic regret is
possible even when disturbances are adversarial. Together,
these results paint a clear picture of when logarithmic regret
is achievable in online linear control. We note, however, that
our approach heavily leverages the structure of linear con-
trol with strongly convex, quadratic costs. We refer the to
the related work section for discussion of further structural
assumptions that facilitate logarithmic regret.

Addressing trajectory mismatch. Riccatitron represents
a new approach to a problem we call trajectory mismatch
that arises when considering policy regret in online learning
problems with state. In dynamic environments, different
policies inevitably visit different state trajectories. Low-
regret algorithms must address the mismatch between the
performance of the learner’s policy 7€ on its own realized
trajectory and the performance of each benchmark policy 7

on the alternative trajectories it induces. Most algorithms
with policy regret guarantees (Even-Dar et al., 2009; Zimin
& Neu, 2013; Abbasi-Yadkori et al., 2013; Arora et al., 2012;
Anava et al., 2015; Abbasi-Yadkori et al., 2014; Cohen et al.,
2018; Agarwal et al., 2019a;b; Simchowitz et al., 2020)
adopt an approach to addressing this trajectory mismatch
that we refer to as “online learning with stationary costs”,
or OLwS. At each round ¢, the learner’s adaptive policy
78 commits to a policy (), typically from a benchmark
class II. The goal is to ensure that the iterates 7(*) attain
low regret on a proxy sequence of stationary cost functions
7 +— Ay (7) that describe the loss the learner would suffer
at stage ¢ under the fictional trajectory that would arise if
she had played the policy 7 at all stages up to time ¢ (or in
some cases, on the corresponding steady-state trajectory as
t — 00). Since the stationary cost does not depend on the
learner’s state, low regret on the sequence {\;} can be ob-
tained by feeding these losses directly into a standard online
learning algorithm. To relate regret on the proxy sequence
back to regret on the true sequence, most approaches use that
the iterates produced by the online learner are sufficiently
slow-moving.

The main technical challenge Riccatitron overcomes is that
for the stationary costs that arise in our setting, no known
algorithm produces iterates which move sufficiently slowly
to yield logarithmic regret via OLwS (Appendix C.4). We
adopt a new approach for online control we call online learn-
ing with advantages, or OLWA, which abandons stationary
costs, and instead considers the control-theoretic advan-
tages of actions relative to the unconstrained offline optimal
policy 7*. Somewhat miraculously, we find that these ad-
vantages remove the explicit dependence on the learner’s
state, thereby eliminating the issue of trajectory mismatch
described above. In particular, unlike OLWS, we do not need
to verify that the iterates produced by our algorithm change
slowly.

1.2. Our approach: Online learning with advantages

In this section we sketch the online learning with advan-
tages (OLwA) technique underlying Riccatitron. Let 7 de-
note the optimal unconstrained policy given knowledge of
the entire disturbance sequence w, and let Q; (x,u; w)
be the associated Q-function (this quantity is formally de-
fined in Definition 3). The advantage' with respect to
7, Af (u; 2, w) = Qf (z, u; w)—Qf (w, u, 7™ (z); w), de-
scribes the difference between the total cost accumulated
by selecting action u in state z at time ¢ and subsequently
playing according to the optimal policy 7*, versus choosing
uy = 7, (z;w) as well. By the well-known performance dif-

'Since we use losses rather than rewards, “advantage” refers to
the advantage of w* over u rather than the advantage of u over 7*;
the latter terminology is more common in reinforcement learning.
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ference lemma (Kakade, 2003), the relative cost of a policy
is equal the sum of the advantages under the states visited
by said policy:?

T
Jr(mw) - Jr(r*;w) = ZA:(uf;xf,w). 2)
=1

With this observation, the regret Reg,(72!¢; w, IT) of any
algorithm 7®2 to a policy class IT can be expressed as:

T T
Z A;(utalg; x?lg,w) — inf Z Af(ul;2],w).  (3)
t=1 mell j 29

The expression (3) suggests that a reasonable approach
might be to run an online learner on the functions 7 +
Ay (uf;z7, w). However, there are two issues. First, the
advantages in the first sum are evaluated on the states x?lg
under 728, and in the second sum under the comparator
trajectories x™ (trajectory mismatch). Second, like 7* itself,
the advantages require knowledge of all future disturbances,
which are not yet known to the learner at time . We show
that if the control policies are parametrized using a particu-
lar optimal control law, the advantages do not depend on the
state, and can be approximated using only finite lookahead.

