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Abstract
A fundamental challenge in contextual bandits is
to develop flexible, general-purpose algorithms
with computational requirements no worse than
classical supervised learning tasks such as clas-
sification and regression. Algorithms based on
regression have shown promising empirical suc-
cess, but theoretical guarantees have remained
elusive except in special cases. We provide the
first universal and optimal reduction from contex-
tual bandits to online regression. We show how
to transform any oracle for online regression with
a given value function class into an algorithm for
contextual bandits with the induced policy class,
with no overhead in runtime or memory require-
ments. We characterize the minimax rates for
contextual bandits with general, potentially non-
parametric function classes, and show that our al-
gorithm is minimax optimal whenever the oracle
obtains the optimal rate for regression. Compared
to previous results, our algorithm requires no dis-
tributional assumptions beyond realizability, and
works even when contexts are chosen adversari-
ally.

1. Introduction
We consider the design of practical, provably efficient al-
gorithms for contextual bandits, where a learner repeatedly
receives contexts and makes decisions on the fly so as to
learn a policy that maximizes their total reward. Contextual
bandits have been successfully applied in user recommen-
dation systems (Agarwal et al., 2016) and mobile health
applications (Tewari & Murphy, 2017), and in theory they
are perhaps simplest reinforcement learning problem that
embeds the full complexity of statistical learning with func-
tion approximation.

A key challenge in contextual bandits is to develop flex-
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ible, general purpose algorithms that work for arbitrary,
user-specified classes of policies and come with strong the-
oretical guarantees on performance. Depending on the task,
a user might wish to try decision trees, kernels, neural nets,
and beyond to get the best performance. General-purpose
contextual bandit algorithms ensure that the user doesn’t
have to design a new algorithm from scratch every time they
encounter a new task.

Oracle-based algorithms constitute the dominant approach
to general-purpose contextual bandits. Broadly, these al-
gorithms seek to reduce the contextual bandit problem to
basic supervised learning tasks such as classification and
regression so that off-the-shelf algorithms can be applied.
However, essentially all oracle-based contextual bandit al-
gorithms suffer from one or more of the following issues:

1. Difficult-to-implement oracle.

2. Strong assumptions on hypothesis class or distribution.

3. High memory and runtime requirements.

Agnostic oracle-efficient algorithms (Langford & Zhang,
2008; Dudik et al., 2011; Agarwal et al., 2014) require
few assumptions on the distribution, but reduce contextual
bandits to cost-sensitive classification. Cost-sensitive clas-
sification is intractable even for simple hypothesis classes
(Klivans & Sherstov, 2009), and in practice implementations
are forced to resort to heuristics to implement the oracle
(Agarwal et al., 2014; Krishnamurthy et al., 2016).

Foster et al. (2018) recently showed that a variant of the
UCB algorithm for general function classes (Russo &
Van Roy, 2014) can be made efficient in terms of calls to an
oracle for supervised regression. Regression alleviates some
of the practical issues with classification because it can be
solved in closed form for simple classes and is amenable
to gradient-based methods. Indeed, Foster et al. (2018) and
Bietti et al. (2018) found that this algorithm typically out-
performed algorithms based on classification oracles across
a range of datasets. However, the theoretical analysis of
the algorithm relies on strong distributional assumptions
that are difficult to verify in practice, and it can indeed fail
pathologically when these assumptions fail to hold.

All of the provably optimal general-purpose algorithms de-
scribed above—both classification- and regression-based—
are memory hungry: they keep the entire dataset in memory
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and repeatedly augment it before feeding it into the ora-
cle. Even if the oracle itself is online in the sense that
it admits streaming or incremental updates, the resulting
algorithms do not have this property. At this point it suf-
fices to say that—to our knowledge—no general-purpose
algorithm with provably optimal regret has made it into a
large-scale contextual bandit deployment in the real world
(e.g., Agarwal et al. (2016)).

In this paper, we address issues (1), (2), and (3) simultane-
ously: We give a new contextual bandit algorithm which
is efficient in terms of queries to an online oracle for re-
gression, and which requires no assumptions on the data-
generating process beyond a well-specified model.

1.1. Setup

We consider the following contextual bandit protocol, which
occurs over T rounds. At each round t ∈ [T ], Nature selects
a context xt ∈ X and loss function `t ∶ A → [0,1], where
A = [K] is the learner’s action space. The learner then
selects an action at ∈ A and observes `t(at). We allow the
contexts xt to be chosen arbitrarily by an adaptive adversary,
but we assume that each loss `t is drawn independently
from a fixed distribution P`t(⋅ ∣ xt), where P`1 , . . . ,P`T are
selected a-priori by an oblivious adversary.

We assume that the learner has access to a class of value
functions F ⊂ (X × A → [0,1]) (such as linear models
or neural networks) that models the mean of the reward
distribution. Specifically, we make the following standard
realizability assumption (Chu et al., 2011; Agarwal et al.,
2012; Foster et al., 2018).

Assumption 1 (Realizability). There exists a regressor f⋆ ∈
F such that for all t, f⋆(x, a) = E[`t(a) ∣ xt = x].

The learner’s goal is to compete with the class of policies
induced by the model class F . For each regression function
f ∈ F , we let πf(x) = arg mina∈A f(x, a) be the induced
policy. Then aim of the learner is to minimize their regret
to the optimal policy:

RegCB(T ) =
T

∑
t=1

`t(at) −
T

∑
t=1

`t(π⋆(xt)), (1)

where π⋆ ∶= πf⋆ . Going forward, we let Π = {πf ∣ f ∈ F}
denote the induced policy class.

