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with Belief-Based Rewards on Continuous Domains

A. Multivariate Kernel Density Estimation

This section provides more details about kernel density esti-
mation (KDE) and bandwidth selection based on (Silverman,
1986; Gisbert, 2003). We consider density estimation in a
D-dimensional continuous state space. For a weighted parti-
cle set {(s;, w;)}™, with normalized weights >\~ | w; =1
and particles s; € R? the general KDE is given by
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where K is the kernel function and H € RP*P is the
symmetric, positive definite bandwidth matrix. Since the
resulting density estimate is not very sensitive to the choice
of kernel function, we consider only the multivariate normal
kernel
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which results in the density estimate
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Bandwidth Selection More important is the choice of the
bandwidth matrix H, as it defines the amount of smoothing
applied to the particles. A small bandwidth will result in
a tall, narrow peak at each particle, while increasing the
bandwidth results in a smoother function. However, if the
bandwidth is chosen too large, features are lost due to the
smoothing effect of an increased bandwidth. Frequently,
diagonal bandwidth matrices are employed, which allows to
set different smoothing factors for each dimension. More-
over, the orientation of the smoothing can be chosen by
using general symmetric, positive definite matrices.

with coefficients v; = fori=1,...,m.

A widely-used heuristic for the bandwidth is Silverman’s
rule of thumb which is defined by
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where &; is the empirical standard deviation with respect to
the ith dimension and H,; = 0 for ¢ # j. In the univariate
case (D = 1) this reduces to
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It can be shown that this bandwidth is optimal if the underly-
ing density is Gaussian (Silverman, 1986, p. 45). However,
if the true density is not Gaussian, this choice is likely to
over-smooth the result.

Computational Complexity In the general case of an ar-
bitrary symmetric, positive definite bandwidth matrix, the
matrix inversion and the determinant computation have a
complexity of O(D?). For diagonal bandwidth matrices,
as we use in this work, the complexity of these operations
reduces to O(D). Therefore, evaluating the density esti-
mate in Equation (3) has a complexity of O(mD) and the
KDE-based entropy estimation, as presented in Section 4.1,
has a complexity of O(m?2D).

B. Evaluation Hyperparameters

The hyperparameters used by the algorithms in the evalua-
tion are listed in Table 1. Since the considered problems all
have a small discrete action space, progressive widening is
not used on the action space. Hence, the parameters k,, o
are not required.

Sunberg & Kochenderfer optimized the parameters of their
algorithms POMCPOW and PFT-DPW for the Light Dark
and Laser Tag problem with the cross entropy method (Man-
nor et al., 2003). In our work, we use the same parameters
for these problems. For the Continuous Light Dark (CLD)
problem, the parameters were chosen identical to the Light
Dark problem, since the problems are very similar.

Since MCTS algorithms tend to be very sensitive with re-
spect to the exploration constant ¢, we conducted additional
experiments to inspect the influence of c on the benchmark.
This is particularly important to ensure that the results for
POMCPOW and PFT-DPW do not suffer from a subop-
timal choice of the exploration constant. Figure 1 shows
the results of 1000 simulations with varying parameter c
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Table 1. Hyperparameters used in the Light Dark, Continuous
Light Dark (CLD), and Laser Tag experiments

IPFT Light Dark CLD Laser Tag
A 50.0  60.0 4.0
m 20 20 20
c 100.0  100.0 26.0
ko 5.0 5.0 4.0
Qo 1/20  1/20 1/35
POMCPOW Light Dark CLD Laser Tag
c 90.0  90.0 26.0
ko 5.0 5.0 4.0
Qo 1/15  1/15 1/35
PFT-DPW Light Dark CLD Laser Tag
m 20 20 20
c 100.0  100.0 26.0
ko 4.0 4.0 4.0
Qo 1/10 1/10 1/35

in the CLD problem with action spaces Ay and Az. The
figure shows that the choice of exploration constant does
not influence the results significantly.

The parameters for IPFT were selected by running 1000
simulations with different parameter sets and choosing the
best parameters. Since IPFT is based on PFT-DPW, the
PFT-DPW parameters served as a starting point for this
procedure. An initial guess for the information weight A
was determined by scaling the information gathering term
such that it has the same order of magnitude as the expected
reward.

In general, the values «,, for the observation widening are
quite small. This essentially results in a limited number
of child nodes and thereby allows the tree to grow deeper.
Sunberg & Kochenderfer note that it might be sufficient to
simply limit the number of child nodes to a fixed number
(2017).
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Figure 1. Sensitivity of the reward with respect to the exploration constant c¢ in the Continuous Light Dark problem. The mean reward and
its standard deviation over 1000 simulations are depicted.