Theorem 2 (informal). For control policies T with a suit-
able parametrization, the mapping ™ —~ A (uf;z],w)
can be arbitrarilily-well approximated by a function 7™ —
Kt;h(w; W1sn ) Which (1) does not depend on the state, (2)
can be determined by the learner at time t + h, and (3) has
a simple quadratic structure.

The “magic” behind this theorem is that the functional de-
pendence of the unconstrained optimal policy 7* (x; w) on
the state x is linear, and does not depend w (Theorem 3).
As a consequence, the state-dependent portion of 7* can
be built into the controller parametrization, leaving only
the w-dependent portion up to the online learner. In light
of this result, we use online learning to ensure low regret
on the sequence of loss functions f;(7) := Kt;h(w; Witn )
we address the fact that f; is only revealed to the learner
after a delay of h steps via a standard reduction (Joulani
et al., 2013). We then show that for an appropriate controller
parameterization f;(7) is exp-concave with respective to
the learner’s policy and hence second-order online learning
algorithms attain logarithmic regret (Hazan et al., 2007).

We refer the reader to Appendix C for an in-depth overview
of the OLwS framework, its relationship to OLwA, and chal-
lenges associated with using these techniques to achieve
logarithmic regret.

?See Lemma D.12 in Appendix E for a general statement of the
performance difference lemma. The invocation of the performance
difference lemma here is slightly different from other results on
online learning in MDPs such as Even-Dar et al. (2009), in that
the role of 7 and 7 is swapped.

1.3. Preliminaries

We consider the linear control setting in (1). For normaliza-
tion, we assume |wy| < 1 V¢. We also assume 1 = 0.

Policies and trajectories. We consider policies 7 param-
eterized as functions of x; and w via u; = m¢(x; w). We
assume that, when selecting action u; at time ¢, the learner
has access to all states x1.;,u1.+—1, as well as wy.4—1 (the
latter assumption is without loss of generality by the iden-
tity ws = €541 — Azs — Bug). Thus, a policy is said to be
executable if 7, (z;w) depends only on x and w141, i.€.
m(x;w) = m(w;wiy—1). For analysis purposes, we also
consider non-executable whose value at time ¢ may depend
on the entire sequence w. For a policy 7 and sequence
w, we let 27 (w), u] (w) denote the resulting states and
input trajectories (which we note depend only on wy.;—1).
For simplicity, we often write 7 and uj, supressing the
w-dependence. We shall let 72! refer to the policy selected
by the learner’s algorithm, and use the shorthand z} lg (w),
u?lg (w) to denote the corresponding trajectories. Given a
class of policies II, the regret of the policy 78 is given by

Regy (778, 11, w) = Jr(7™8;w) - inrf[ Jr(mw).

We consider a benchmark class of policies induced by state
feedback control laws 7% (x) = -~ Kz, indexed by matrices
K e Rbuwxdx,

Linear control theory. We say that a linear controller
K e R%udx is stabilizing if A~ BK is stable, that is p(A -
BK) < 1 where p(-) denotes the spectral radius.> We
assume the system (A, B) is stabilizable in the sense that
there exists a stabilizing controller K. For any stabilizable
system, there is a unique positive semidefinite solution P, >
0 to the discrete algebraic Riccati equation (henceforth,
DARE),

P=A"PA+R,-A"PB(R,+B"PB)'B"PA. (4)

The solution P, to (4) is an intrinsic property of the sys-
tem (1) with (A, B) and characterizes the optimal infinite-
horizon cost for control in the absence of noise (Bertsekas,
2005). Our algorithms and analysis make use of this param-
eter, as well as the corresponding optimal state feedback
controller K, := (R, + BT P,,B) ! BT P,, A. We also use
the steady-state covariance matrix X, := R, + B' P, B and
closed-loop dynamics matrix A e = A - BKo.

Competing with state feedback. While K, represents
the (asymptotically) optimal control law in the presense of
uncorrelated, unbiased stochastic noise, aHe may not be

*For a possibly asymmetric matrix A, p(4) =

max{|\| | A is an eigenvalue for A}.
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the optimal state feedback policy in hindsight for a given se-
quence of adversarial perturbations w;. Hence, we compete
with linear controllers that satisfy a quantitative version of
the stability property.

Definition 1 (Strong Stability (Cohen et al., 2018)). We
say that A — BK € R%*x s (1, ~)-strongly stable if there
exists matrices H, L € R**% gych that A-BK = HLH™,
HH”OPHHH;Il) <kand |L|op <.

Given parameters ( kg, Yo ), we consider the benchmark class
Ko = {HKHOP < ko A— BK is (ko,70)-strongly stable}.