1.2. Contributions

We introduce the notion of an online regression oracle. At
each time t, an online regression oracle, which we denote
SqAlg (for “square loss regression algorithm”), takes as
input a tuple (xt, at), produces a real-valued prediction
ŷt ∈ R, and then receives the true outcome yt. The goal
of the oracle is to predict the outcomes as well as the best

function in a class F , in the sense that for every sequence
of outcomes the square loss regret is bounded:

T

∑
t=1

(ŷt − yt)2 − inf
f∈F

T

∑
t=1

(f(xt, at) − yt)2 ≤ RegSq(T ). (2)

Our main algorithm, SquareCB (Algorithm 1), is a reduction
that efficiently and optimally turns any online regression ora-
cle into an algorithm for contextual bandits in the realizable
setting.
Theorem 1 (informal). Suppose Assumption 1 holds. Then
SquareCB, when invoked with an online regression oracle
with square loss regret RegSq(T ), ensures that with high
probability

RegCB(T ) ≤ C ⋅
√
KT ⋅RegSq(T ),

where C > 0 is a small numerical constant. Moreover,
SquareCB inherits the memory and runtime requirements of
the oracle.

We show (Section 3) that SquareCB is optimal, in the sense
that for every class F , there exists a choice for the oracle
SqAlg such that SquareCB attains the minimax optimal rate
for F . For example, when ∣F∣ < ∞, one can choose SqAlg
such that RegSq(T ) ≤ 2 log∣F∣, and so SquareCB enjoys the
optimal rate RegCB(T ) ≤ C

√
KT log∣F∣ for finite classes

(Agarwal et al., 2012). On the other hand, the reduction is
black-box in nature, so on the practical side one can simply
choose SqAlg to be whatever works best.

An advantage of working with 1) regression and 2) online
oracles is that we can instantiate SquareCB reduction to give
new provable end-to-end regret guarantees for concrete func-
tion classes of interest. In Section 2 we flesh this direction
out and provide new guarantees for high-dimensional linear
classes, generalized linear models, and kernels. SquareCB
is also robust to model misspecification: we show (Sec-
tion 5.1) that the performance gracefully degrades when the
realizability assumption is satisfied only approximately.

Compared to previous methods, which either maintain
global confidence intervals, version spaces, or distribu-
tions over feasible hypotheses, our method applies a sim-
ple mapping proposed by Abe & Long (1999) from scores
to action probabilities at each step. This leads to the
method’s efficient runtime guarantee. In Section 5.2 we
show that this type of reduction extend beyond the fi-
nite actions by designing a variant of SquareCB that has
RegCB(T ) ≤ C

√
dAT ⋅RegSq(T ) for the setting where ac-

tions live in the dA-dimensional unit ball in `2.

1.3. Towards Learning-Theoretic Guarantees for
Contextual Bandits

The broader goal of this work is to develop a deeper under-
standing of the algorithmic principles and statistical com-
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plexity of contextual bandit learning in the “large-F , small-
A” regime, where the goal is to learn from a rich, potentially
nonparametric function class with a small number of actions.
We call this setting “Contextual Bandits with Rich Classes
of Hypotheses”, or RichCBs.

Beyond providing a general algorithmic principle for
RichCBs (SquareCB), we resolve two central questions re-
garding the statistical complexity of RichCBs.

1. What are the minimax rates for RichCBs when ∣F∣ =
∞?

2. Can we achieve logarithmic regret for RichCBs when
the underlying instance has a gap?

Recall that for general finite classes F , the gold standard
here is RegCB(T ) ≤

√
KT log∣F∣, with an emphasis on the

logarithmic scaling in ∣F∣. For the first point, we charac-
terize (Section 3) the minimax rates for infinite classes F
as a function of metric entropy, a fundamental complexity
measure in learning theory. We also show that SquareCB
is universal, in the sense that it can always be instantiated
with a choice of SqAlg to achieve the minimax rate. Interest-
ingly, we show that for general classes with metric entropy
H(F , ε), the minimax rate is Θ̃(T ⋅ εT ), where εT satisfies
the classical balance

ε2
T ≍ H(F , εT )/T,

found throughout the literature on nonparametric estimation
(Yang & Barron, 1999; Tsybakov, 2008).

For the second point, we show (Section 4), that for general
function classes F with ∣F∣ < ∞, obtaining logarithmic
regret when there is a gap between the best and second-
best action is impossible if we insist that regret scales with
polylog∣F∣: There exist instances with constant gap and
polynomially large hypothesis class for which any algorithm
must experience

√
T -regret.

This last point suggests that designing optimal algorithms
for RichCBs seems to require new algorithmic ideas. Indeed,
two of the dominant strategies for the realizable setting, gen-
eralized UCB and Thompson sampling (Russo & Van Roy,
2013), always adapt to the gap to get logarithmic regret, but
without strong structural assumptions on F they can have
regret Ω(∣F∣).

1.4. Related Work

Our algorithm builds off of the work of Abe & Long (1999)
(see also Abe et al. (2003)). Our key insight is that a partic-
ular action selection scheme used in these works for linear
contextual bandits actually yields an algorithm for general
function classes when combined with the idea of an online
regression oracle. Interestingly, while Abe & Long (1999)

contains essentially the first formulation of the contextual
bandit problem, the techniques used within seem to have
been forgotten by time in favor of more recent approaches
to linear contextual bandits (Abbasi-Yadkori et al., 2011;
Chu et al., 2011); see further discussion in Section 2.

