Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data

Appendices

A. Derivations and Additional Methodology
A.1. Generalized PointConv Trick

The matrix notation becomes very cumbersome for manipu-
lating these higher order n-dimensional arrays, so we will
instead use index notation with Latin indices 4, j, k index-
ing points, Greek indices «, 3, 7y indexing feature channels,
and c indexing the coordinate dimensions of which there
are d = 3 for PointConv and d = dim(G) + 2 dim(Q)
for LieConv.®> As the objects are not geometric tensors but
simply n-dimensional arrays, we will make no distinction
between upper and lower indices. After expanding into in-
dices, it should be assumed that all values are scalars, and
that any free indices can range over all of the values.

Let k’fj’ﬁ be the output of the MLP ky which takes {ag; }
as input and acts independently over the locations ¢, j. For

PointConv, the input afj =xf — :vj and for LieConv the
input af; = Concat([log(vj_lui), i ¢5])°.

We wish to compute
eI (12)
7.8

In Wu et al. (2019), it was observed that since kf}ﬁ is the

output of an MLP, k:a’ﬁ =>, WePs] . for some ﬁnal
weight matrix W and penultlmate actlvatlons 87 (s
simply the result of the MLP after the last nonhneanty)
With this in mind, we can rewrite (12)

Z Zwaﬁ v fﬁ (13)
—ZWW Zs”fﬁ (14)

In practice, the intermediate number of channels is much
less than the product of ¢;;, and coue: || < ||B] and
so this reordering of the computation leads to a massive
reduction in both memory and compute. Furthermore,
b7’ﬁ =28, f@ can be implemented with regular ma-
e b7 can be also
Z WOé Eb€

trix multiplication and A% = 3
by flattening (3, 7) into a single axis : h“‘

The sum over index j can be restricted to a subset j(¢) (such
as a chosen neighborhood) by computing ff) at each of the
required indices and padding to the size of the maximum
subset with zeros, and computing b;"” = >, S;Y,j(i)fjﬁ(i) us-
ing dense matrix multiplication. Masking out of the values

3dim(Q) is the dimension of the space into which @, the orbit
identifiers, are embedded.

at indices ¢ and j is also necessary when there are differ-
ent numbers of points per minibatch but batched together
using zero padding. The generalized PointConv trick can
thus be applied in batch mode when there may be varied
number of points per example and varied number of points
per neighborhood.

A.2. Abelian GG and Coordinate Transforms

For Abelian groups that cover &' in a single orbit, the
computation is very similar to ordinary Euclidean convo-
lution. Defining a;, = log(u;), b; = log(v;), and using
the fact that e % e% = %% means that log(v;) =

(log oexp)(a; — b;). Defining f = foexp, h = hoexp;
we get
- 1 - -
Wa:) = = Na: — b ,
(a:) =~ > (kg oproj)(a; —bj)f(b;), (15
j€nbhd(3)
where proj = log o exp projects to the image of the loga-

rithm map. Apart from a projection and a change to logarith-
mic coordinates, this is equivalent to Euclidean convolution
in a vector space with dimensionality of the group. When
the group is Abelian and & is a homogeneous space, then
the dimension of the group is the dimension of the input. In
these cases we have a trivial stabilizer group H and single
origin o, so we can view f and h as acting on the input
T; = U;0.

This directly generalizes some of the existing coordinate
transform methods for achieving equivariance from the liter-
ature such as log polar coordinates for rotation and scaling
equivariance (Esteves et al., 2017), and using hyperbolic
coordinates for squeeze and scaling equivariance.

Log Polar Coordinates: Consider the Abelian Lie group
of positive scalings and rotations: G = R* x SO(2) acting
on R2. Elements of the group M € G can be expressed as
a2 X 2 matrix

r cos(0)

e = [0 e

r cos(d)

for r € Rt and # € R. The matrix logarithm is*

1 rcos(d) —rsin(@)|\ | log(r) —6mod2x
B\ |r sin(f) rcos(f) ~ |# mod 27 log(r)
or more compactly log(M (r, 0)) = log(r) I+ (6 mod 27)J,

which is [log(r), # mod 27] in the basis for the Lie algebra
[1,J]. Tt is clear that proj = log o exp is simply mod 27
on the J component.

AsR?is a homogeneous space of GG, one can choose the
global origin o = [1,0] € R2. A little algebra shows that

*Here 0 mod 27 is defined to mean @ 4 27n for the integer
n such that the value is in (—, 7), consistent with the principal
matrix logarithm. (6 + 7)%2m — 7 in programming notation.

Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data

lifting to the group yields the transformation w; = M (r;, 6;)
for each point p; = w;o, where r = /22 + y2, and
6 = atan2(y, x) are the polar coordinates of the point p;.
Observe that the logarithm of vj_lui has a simple expression
highlighting the fact that it is invariant to scale and rotational
transformations of the elements,

log(vjflul-) = log(M(r;, Gj)*lM(m, 0:))
=log(r;/r;)I + (6; — 6; mod 2m).J.

Now writing out our Monte Carlo estimation of the integral:
1 -
h(pi) = — ko(1 i/75),0; —6; mod 2 i),
(pi) n Ej o(log(ri/r;) ; mod 27) f(p;)

which is a discretization of the log polar convolution from
Esteves et al. (2017). This can be trivially extended to
encompass cylindrical coordinates with the group 7'(1) x
R*x SO(2).

Hyperbolic coordinates: For another nontrivial example,
consider the group of scalings and squeezes G = R* x SQ
acting on the positive orthant X = {(z,y) € R? : = >
0,y > 0}. Elements of the group can be expressed as the
product of a squeeze mapping and a scaling

ool 81 Y-l 2

for any r, s € RT. As the group is abelian, the logarithm
splits nicely in terms of the two generators I and A:

log ([’; 738}) = (log) [é ﬂ + (log s) [(1) _OJ .