Lemma D.1 (Appendix D.1) shows that the closed-loop
dynamics for K, are always (Koo, Yoo )-strongly stable for
suitable 7., Keo. We assume that /Cy is chosen such that
Koo < Ko and Yoo < 70.* Our algorithms minimize policy
regret to the class of induced policies for Kg:

Ko-Regy ("% w) = Jr (x5 w) - inf Jr(x";w).
€Xo

Problem parameters. Our regret bounds depend on the
following basic parameters for the LQR problem:

W, = max{L, | Al s [ Blops | Belops [ Rulop ) B =
max{1, Al (Ru), Apin (Re) } T = max{1, | Pool o, }-
Additional notation. We adopt non-asymptotic big-oh
notation: For functions f,g: X — R,, we write f = O(g)
if there exists some constant C' > 0 such that f(z) < Cg(x)
for all z € X. We use O(-) so suppress logarithmic
dependence on system parameters, and we use O,(-) to
suppress all dependence on system parameters. For a
vector z € R?, we let |z| denote the euclidean norm
and ||z||,, denote the element-wise ¢, norm. For a ma-
trix A, we let | A[,, denote the operator norm. If A is
symmetric, we let A\pnin(A) denote the minimum eigen-
value. When P > (0 is a positive definite matrix, we let
|| p = \/{x, Pz) denote the induced weighted euclidean
norm. We et w;_1 = (wy-1, W2, ...,w1,0,0,...) denote
a sequence of past ws, terminating in an infinite sequence
of zeros. To simplify indexing, we let ws = 0 for s < 0, so
that w;—1 = (wi_1,We—2,...) We also let ws =0 for s > T

1.4. Organization

Section 2 introduces the Riccatitron algorithm, states its
formal regret guarantee, and gives an overview of the al-
gorithm’s building blocks and proof techniques. Section 3
gives a high-level proof of the key “approximate advantage”
theorem used by the algorithm. Omitted proofs are deferred
to Appendix E and Appendix F, and additional technical
tools stated and proven in Appendix D.

*This assumption only serves to keep notation compact.

Appendix A gives a detailed survey of related work. Ap-
pendix B sketches extensions of Riccatitron to more gen-
eral settings, and Appendix C gives a detailed survey of
challenges associated with applying previous approaches to
online reinforcement learning to obtain logarithmic regret
in our setting.

2. Logarithmic regret for online linear control

Our main algorithm, Riccatitron, is described in Algorithm 1.
The algorithm combines several ideas.

1. Following Agarwal et al. (2019a), we move from linear
policies of the form 7% (z;w) = ~Kz, to a relaxed
set of disturbance-action (DAP) policies of the form

7T1§M) (LU; w) =-Kex - qM(wt,l), where

qM(wt—l) = Z M[i]wt—h

i=1
and where K, is linear controller from the DARE (4).

2. We show that the optimal unconstrained policy with
full knowledge of the sequence w takes the form
7w (z;w) = -Kix — qf (wer ), where (K3) is a par-
ticular sequence of linear controllers that arises from
the so-called Riccati recursion. We then show that for
any policy of the form 7 (z; w) = —Ko — ¢:(w)—in
particular, for the DAP parameterization above—the
advantage functions A; (u];z],w) can be well ap-
proximated by simple quadratic functions of the form

" 2
lgr(w) = q; (weer) 5.

This essentially removes the learner’s state from the
equation, and reduces the problem of control to
that of predicting the optimal controller’s bias vector
q; (wer). The remaining challenge is that the optimal
bias vectors depend on the future disturbances, which
are not available to the learner at time ¢.

3. We show that the advantages can be truncated to re-
quire only finite lookahead, thereby reducing the prob-
lem to online learning with delayed feedback. We then
apply a reduction from delayed online learning to clas-
sical online learning (Joulani et al., 2013), which pro-
ceeds by running multiple copies of a base online learn-
ing algorithm over separate subsequences of rounds.