As discussed in the introduction, our results build on a long
line of work on oracle-efficient contextual bandit algorithms.
We discuss some important points of comparison below.

Agnostic algorithms. The longest line of research on
oracle-efficient CBs focuses on the agnostic i.i.d. setting
(Langford & Zhang, 2008; Dudik et al., 2011; Agarwal et al.,
2014). All of these algorithms assume access to an offline
cost-sensitive classification oracle for the policy class which,
given a dataset (x1, `1), . . . , (xn, `n), solves

arg min
π∈Π

n

∑
t=1

`t(π(xt)). (3)

In particular, the ILOVETOCONBANDITS (ILTCB) algorithm
(Agarwal et al., 2014) enjoys optimal

√
KT log∣Π∣ regret

given such an oracle. This type of oracle has two drawbacks.
First, classification for arbitrary datasets is intractable for
most policy classes, so implementations typically resort to
heuristics to implement (3). Second, because the oracle is
offline, the memory required by ILTCB scales linearly with T
(the algorithm repeatedly generates augmented versions of
the dataset and feeds them into the oracle). To deal with this
issue, the implementation of ILTCB in Agarwal et al. (2014)
resorts to heuristics in order to make use of an online oracle
classification, but the resulting algorithm has no guarantees,
and analyzing it was left as an open problem.

A parallel line of work focuses on algorithms for the ad-
versarial setting where losses are also arbitrary (Rakhlin &
Sridharan, 2016; Syrgkanis et al., 2016a;b). Notably, the
BISTRO algorithm (Rakhlin & Sridharan, 2016) essentially
gives a reduction from adversarial CBs to a particular class
of “relaxation-based” online learning algorithms for cost-
sensitive classification, but the algorithm has sub-optimal
T 3/4 regret for finite classes.

Realizability-based algorithms. Under the realizability
assumption, Foster et al. (2018) provide a version of
the UCB strategy for general function classes (Russo &
Van Roy, 2014) that makes use of a offline regression oracle
that solves

arg min
f∈F

n

∑
t=1

(f(xt, at) − `t(at))2. (4)

While this is typically an easier optimization problem than
(3)—it can be solved in closed form for linear classes and is
amenable to gradient-based methods—the algorithm only
attains optimal regret under strong distributional assump-
tions (beyond just realizability) or when the class F has
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bounded eluder dimension (Russo & Van Roy, 2013), and it
can have linear regret when these assumptions fail to hold
(Foster et al., 2018, Proposition 1).

Thompson sampling and posterior sampling are closely re-
lated to UCB and have similar regret guarantees (Russo &
Van Roy, 2014). These algorithms are only efficient for
certain simple classes F , and implementations for general
classes resort to heuristics such as bootstrapping, which
do not have strong theoretical guarantees except in special
cases (Vaswani et al., 2018; Kveton et al., 2019).

We mention in passing that under our assumptions (realiz-
ability, online regression oracle), one can design an online
oracle-efficient variant of ε-Greedy with T 2/3-type regret;
SquareCB appears to be strictly superior.

Other square loss-related reductions. Abernethy et al.
(2013) consider the related problem reducing realizable con-
textual bandits with general function classes F and large
action spaces to knows-what-it-knows (KWIK) learning or-
acles (Li et al., 2011). KWIK learning is much stronger
property than regret minimization, and KWIK learners only
exist for certain structured hypotheses classes. Interest-
ingly though, this work also provides a computational lower
bound which suggests that efficient reductions of the type
we provide here (SquareCB) are not possible if one insists
on logK dependence rather than poly(K) dependence.

Abbasi-Yadkori et al. (2012) develops contextual bandit
algorithms that use online regression algorithms to form
confidence sets for use within UCB-style algorithms. Ul-
timately these algorithms inherit the usual drawbacks of
UCB, namely that they require either strong assumptions on
the structure of F or strong distributional assumptions.

1.5. Additional Notation

We adopt non-asymptotic big-oh notation: For functions
f, g ∶ X → R+, we write f = O(g) if there exists some
constant C > 0 such that f(x) ≤ Cg(x) for all x ∈ X . We
write f = Õ(g) if f = O(gmax{1,polylog(g)}).

For a vector x ∈ Rd, we let ∥x∥2 denote the euclidean norm
and ∥x∥∞ denote the element-wise `∞ norm. For a matrixA,
we let ∥A∥op denote the operator norm. If A is symmetric,
we let λmin(A) denote the minimum eigenvalue. When
P ≻ 0 is a positive definite matrix, we let ∥x∥P =

√
⟨x,Px⟩

denote the induced weighted euclidean norm.

2. The Reduction: SquareCB

We now describe our main algorithm, SquareCB, and state
our main regret guarantee and some consequences for con-
crete function classes. To give the guarantees, we first
formalize the concept of an online regression oracle, as

sketched in the introduction.

2.1. Online Regression Oracles

We assume access to an oracle SqAlg for the standard online
learning setting with the square loss (Cesa-Bianchi & Lu-
gosi, 2006, Ch. 3). The oracle performs real-valued online
regression with features in Z ∶= X ×A, and is assumed to
have a prediction error guarantee relative to the regression
function class F . We consider the following model:

For t = 1, . . . , T :

– Nature chooses input instance zt = (xt, at).
– Algorithm chooses prediction ŷt.
– Nature chooses outcome yt.

Formally, we model the algorithm as a sequence of map-
pings SqAlgt ∶ Z × (Z ×R)t−1 → [0,1], so that ŷt =
SqAlgt(zt ; (z1, y1), . . . , (zt−1, yt−1)) in the protocol above.
Each such algorithm induces a mapping

ŷt(x, a) ∶= SqAlgt(x, a ; (z1, y1), . . . , (zt−1, yt−1)), (5)

which corresponds to the prediction the algorithm would
make at time t if we froze its internal state and fed in the
feature vector (x, a).

The simplest condition under which our reduction works
posits that SqAlg enjoys a regret bound for individual se-
quence prediction.

Assumption 2a. The algorithm SqAlg guarantees that for
every (possibly adaptively chosen) sequence z1∶T , y1∶T , re-
gret is bounded as

T

∑
t=1

(ŷt − yt)2 − inf
f∈F

T

∑
t=1

(f(zt) − yt)2 ≤ RegSq(T ). (6)

While there is a relatively complete theory characterizing
what regret bounds RegSq(T ) can be achieved for this set-
ting for general classes F (Rakhlin & Sridharan, 2014),
the requirement that the regret bound holds for arbitrary
sequences y1∶T may be restrictive for some classes, at least
as far as efficient algorithms are concerned. The following
relaxed assumption also suffices.

Assumption 2b. Under Assumption 1, the algorithm SqAlg
guarantees that for every (possibly adaptively chosen) se-
quence {(xt, at)}Tt=1, we have

T

∑
t=1

(ŷt − f⋆(xt, at))2 ≤ RegSq(T ). (7)

Assumption 2b holds with high probability whenever As-
sumption 2a holds and the problem is realizable, but it is a
weaker condition that allows for algorithms tailored toward
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realizability; we shall see examples of this in the sequel.
This formulation shows that the choice of square loss in
(6) does not actually play a critical role: Any algorithm
that attains a regret bound of the form (6) with the square
loss replaced by a strongly convex loss such as the log loss
implies a bound of the type (7) under realizability.

2.2. The Algorithm

Our main algorithm, SquareCB, is presented in Algorithm 1.
At time t, the algorithm receives the context xt and com-
putes the oracle’s predicted scores ŷt(xt, a) for each action.
Then, following the probability selection scheme of Abe &
Long (1999), it computes the action with the lowest score
(bt) and assigns a probability to every other action inversely
proportional to the gap between the action’s score and that
of bt. Finally, the algorithm samples its action at from this
distribution, observes the loss `t(at), and feeds the tuple
((xt, at), `t(at)) into the oracle. The main guarantee for
the algorithm is as follows.

Theorem 1. Suppose Assumption 1 and Assumption 2a/b
hold. Then for any δ > 0, by setting µ = K and
γ =

√
KT /(RegSq(T ) + log(2δ−1)), SquareCB guaran-

tees that with probability at least 1 − δ,

RegCB(T ) ≤ 4
√
KT ⋅RegSq(T ) + 8

√
KT log(2δ−1).

(8)

Let us discuss some key features of the algorithm and regret
bound.

• The algorithm enjoys Õ(
√
T )-regret whenever the or-

acle SqAlg gets a fast logT -type rate for online regres-
sion. This holds for finite classes (RegSq(T ) = log∣F∣)
as well as parametric classes such as linear functions in
Rd (RegSq(T ) = d log (T /d)). We sketch some more
examples below, and we show in Section 3 that the
regret is optimal whenever SqAlg is optimal.

• The algorithm inherits the runtime and memory require-
ments of the oracle SqAlg up to lower order terms. If
TSqAlg denotes per-round runtime for SqAlg andMSqAlg

denotes the maximum memory, then the per-round run-
time of SquareCB is O(TSqAlg ⋅K), and the maximum
memory is O(MSqAlg ⋅K).

• The regret scales as
√
K in the number of actions. This

is near-optimal in the sense that any algorithm that
works uniformly for all oracles must pay a Ω̃(

√
K)

factor: For multi-armed bandits, one can achieve
RegSq(T ) = logK,1 yet the optimal bandit regret is
Ω(

√
KT ). However, for specific function classes, the

dependence on K may be suboptimal.2

At a conceptual level, the proof (which, beyond the idea of

1This can be achieved through Vovk’s aggregating algorithm

Algorithm 1 SquareCB
1: parameters:

Learning rate γ > 0, exploration parameter µ > 0.
Online regression oracle SqAlg.

2: for t = 1, . . . , T do
3: Receive context xt.

// Compute oracle’s predictions (Eq.(5)).

4: For each action a ∈ A, compute ŷt,a ∶= ŷt(xt, a).
5: Let bt = arg mina∈A ŷt,a.
6: For each a ≠ bt, define pt,a = 1

µ+γ(ŷt,a−ŷt,bt)
,

and let pt,bt = 1 −∑a≠bt pt,a.
7: Sample at ∼ pt and observe loss `t(at).
8: Update SqAlg with example ((xt, at), `t(at)).

using a generic regression oracle and taking advantage of
modern martingale tail bounds, closely follows Abe & Long
(1999)) is interesting because it is agnostic to the structure
of the class F . We show that at each timestep, the instanta-
neous bandit regret is upper bounded by the instantaneous
square loss regret of SqAlg. No structure is shared across
timesteps, and all of the heavy lifting regarding generaliza-
tion is taken care of by Assumption 2a/Assumption 2b.

One important point to discuss is the assumption that the
bound (7) holds for every sequence {(xt, at)}Tt=1. While
the assumption that the bound holds for adaptively chosen
contexts x can be removed if contexts are i.i.d., the analysis
critically uses that the regret bound holds when the actions
a1, . . . , aT are chosen adaptively (since actions selected in
early rounds are used by SquareCB to determine the action
distribution at later rounds). On a related note, even when
contexts are i.i.d., it is not clear that one can implement
an online regression oracle that satisfies the requirements
of Theorem 1 via calls to an offline regression oracle, and
offline versus online regression oracles appear to be incom-
parable assumptions. Whether optimal regret can be attained
via reduction to an offline oracle is an open question.