4. Finally—using the structure of the disturbance-action
parameterization—we show that the resulting online
learning problem is exp-concave. As a result, we can
use a second-order online learning algorithm—either
online Newton step (ONS, Hazan et al. (2007)) given
in Algorithm 2, or Vovk-Azoury-Warmuth (VAW, Vovk
(1998); Azoury & Warmuth (2001)) given in Algo-
rithm 3—as our base learner to obtain logarithmic re-
gret.
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Algorithm 1 Riccatitron
1: parameters:
Horizon h, DAP length m, radius R, decay factor ~.
Online Newton parameters 7ons, Eonss
or Vovk-Azoury-Warmuth parameter e,y
2: initialize:
Let Mg < M(m, R,v) (Eq. 5).
Instantiate base learners BL(l)7 R BL"*Y a5 either
ONS(&ons; Tons, Mo) or VAW (eyaw, Mo, Xoo ).
3: Letry =(t—1) mod (h+1)+1e[h+1].
4: fort=1,...,7T:do
// Predict using base learner 7.
5: Let M; denote the k;-th iterate produced
by BLU®) where k; < [t/(h+1)].
6: Play u; = Kooz — g™t (w,_1) (Definition 2).
7: Observe x;41 and wy.

// Update base learner 7iii.
8: ift > h + 1 then

// Approximate advantage from Eq. (10).

Update BL™**V) with A (M;w;).

b

Together, these components give rise to the scheme in
Algorithm 1. At time ¢, the algorithm plays the action
up = ~Kooxs — g™t (wy_1), where M, is provided by the
ONS (or VAW) instance responsible for the current round.
The algorithm then observes w; and uses this to form the
approximate advantage function for time ¢ — h, where h is
the lookahead distance. The advantage is then used to up-
date the ONS/VAW instance responsible for the next round.
The main regret guarantee for this approach is as follows.

Theorem 1. For an appropriate choice of parameters, Ric-
catitron ensures

Ko-Regp < O, (dxdylog® T,

where O, suppresses polynomial dependence on system
parameters. Suppressing only logarithmic dependence on
system parameters, the regret is at most

O(dxdylog® T+ B ET kG (1 - 70) ™).

In the remainder of this section we overview the algorithmic
building blocks of Riccatitron and the key ideas of the proof.

2.1. Disturbance-action policies

Cost functionals parametrized by state feedback controllers
(e.g., K v Jp(7¥;w)) are generally non-convex (Fazel
et al., 2018). To enable the use of tools from online convex
optimization, we use a convex disturbance-action controller
parameterization introduced by Agarwal et al. (2019a).

Algorithm 2 Online Newton Step (ONS(¢e,7,C, X))

1: parameters: Learning rate n > 0, regularization param-
eter € > 0, convex constraint set C.

// OCO with exp-concave costs fi(z), where zeCcR?.
initialize: d < dim(C), z1 €C, Ey < ¢+ I.
fork=1,2,...:do

Play z, and receive gradient Vi, := V fi. (21 ).

Ey < Ep_ 1+ Vkvz.

Zhtl < 2k — nE;lvk.

. ~ 2
Zps1 < argmin e ||z - Z HE’k

NN RPN

Deﬁnltlon 2 (Disturbance-action policy (DAP)). Let M =
(MUY™ denote a sequence of matrices MU ¢ R%u*x
We define the corresponding disturbance-action policy 7™ )
as Wt(M)(:L'; w) = ~Koox— ¢ (wyi_1), where ¢M (w;_1) =
Y M,

We work with DAPs for which the sequence M belongs to
the set

M(m, R,y)i= {M = (MU, | MY, < Ry,
&)
where m, R, and «y are algorithm parameters. We note that
DAPs can be defined with general stabilizing controllers
K # K, but the choice K = K, is critical in the design
and analysis of our main algorithm.

The first lemma we require is a variant of a result of Agarwal
et al. (2019a), which shows that disturbance-action policies
are sufficiently rich enough to approximate all state feedback
laws.

Lemma 2.1 (Expressivity of DAP). Suppose we choose our
set of disturbance-action matrices as Mg := M(m, R«,70),
where m = (1 — ) tlog((1 — 7)7'7) and R, =
28,U2T, k3. Then for all w, we have

inf  Jp(7®™);w) < mf JT(7r

cw) + C
MeMg )+ Capx;

where Copx < O(B2UET 2K (1 - 70)72).

We refer the reader to Appendix E.2 for a proof. Going
forward, we define

D, =O(8P U5 (1-90)"). ©)

which serves as an upper bound on Hq IH for M € My,

as well as other certain other bias vector sequences that

arise in the subsequent analysis. In light of Lemma 2.1, the

remainder of our discussion will directly bound regret with

respect to DAPs:
Mo-Regp(m;w) := Jp(mw) - inf  Jp(x®D; w).
MeMg

)
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We note in passing that DAPs are actually rich enough to
compete with a broader class of linear control policies with
internal state; this extension is addressed in Appendix B.2.