2.3. Examples and Applications

Online square loss regression is a well-studied problem,
and efficient algorithms with provable regret guarantees
are known for many classes (Vovk, 1998; Azoury & War-
muth, 2001; Vovk, 2006; Gerchinovitz, 2013; Rakhlin &
Sridharan, 2014; Gaillard & Gerchinovitz, 2015). Here we
take advantage of these results by instantiating SqAlg within
SquareCB to derive end-to-end regret guarantees for various
classes—some new, some old.

(Vovk, 1995).
2For example, for linear classes, regret can be made to scale

only with logK (Chu et al., 2011).
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Low-dimensional linear classes. We first consider the
familiar LinUCB setting, where

F = {(x, a) ↦ ⟨θ, xa⟩ ∣ θ ∈ Rd, ∥θ∥2 ≤ 1}, (9)

and x = (xa)a∈A, where xa ∈ Rd has ∥xa∥2 ≤ 1. Here

LinUCB obtains RegCB(T ) ≤ O(
√
dT log3(KT )) (Chu

et al., 2011). By choosing SqAlg to be the Vovk-Azoury-
Warmuth forecaster, which has RegSq(T ) ≤ d log(T /d)
(Vovk, 1998; Azoury & Warmuth, 2001), SquareCB has
RegCB(T ) ≤ O(

√
dKT log(T /d)).3 While this has worse

dependence on K (square root rather than logarithmic), the
resulting algorithm works when contexts are chosen by an
adaptive adversary, whereas LinUCB requires an oblivious
adversary. It would be interesting to understand whether
such a tradeoff is optimal. We also remark that—ignoring
dependence on K—the algorithm precisely matches a re-
cently established lower bound of Ω(

√
dT log(T /d)) for

this setting (Li et al., 2019).

High-dimensional linear classes and Banach spaces.
In the same setting as above, by choosing SqAlg to be On-
line Gradient Descent, we obtain RegSq(T ) ≤ O(

√
T ), and

consequently RegCB(T ) ≤ O(K1/2 ⋅ T 3/4). This rate is
interesting because it has worse dependence on the time-
horizon T , but is completely dimension-independent, and
the algorithm runs in linear time, which is considerably
faster than LinUCB (O(d2) per step). This result generalizes
the BW algorithm of Abe et al. (2003), who gave the same
bound for the setting where rewards are binary, and showed
that T 3/4 is optimal when d is large. We believe this trade-
off between dimension dependence and T dependence has
been somewhat overlooked and merits further investigation,
especially as it pertains to practical algorithms.

For a more general version of this result, we let (B, ∥⋅∥) be
a separable Banach space and take

F = {(x, a) ↦ ⟨θ, xa⟩ ∣ θ ∈B, ∥θ∥ ≤ 1},

where xa to belongs to the dual space (B⋆, ∥⋅∥⋆) and has
∥xa∥⋆ ≤ 1. For this setting, whenever B is (2,D)-uniformly
convex, Online Mirror Descent can be configured to have
RegSq(T ) ≤

√
T /D (Srebro et al., 2011), and SquareCB

consequently has RegCB(T ) ≤ O(K1/2 ⋅ T 3/4D−1/4). This
leads to linear time algorithms with nearly dimension-free
rates for, e.g., `1- and nuclear norm-constrained linear
classes.

Kernels. Suppose that F is a reproducing kernel Hilbert
space with RKHS norm ∥⋅∥H and kernel K. Let ∥f∥H ≤

3In order satisfy the condition that predictions ŷt are bounded,
we must use a variant of Vovk-Azoury-Warmuth with projection
onto the `2 ball. This can easily be achieved using, e.g., the
analysis in Orabona et al. (2015).

1 for all f ∈ H, and assume K(xa, xa) ≤ 1 for all x ∈
X . A simple observation is that, since Online Gradient
Descent kernelizes, the O(T 3/4) regret bound from the
previous example immediately extends to this setting. This
appear to be a new result; Previous work on kernel-based
contextual bandits (Valko et al., 2013) gives regret bounds
of the form

√
deffT , assuming that the effective dimension

deff of the empirical design matrix is bounded. Again there
is a tradeoff, since our result requires no assumptions on the
data beyond bounded RKHS norm, but has worse (albeit
optimal under these assumptions) dependence on the time
horizon.

Generalized linear models. Let σ ∶ R→ [0,1] be a fixed
non-decreasing 1-Lipschitz link function, and let

F = {(x, a) ↦ σ(⟨θ, xa⟩) ∣ θ ∈ Rd, ∥θ∥2 ≤ 1},

where we again take ∥xa∥2 ≤ 1. For this setting, under the
realizability assumption, the GLMtron algorithm (Kakade
et al., 2011) satisfies Assumption 2b, in the sense that is has

T

∑
t=1

(ŷt − σ(⟨θ⋆, xat⟩))
2 ≤ O(

√
T ),

where f⋆(x, a) = σ(⟨θ⋆, xa⟩); see Proposition 2 in Ap-
pendix B.2 for details. This leads to a dimension-free re-
gret bound RegCB(T ) ≤ O(T 3/4), similar to the linear
setting. If we have a lower bound on the link function
derivative (i.e., σ′ ≥ cσ > 0), then a second-order variant
of GLMtron (Proposition 3) satisfies Assumption 2b with
RegSq(T ) = O(d logT /c2σ). Plugging this into SquareCB

gives regret O(
√
dKT logT /c2σ). This matches the depen-

dence on d and T in previous results for generalized linear
contextual bandits with finite actions (Li et al., 2017), but
unlike these results the algorithm does not require stochastic
contexts, and requires no assumptions on the design matrix
1
T ∑

T
t=1 xt,atx

⊺
t,at

or its population analogue.