2.2. Advantages in linear control

To proceed, we adopt the OLWA paradigm, which minimizes

approximations to the advantages (or, differences between

the Q-functions) relative to the optimal unconstrained pol-

icy " given access to the entire sequence w. Recalling
2 2 .

U(z,u) = ||z|, + |u|%,, we define the optimal controller

7* and associated Q-functions and advantages by induction.

Definition 3. The optimal Q-function and policy at time
T are given by Qr(z,u;w) = {(z,u), 75p(z;w) =
min, Q- (z,u;w) = 0, and Vi(z;w) = £(2,0) = |z| %, .
For each timestep t < T', the optimal Q-function and policy
are given by

2
Q; (z,u;w) = [z + |ul % + Vi1 (Az + Bu + wiw),
7, (z;w) = argmin Q; (z, u; w),
ueRdu

Vi (5w) = min Q; (2,05 w) = Qf (2, 7] (33 w);w).

The advantage function for the optimal policy is
Al (w2, w) = Qf (z,u;w) - Qf (z, 7/ (z;w); w).

The advantage function A; (u;x,w) represents the total
excess cost incurred by selecting a control u # 7, (z; w) at
state x and time ¢, assuming we follow 7* for the remaining
rounds. We have A} (u; z, w) > 0 since, by Bellman’s opti-
mality condition, 7r; (z; w) is a minimizer of Q* (z, u; w).

The advantages arise in our setting through application of
the performance difference lemma (Lemma D.12), which
we recall states that for any policy m, the regret to 7* is
equal to the sum of advantages under the trajectory induced
by 7, ie. Jp(mw) - Jp(r*w) = YL, Af(ul;2f, w).
To analyze Riccatitron, we apply this identity to obtain the
regret decomposition

T
Mo-Regy(mw) = 3 A (uf; 2], w)

t=1

T M M
_ Mig\f/lo;A;(uf( ™ w) ()
This decomposition is exact, and avoids the pitfalls of the
usual stationary cost-based regret decomposition associ-
ated with the classical OLwS approach (cf. Appendix C).
Our goal going forward will be to treat these advantages
as “losses” that can be fed into an appropriate online learn-
ing algorithm to select controls. However, this approach
presents three challenges: (a) the advantages for the policy
m are evaluated on the trajectory x7, while the advantages

for comparator are evaluated under the trajectory induced
by 7 (b) the advantage is a difference in Q-functions
that considers all future expected reward. In particular,
A; (-, w) depends on all future w;s, including those not
yet revealed to the learner; (c) the functional form of the
advantages is opaque, and it is not clear that any online
learning algorithm can achieve logarithmic regret even if
they were able to evaluate A} at time ¢.

2.3. Approximate advantages

Our main structural result—and the starting point for Ric-
catitron—is the following observation. Let 7 be any pol-
icy of the form 7 (z; w;_1) = ~ Koot — g™ (w;_1), where
My = My(w,;_1) are arbitrary functions of past w, and
where K, is the infinite horizon Riccati optimal controller.
Then Aj (u]; 2], w) is well-approximated by an approx-
imate advantage function A\t;h(M ;w4 ) Which (a) does
not depend on the state, and (b) depends on only a small
horizon h of future disturbances, and (c) is a pure quadratic
function of M, and thereby amenable to fast (logarithmic)
rates for online learning. Let h be a horizon/lookahead
parameter. Defining

h+1

Coon(Wine1) = ) Bt BT(A] )" Poow, )
=1

the approximate advantage function is
Kt;h(Mé 'wt+h) = HqM(’wt—l) - Q;;h(wt:t+h)‘|22w~ (10)

The following theorem facilitates the use of the approximate
advantages.

Theorem 2. Let 7 be any policy of the form m(x;w) =
~Keoox — ¢Mt(wy_y), where M; = M;(w) € M. Then,
by choosing h = 2(1 — Ve ) ‘log(k2, 52U, T2T?) as the
horizon parameter, we have

T
Z ’A; (ui;xf,w) - At;h(Mt§ ’wt+h)| < Chadv,

t=1
where Coqy = (5(@1\1/1%‘11/@8(1 —v0) ™4 log? T).

The proof of this theorem constitutes a primary technical
contribution of our paper, and is proven in Section 3. Briefly,
the idea behind the result is to use that the optimal policy 7*
itself satisfies 7; (z;w) » — Koo — ¢, 1, (Wrt+n) Whenever
h is sufficiently large and t < T'— O, (logT'), and that A}
has a simple quadratic structure. This characterization for
is why it is essential to consider advantages with respect to
the optimal policy 7*, and why our DAPs use the controller
K as opposed to an arbitrary stabilizing controller as in
Agarwal et al. (2019a).

2.4. Online learning with delays

An immediate consequence of Theorem 2 is that for any al-
gorithm (in particular, Riccatitron) which selects 7, (z; w) =
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~Keoz—qMt (w;_1), the regret Mo-Regy(m; w) is at most

T T
Z Avp (M wesn) - Mlsnﬂf/l Z A (Miwien) + 2Caqy.
t=1 ’ 0¢=1

(11)

This is simply an online convex optimization problem with
My, ..., Mr as iterates—the only catch is that the “loss” at
time ¢, A\t;h (M¢;wyin ), can only be evaluated after observ-
ing wy.p,, which will not be revealed to the learner until after
round ¢ + h. This is therefore an instance of online learning
with delays, namely, the loss function suffered at time ¢ is
only available at time ¢ + h + 1 (since w; is revealed at time
t +1). To reduce the problem of minimizing regret on the
approximate advantages in (11) to classical online learning
without delays, we use a simple black-box reduction.

Consider a generic online convex optimization setting
where, at each time ¢, the learner proposes an iterate 2,
then suffers cost f;(z;) and observes f; (or some func-
tion of it). Suppose we have an algorithm for this non-
delayed setting that guarantees that for every sequence,
SE fi(z) —infee L, fi(2) < R(T), where R is in-
creasing in T'. Now consider the same setting with delay h,
and let 7(¢) = (¢t —1) mod (h+1)+1¢€[h+1]. We use
the following strategy: Make h + 1 copies of the base algo-
rithm. At round ¢, observe z;, predict z, using the output of
instance 7(t), then update instance 7(¢ + 1) using the loss
fi-n(z¢t—p) (which is now available).

Lemma 2.2 (cf. Joulani et al. (2013)). The generic delayed
online learning reduction has regret at most

T T
t_Zlft(zt) - izgg;ft(z) <(h+1)R(T/(h+1)),

where R(T) is the regret of the base instance.

Lemma 2.2 shows that minimizing the regret in (11) is as
easy as minimizing regret in the non-delayed setting, up to
a factor of h = O, (logT"). For completeness, we provide a
proof Appendix E.4. All that remains is to specify the base
algorithm for the reduction.

2.5. Exp-concave online learning

We have reduced the problem of obtaining logarithmic regret
for online control to obtaining logarithmic regret for online
learning with approximate advantages of the form in (11).
A sufficient condition to obtain fast rates in online learning
is strong convexity of the loss Hazan (2016), but while
the advantages Kt;h(M ;wq.p, ) are strongly convex with
respect to ¢™ (w), they are not strongly convex with respect
to the parameter M. Itself. Fortunately, logarithmic regret
can also be achieved for loss functions that satisfy a weaker
condition called exp-concavity (Hazan et al., 2007; Cesa-
Bianchi & Lugosi, 20006).

Definition 4. A function f : C - R is a-exp-concave if

V2f(2) = a(Vf(2))(Vf(2)) forall z €C.

Intuitively, an exp-concave function f exhibits strong curva-
ture along the directions of its gradient, which are precisely
the directions along which f is sensitive to change. This
property holds for linear regression-type losses, as the fol-
lowing standard lemma (Appendix E.4) shows.

Lemma 2.3. Let A € R%*% and consider the function
f(z)=]Az- bH;, where ¥ > 0. If we restrict to 2z € R%
for which f(z) < R, then f is (2R) ! -exp-concave.

Observe that the approximate advantage functions
Kt;h(M; wy,p,) indeed have the form f(z) = | Az - b|4
(viewing the map M + ¢™ (w;_,) as a linear operator),
and thus satisfy exp-concavity for appropriate o > 0. To
take advantage of this property we use online Newton step
(ONS, Algorithm 2), a second-order online convex opti-
mization algorithm which guarantees logarithmic regret for
exp-concave losses.

Lemma 24 (Hazan (2016)). Suppose that
sup. eclz— 2| < D. sup.eelVA(Z)| < G, and
that each loss fi is a-exp-concave. Then by setting
n= 2max{4GD, ofl} and ¢ = 7%/ D, the online Newton
step algorithm guarantees

i fi(zr) —inf i fe(2) <5(a”t +GD)-dlogT.
k=1 €3

Putting everything together. With the regret decompo-
sition in terms of approximate advantages (Theorem 2)
and the blackbox-reduction for online learning with de-
lays (Lemma 2.2), the design and analysis of Riccatitron
(Algorithm 1) is rather simple. In view of Lemma 2.1,
we initialize the set M sufficiently large to compete with
the appropriate state-feedback controllers (Line 2). Using
Theorem 2, our goal is to obtain a regret bound for the ap-
proximate advantages in (11). In view of the delayed online
learning reduction Lemma 2.2, we initialize i + 1 base on-
line learners (Line 2). Since the approximate advantages A,
are pure quadratics, we use online Newton step for the base
learner, which ensures logarithmic regret via Lemma 2.4.