2.4. Minimax Perspective

The analysis of SquareCB is interesting because the reduc-
tion from square loss regret to contextual bandit regret com-
pletely ignores the structure of the function class F . At a
high level, the proof proceeds by showing that the probabil-
ity selection strategy ensures that

T

∑
t=1

Ea∼pt[f⋆(xt, a) − f⋆(xt, π⋆(xt))]

≤ 2KT

γ
+ γ

4

T

∑
t=1

Ea∼pt[(ŷt,a − f⋆(xt, a))
2]. (10)

at which point we can bound the right-hand side by using
the regret bound for SqAlg. In fact, the probability selection
strategy in SquareCB actually gives a stronger guarantee
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than (10). Consider the following per-round minimax prob-
lem, whose value Val(γ) is given by

max
ŷ∈[0,1]K

min
p∈∆K

max
f⋆∈[0,1]K

max
a⋆

E
a∼p

[f⋆a − f⋆a⋆ −
γ

4
(ŷa − f⋆a )

2].

(11)
If Val(γ) ≤ c, we can interpret this as saying, “For every
choice of ŷ, there exists an action distribution such that
regardless of the value of f⋆, the immediate regret with
respect to f⋆ is bounded by the squared prediction error of
ŷ, plus a constant c.” The probability selection rule used
in SquareCB with parameter γ certifies that Val(γ) ≤ 2K

γ
.

The takeaway is that, at the level of the reduction, f⋆(xt, a)
might as well be chosen adversarially at each round rather
than realized by a specific function f⋆ ∈ F chosen a-priori.
We are hopeful that this per-round minimax approach to
reductions will be more broadly useful, and indeed our
extension to infinite actions in Section 5.2 uses similar per-
round reasoning. To close the section, we give a lower
bound on the minimax value which shows that the action
selection strategy used in SquareCB is near-optimal for the
minimax problem (11).

Proposition 1. For any γ ≥ 2, we have Val(γ) ≥ (1−1/K)
γ

.

3. Optimality and Universality
In light of Theorem 1, a natural question is whether one can
always instantiate SquareCB such that its regret is optimal
for the class F under consideration. More broadly, we seek
to understand the minimax rate for the RichCB setting where
F is a large, potentially nonparametric function class and
the problem is realizable. In this section we first prove a
lower bound on minimax regret achievable for any function
class F . We then show that SquareCB is universal, in the
sense that there always exist a choice for SqAlg that achieves
the lower bound (up to dependence on the number of actions,
which is not our focus).

For technical reasons, we make two simplifying assump-
tions in this section. First, we focus on the setting where
(xt, `t) are drawn i.i.d. from a joint distribution µ. Second,
we assume that the regression function class F tensorizes:
There is a base function class G ⊆ (X → [0,1]) such that
F = GK , in the sense F consists of functions of the form
f(x, a) = ga(x), where ga ∈ G.

Our upper and lower bounds are stated in terms of the
metric entropy of the base class G. For a sample set
S = {x1, . . . , xn}, let N2(G, ε, S) denote the size of the
smallest set G′ such that

∀g ∈ G, ∃g′ ∈ G′ s.t. ( 1

n

n

∑
t=1

(g(xt) − g′(xt))2)
1/2

≤ ε.

The empirical entropy of G is then defined asHiid(G, ε) =
supn≥1,S∈Xn logN2(G, ε, S). Empirical entropy is a fun-

damental quantity in statistical learning that is both neces-
sary and sufficient for learnability, as well as polynomially
related to other standard complexity measures such as (lo-
cal) Rademacher complexity and fat-shattering dimension
(Rakhlin & Sridharan, 2012). We give concrete examples in
the sequel, but for now we make the following assumption.

Assumption 3. Contexts and losses are drawn i.i.d. from a
joint distribution µ, and there exists a constant p > 0 such
that for all ε > 0, the empirical entropy for G grows as

Hiid(G, ε) ≲ ε−p.

Our upper and lower bounds characterize the optimal regret
for RichCBs as a function of the growth rate parameter p > 0
in Assumption 3. We first state the lower bound.

Theorem 2 (Lower bound). Let G be any function class
for which Hiid(G, ε) = Θ(ε−p) for some p > 0. Then there
exists a slightly modified class G′ withHiid(G′, ε) = Θ̃(ε−p)
for which the corresponding function class F (with K = 2)
is such that any algorithm must have

E[RegCB(T )] ≥ Ω̃(T
1+p
2+p ), (12)

on some realizable instance for F .

We now show that SquareCB can always be instantiated to
match the lower bound (12) in terms of dependence on T .

Theorem 3 (Universality of SquareCB). Whenever Assump-
tion 3 holds, there exists a choice for the base regret mini-
mization algorithm SqAlg such that with probability at least
1 − δ, SquareCB has

RegCB(T ) ≤ Õ((KT )
1+p
2+p +

√
K2T log(δ−1)).

The idea behind the proof of Theorem 3 is to choose SqAlg
to run Vovk’s aggregating algorithm over an empirical cover
for G. The main difficulty is that we must find a cover that
is close on the distribution µ, which the algorithm has no
prior knowledge of. To get around this issue, the algorithm
continually refines a cover based on data collected so far.

Examples. Let us make matters slightly more concrete
and show how to extract some familiar regret bounds from
Theorem 2 and Theorem 3. First, for linear classes (9)
(specifically, the tensorized variants), one hasHiid(G, ε) ∝
d log(1/ε) ∧ ε−2 (Zhang, 2002), and hence the theorems
recover the

√
dT and T 3/4 regret bounds for linear classes

described in the previous section.

Slivkins (2011) derives fairly general results for nonpara-
metric contextual bandits. As one example, their results
imply that when G is the set of all 1-Lipcshitz functions
over [0,1]d, the optimal regret is T

1+d
2+d . Since such classes

have Hiid(G, ε) ∝ ε−d, our theorems recover this result.
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Similarly, for Hölder-smooth functions of order β, we have
p = d/β which yields the rate T

d+β
d+2β (Rigollet & Zeevi,

2010).

As a final example, Bartlett et al. (2017) show that neural
networks with appropriately bounded spectral norm and
`2,1 norm haveHiid(G, ε) ∝ ε−2. Our theorems imply that
Θ̃(T 3/4) is optimal for such models.

Discussion. The assumptions made in this section (ten-
sorization, stochastic contexts) can be relaxed, but we do
not have a complete picture of the optimal regret for all
values of p in this case. For adversarial contexts and without
the tensorization assumption, if F has bounded sequen-
tial metric entropy then Theorem 1 of Rakhlin & Srid-
haran (2014) implies that there exists a choice for SqAlg
such that RegSq(T ) ≤ T 1− 2

2+p and thus SquareCB has

RegCB(T ) ≤ O(T
1+p
2+p ) as in Theorem 3, but only for p ≤ 2.

On the other hand, for stochastic contexts it is also possible
to show that a variant of the algorithm in Theorem 3 based
on slightly different concentration arguments matches the
regret bound O(T

1+p
2+p ) without the tensorization assump-

tion, but only for p ≥ 1. Resolving the optimal dependence
on K seems challenging and likely requires more refined
complexity measures; see also Daniely et al. (2015b).

Previous works have given regret bounds for infinite policy
classes that depend on the complexity (e.g., VC dimension)
of the policy class (Beygelzimer et al., 2011; Foster & Krish-
namurthy, 2018). These guarantees are somewhat different
than the ones we provide here, which depend on the com-
plexity of the regression function class F rather than the
class of policies it induces (but require realizability).

4. On Gap-Dependent Regret Bounds
In this section we give some negative results regarding
instance-dependent regret bounds for RichCBs. Since The-
orem 1 recovers the usual Õ(

√
KT ) bound for multi-

armed bandits, a natural question is whether the algorithm
can recover instance-dependent regret bounds of the form
O(K logT

∆
) when there is a gap ∆ between the best and

second-best action. More ambitiously, can the algorithm
achieve similar instance-dependent regret bounds for rich
function classes F?

To address this question, we assume Bayes regressor f⋆

enjoys a gap between the optimal and second-best action
for every context. The following definition is adapted from
Dani et al. (2008).

Definition 1 (Uniform gap). A contextual bandit instance
is said to have uniform gap ∆ if for all x ∈ X ,

f⋆(x, a) − f⋆(x,π⋆(x)) > ∆ ∀a ≠ π⋆(x).

We would like to understand whether Theorem 1 can be im-
proved when the uniform gap condition holds. For example,
is it possible to select the learning rate γ such that SquareCB
has

RegCB(T ) ≤
KRegSq(T )

∆
⋅ polylog(T )? (13)

As a special case, such a regret bound would recover the
Õ(K

∆
)-type regret bound for multi-armed bandits by choos-

ing SqAlg with the exponential weights strategy. More gen-
erally, for any finite class F , the hypothesized bound (13)
would imply a regret bound of

RegCB(T ) ≤ Õ(K log∣F∣
∆

) (14)

by taking SqAlg to be Vovk’s aggregating algorithm, which
has RegSq(T ) = log∣F∣. Here we give an information-
theoretic lower bound which shows that such a regret bound
is not possible, not just for SquareCB but for any contextual
bandit algorithm.

Theorem 4. For every T , there exists a function class F
with two arms and ∣F∣ ≤

√
2T such that for any (potentially

randomized) contextual bandit algorithm, there exists a
realizable and noiseless contextual bandit instance with
uniform gap ∆ = 1

4
on which

E[RegCB(T )] ≥ 1

16

√
T .

The function class in Theorem 4 has ∣F∣ = O(
√
T ), and

all instances considered in the theorem have constant gap.
For such setups, the hypothesized regret bound (14) would
give RegCB(T ) ≤ Õ(1). Hence, Theorem 4 rules out (14)
and (13), and in fact rules out any regret bound of the form
RegCB(T ) ≤ Õ(K log∣F∣

∆
⋅ T 1/2−ε) for constant ε.

In essence, the theorem shows that to obtain instance-
dependent regret guarantees, one can at best hope for regret
bounds that scale with ∣F∣

∆
rather than log∣F∣

∆
. In other words,

instance-dependent regret is at odds with learning from rich
function classes (RichCBs), where regret scaling with ∣F∣
is unacceptable. It is known that for linear function classes
F , and more broadly function classes that satisfy certain
structural assumptions such as bounded eluder dimension
(Russo & Van Roy, 2013), gap-dependent logarithmic regret
bounds are achievable through variants of UCB and Thomp-
son sampling. However, bounded eluder dimension is a
rather strong assumption which is essentially only known
to hold for linear models, generalized linear models, and
classes for which the domain size ∣X ∣ is bounded.4 Theo-
rem 4 shows that such assumptions are qualitatively required
for instance-dependent logarithmic regret guarantees.