2.6. Sharpening the regret bound

With online Newton step as the base algorithm, Riccatitron
has regret O, (dxduv/dx A dy log3 T). The dyd, factor
comes from the hard dependence on dim(C) in the ONS
regret bound (Lemma 2.4), while the \/dx A d,, factor is an
upper bound on the Frobenius norm for each M € M.
We can obtain improved dimension dependence by re-
placing ONS with a vector-valued variant of the classical
Vovk-Azoury-Warmuth algorithm (VAW), described in Al-
gorithm 3 (Appendix E.3). The VAW algorithm goes be-
yond the generic exp-concave online learning setting and
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exploits the quadratic structure of the approximate advan-
tages. Theorem 5 in Appendix E.3 shows that its regret
depends only logarithmically on the Frobenius norm of the
parameter vectors, so it avoids the \/dx A dy factor paid by
ONS (up to a log term). This leads to a final regret bound
of O, (dyxdylog® T) for Riccatitron. The runtime for both
algorithms is identical.

The calculation for the final regret bound is carried out in
Appendix E.1.

3. Advantages without states

We now prove the key “approximate advantage” theorem
(Theorem 2) used in the analysis of Riccatitron. The roadmap
for the proof is as follows:

1. In Section 3.1, we show that the unconstrained optimal
policy takes the form =; (z;w) = —Kyzy — gqf (w),
where ¢; (w) depends on all future disturbances, and
where K is the finite-horizon solution to the Riccati
recursion (Definition 5).

2. Next, Section 3.2 presents an intermediate version of
the approximate advantage theorem for policies of the
form 7, (z;w) = ~Kyx; — ¢Mt(w;_1). Because any
such policy has the same state dependence as the opti-
mal policy 7*, we are able to show that A} (u7; 2T, w)
has no state dependence. Moreover, the linear struc-
ture of the dynamics and quadratic structure of the
losses ensures that A} (u7; 27T, w) is a quadratic of the
form [|¢™* (wi-1) — g (wer) |3, where 3y is a finite-
horizon approximation to ¥, and g; (we. ) is the bias
vector of the optimal controller.

3. Finally (Section 3.3), we use stability of the Riccati
recursion to show that ¢; (w) can be replaced with a
term that depends only on wy,, up to a small error.
Similarly, we show that ¥; can be replaced by ¥, and

This argument implies that a slightly modified analogue of
Riccatitron which replaces infinite-horizon quantities (/o
Y 00s...) With finite-horizon analogues from the Riccati re-
cursion attains a similar regret. We state Riccatitron with the
infinite horizon analogues to simplify presentation, as well
as implementation.

3.1. A closed form for the true optimal policy

Our first result characterizes the optimal unconstrained opti-
mal controller 7* given full knowledge of the disturbance
sequence w, as well as the corresponding value function.
To begin, we introduce a variant of the classical Riccati
recursion.

Definition 5 (Riccati recursion). Define Pr,; = 0 and
crs1 = 0 and consider the recursion:

Pi=R,+ APy A- AP, BY,' BT P, A,
Y, = R, + B"P,,1 B,

K;=%'B"Pi, A,

Ct(wt:T) = (A - BKt)T(Pt+1wt + Ct+1(wt+1:T))~

We also define corresponding closed loop matrices via

Acl,t = A - BKt

For i.i.d. disturbances with E[w;] = 0 for all times ¢, the
optimal controller is the state feedback law m;(x) = - Kz,
and K; - K, ast - — oco. The following theorem shows
that for arbitrary disturbances the optimal controller applies
the same state feedback law, but with an extra bias term that
depends on the disturbance sequence.

Theorem 3. The optimal controller is given by m; (z,w) =
-Kix — qf (wer), where

j=t+1

T-1 i
¢ (wer) = > Zt_lBT( I1 AZ]7j)Pi+1wi~ (12)
i=t
Moreover, for each time t we have

Vi (;w) = |3, + 2z, co(wer)) + fi(wer),  (13)

where f; is a function that does not depend on the state .

Theorem 3 is a special case of a more general result, Theo-
rem 4, proven in Appendix D.

3.2. Removing the state

We now use the characterization of 7* to show that the
advantages A} (u7; T, w) have a particularly simple struc-
ture when we consider policies of the form 7 (z;w) =
-Kixs — qi(wy—1), where ¢;(w) is an arbitrary function of
w. For such policies, A}is a quadratic function which does
not depend explicitly on the state.

Lemma 3.1. Consider a policy 7:(z) of the form
7 (z;w) = —Kyxy — ¢ (w). Then, for all z,

A @ (2 w)iz,w) = g (w) - ¢ (wer) 3, -

Proof. Since Q; (x,-;w) is a strongly convex quadratic,
and since 7; (z;w) = argmin, ga, Qf (z,u;w), first-
order optimality conditions imply that for any w,
Al (2, w) = Qf (v, u;w) - Qf (2,7 (v;w); w)

= ”U - 71';(3}, ’LU) H2V12LQ:(w7u,w)
A direct computation based on (13) reveals that
v2Q; (z,u;w) = R + B'P1B = Y, so that
Aj (u;z,w) = |u—m; (z;w)]3, . Finally, since 7/ (z; w) =
-Kx - qf (w.r), we have that if u = 7 (z; w) = -Kay —
gt (w), then the states in the expression u—m; (z; w) cancel,
leaving u - 7; (3 w) = ~(g: (w) - g; (wrr)). O
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3.3. Truncating the future and passing to infinite
horizon

The next lemma—proven in Appendix F—shows that we
can truncate ¢; (wyr) to only depend on disturbances at
most h steps in the future.

Lemma 3.2. For any h € [T'] define a truncated version of
g; as follows:

(t+h)AT-1 i
qt*;t+h(wt:t+h) = Z ZZIBT( H AZl,j)Pi*'lwi'
i=t jet+l
(14)
Then for any ¢ such that ¢t + b < T — O(B,92T,),
setting %o, = %(1 + Y») < 1, we have the bound

Iz (weeen) = i (wer) | < wZB2U.DIT = R)FL,
which is geometrically decreasing in h.

Going forward we use that both ¢; and g;,,,; have norm
at most B, U, T Koo (1 = Yoo )7L = Dy (Lemma D.6). As
an immediate corollary of Lemma 3.2, we approximate the
advantages using finite lookahead.

Lemma 3.3. Consider a policy 7 (z; w) = —Kx¢ — g (w),
and suppose that |¢;| < Dy, where Dy > D« If we choose
h = 2(1 - Yoo ) log(k2 32U, 1'2T?), we are guaranteed
that

T
Z|A; (u?’ J??, 'LU) - HQt(w) - q;;t+h(wt:t+/b) H%t| < Ctrunca
t=1

where Ctrunc < (5(D25*\I!f1“3(1 ~ Yoo ) tlogT).

At this point, we have established an analogue of Theo-
rem 2, except that we are still using state-action controllers
K, rather than K, and the approximate advantages in
Lemma 3.3 are using the finite-horizon counterparts of o,
and ¢eo;1,. The following lemmas show that we can pass to
these infinite-horizon quantities by paying a small approxi-
mation cost.

Lemma 3.4. Let policies my(x;w) = —Kox — ¢ (w) and
7 (z;w) = —-Kyx — g (w) be given, where ¢; is arbitrary
but satisfies | ¢;|| < D, for some D, > 1. Then

|Jr (7, w) = Jr(m,w)| < Ck..,
where C_ < 6(HiﬂfW1BF§(1 - 'ym)’QDg - log (DqT)).

Lemma 3.5. Let (¢;)Z, be an arbitrary sequence with
lg¢| < Dq for some Dy > D+ Then it holds that

T

Z Hqt - qt*;Hh(wt:tJrh)H%t - Hqt - q:o;h(wttt+h)‘|%m < C°°7
t=1
where Coo < O(D2 - BHUTT4 K2 (1 - 7o) M hlog(D,T)).

Combining these results immediately yields the proof of
Theorem 2; details are given in Appendix F.

4. Conclusion

We have presented the first efficient algorithm with logarith-
mic regret for online linear control with arbitrary adversarial
disturbance sequences. Our result highlights the power of
online learning with advantages, and we are hopeful that
this framework will find broader use. Numerous questions
naturally arise for future work: Does our framework extend
to more general loss functions, or to more general classes
of dynamical systems in control and reinforcement learn-
ing? Can our results be extended to handle partial observed
dynamical systems? Can we obtain VT -regret for adversar-
ial disturbances in unknown systems, as is possible in the
stochastic regime?
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