4There is no contradiction with Theorem 4, as the construction
in the theorem scales ∣X ∣ as

√

T
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Langford & Zhang (2008) consider a different gap notion
we refer to as a policy gap which, in the stochastic set-
ting, posits that L(π⋆) < L(π) − ∆policy, where L(π) =
Ex,` `(π(x)). For instances with policy gap ∆policy, they
show that the Epoch-Greedy algorithm achieves regret
poly(log∣Π∣, logT,∆−2

policy). There is no contradiction be-
tween this result and Theorem 4, as the construction in the
theorem has policy gap 1√

T
.

5. Extensions
5.1. Misspecified Models

In practice, the realizability assumption (Assumption 1) may
be restrictive. In this section we show that the performance
of SquareCB gracefully degrades when the assumption fails
to hold, so long as the learning rate is changed appropriately.
We consider the following relaxed notion of realizability.

Assumption 4. There exists a regressor f⋆ ∈ F such that
for all t, f⋆(x, a) = E[`t(a) ∣ xt = x] + εt(x, a), where
∣εt(x, a)∣ ≤ ε.

The main theorem for this section shows that when Assump-
tion 4 holds, the performance of SquareCB degrades by an
additive ε ⋅

√
KT factor. We state the result in terms of

Assumption 2a, since this assumption is typically easier to
satisfy than Assumption 2b when the model is misspecified.

Theorem 5. Suppose the adversary satisfies Assumption 4
and SqAlg satisfies Assumption 2a. Then SquareCB with
γ = 2

√
KT /(RegSq(T ) + 2ε2T ) and µ =K ensures that

RegCB(T ) ≤ 2
√
KT ⋅RegSq(T ) + ε ⋅ 5

√
K,

where RegCB(T ) ∶= supπ E[∑Tt=1 `t(at) −∑Tt=1 `t(π(xt))].

An extension of Theorem 5 for adaptive adversaries is given
in Appendix E.1.

Examples and discussion. Regret bounds for misspeci-
fied linear contextual bandits have recently gathered interest
(Van Roy & Dong, 2019; Lattimore & Szepesvari, 2019;
Neu & Olkhovskaya, 2020) due to their connection to re-
inforcement learning with misspecified linear feature maps
(Du et al., 2020). Consider again the LinUCB-type setting
where F = {(x, a) ↦ ⟨θ, xa⟩ ∣ θ ∈ Rd, ∥θ∥2 ≤ 1}, so that
xt = (xt,a)a∈A is a finite collection of contexts that varies
from round to round. By instantiating SquareCB with the
Vovk-Azoury-Warmuth forecaster, which has RegSq(T ) ≤
d log(T /d) (Vovk, 1998; Azoury & Warmuth, 2001) and
appealing to Theorem 5, we get an efficient algorithm with
regret

Õ(
√
dKT + ε

√
KT ). (15)

Previous algorithms with similar guarantees either apply
only to non-contextual linear bandits (Lattimore & Szepes-

vari, 2019), or attain sub-optimal regret and require addi-
tional assumptions when specialized to this setting (Neu
& Olkhovskaya, 2020).5 Interestingly, as remarked by
Lattimore & Szepesvari (2019), the lower bounds of Du
et al. (2020) imply that when K ≫ d, the “price” of ε-
misspecification must grow as Ω(ε

√
dT ). On the other

hand, our result shows that the price can be improved to
O(ε

√
KT ) in the small-K regime.

Theorem 5 shows that we can be robust to misspecifica-
tion efficiently whenever online regression is possible effi-
ciently. More broadly, these theorems give the first result we
are aware of that considers ε-misspecification for arbitrary
classes F . The theorems imply that O(ε

√
KT ) bounds the

price of misspecification for general classes; the complexity
of F is only reflected in RegSq(T ).

5.2. Infinite Actions

While the finite-action setting in which SquareCB works is
arguably the most basic and fundamental contextual bandit
setting, it is desirable to have algorithms that work for large
or infinite sets of actions. As a proof of concept, we extend
SquareCB to an infinite-action setting where the action space
A is dA-dimensional unit `2 ball BdA . The result is deferred
to Appendix E.2 for space.

6. Discussion
We have presented the first optimal reduction from contex-
tual bandits to online square loss reduction. Conceptually,
we showed that online oracles are a powerful primitive for
designing contextual bandit algorithms, both in terms of
computational and statistical efficiency. Beyond our algo-
rithmic contribution, we have shed light on the fundamental
limits of algorithms for RichCBs, including minimax rates
and gap-dependent regret guarantees. We are hopeful that
our techniques will find broader use, and that our results
will inspire further research on provably efficient contex-
tual bandits with flexible function approximation. Going
forward, some natural questions are:

• Reinforcement learning. Can the SquareCB strategy
be adapted to give regret bounds for reinforcement
learning or continuous control with unknown dynamics
and function approximation?

• Adaptivity. Can the SquareCB strategy or a variant
adapt to take advantage of easy or nice data?

5Neu & Olkhovskaya (2020) give an efficient algorithm for
a similar but incomparable setting in which contexts are stochas-
tic, but the (ε-approximately linear) Bayes regressor can vary
adversarially from round to round. Their algorithm has regret
Õ((dK)

1/3T 2/3
+ ε

√

dT ).
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