Again X is a homogeneous space of G, and we choose a
single origin o = [1, 1]. With a little algebra, it is clear that
M(r;, si)o = p; where r = /xy and s = \/x/y are the
hyperbolic coordinates of p;.

Expressed in the basis B = [I, A] for the Lie algebra above,
we see that

log(v;lui) =log(r;/rj)I +log(si/s;)A

yielding the expression for convolution
1 -
h(p:) = n Z ko(log(ri/7;),log(si/s;)) f(p;),
J

which is equivariant to squeezes and scalings.

As demonstrated, equivariance to groups that contain the
input space in a single orbit and are abelian can be achieved
with a simple coordinate transform; however our approach
generalizes to groups that are both ’larger’” and *smaller’ than
the input space, including coordinate transform equivariance
as a special case.

A.3. Sufficient Conditions for Geodesic Distance

In general, the function d(u,v) = || log(v—'u)||r, defined
on the domain of GL(d) covered by the exponential map,
satisfies the first three conditions of a distance metric but
not the triangle inequality, making it a semi-metric:

0
2. d(u,v) =0 & log(u™tv) =0 u=1v

3. d(u,0) = || log(v~1u)]| = | - log(u"v)|| = d(v, u).

However for certain subgroups of GL(d) with additional
structure, the triangle inequality holds and the function is
the distance along geodesics connecting group elements u
and v according to the metric tensor

(A, B), = Tr(ATu"Tu"'B), (16)
where —7" denotes inverse and transpose.

Specifically, if the subgroup G is in the image of the exp :
g — G map and each infinitesmal generator commutes with
its transpose: [A, AT] = 0 for VA € g, then d(u,v) =
|l log(v—1u)| F is the geodesic distance between u, v.

Geodesic Equation: Geodesics of (16) satisfying V7§ =
0 can equivalently be derived by minimizing the energy
functional

Bl = [Gt = [T

using the calculus of variations. Minimizing curves ~(t),
connecting elements v and v in G (y(0) = v,y(1) = w)
satisfy

1
0=0E= 5/ Te(3 "y Ty ') dt
0

Noting that §(y~!) = —y~1§vy~! and the linearity of the
trace,

1
2 / Tr(3" Ty~ 169) =Tr(3 "y~ "y~ 6yy~19)dt = 0.
0

Using the cyclic property of the trace and integrating by
parts, we have that

1

d, v A e

—2/ Tr((dt(vTv Ty D+ 9y Ty 1)57>dt=0,
0

where the boundary term Tr({y~7y~157)| (1) vanishes since
(07)(0) = (6)(1) = 0.

As 6y may be chosen to vary arbitrarily along the path, v
must satisfy the geodesic equation:

d v 1 1\, 1T
ZOTTT D+ T =00 an

Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data

Solutions: When A = log(v~1tu) satisfies [A, AT] = 0
the curve () = vexp(tlog(v~1u)) is a solution to the
geodesic equation (17). Clearly connects « and v, y(0) =
v and (1) = . Plugging in 4 = A into the left hand side
of equation (17), we have

d _ _
= (AT 4+ 44Ty
_ _AT,Yfl;Y,yfl —|—AAT’}/71
=[4,ATy =0

Length of v: The length of the curve ~ connecting u and v
is || log(v ™)| p,

/ V GrA)ydi = /
_ / VTHAT)t = [Allp = [[log(v ™ u) | ¢

Of the Lie Groups that we consider in this paper, all of
which have a single connected component, the groups G =
T(d),SO(d),R* x SO(d), R* x SQ satisfy this property
that [g, g7] = 0; however, the SE(d) groups do not.

r(§Ty=Ty=15)dt

A.4. Equivariant Subsampling

Even if all distances and neighborhoods are precomputed,
the cost of computing equation (6) for ¢ = 1, ..., N is still
quadratic, O(nN) = O(N?), because the number of points
in each neighborhood n grows linearly with IV as f is more
densely evaluated. So that our method can scale to handle a
large number of points, we show two ways two equivariantly
subsample the group elements, which we can use both for
the locations at which we evaluate the convolution and the
locations that we use for the Monte Carlo estimator. Since
the elements are spaced irregularly, we cannot readily use
the coset pooling method described in (Cohen and Welling,
2016a), instead we can perform:

Random Selection: Randomly selecting a subset of p
points from the original n preserves the original sampling
distribution, so it can be used.

Farthest Point Sampling: Given a set of group elements
S = {us}¥_, € G, we can select a subset S} of size p by
maximizes the minimum distance between any two elements
in that subset,

Sub,(S) := S, = argmax min

d(u,v), 18
5,C8 u,VESp uFv () ()

farthest point sampling on the group. Acting on a set
of elements, Sub, : S — S;, the farthest point sub-
sampling is equivariant Sub,(wS) = wSub,(S) for any
w € (. Meaning that applying a group element to each
of the elements does not change the chosen indices in

the subsampled set because the distances are left invariant
d(ui, uj) = d(wu,, wuj).

Now we can use either of these methods for Sub,(-) to
equivariantly subsample the quadrature points in each neigh-
borhood used to estimate the integral to a fixed number p,

h= >

JESuby, (nbhd (u;))

ko(v; Yui) £ (19)

Doing so has reduced the cost of estimating the convolution
from O(N?) to O(pN), ignoring the cost of computing
Sub,, and {nbhd(u;)} ¥ ;.

A.5. Review and Implications of Noether’s Theorem

In the Hamiltonian setting, Noether’s theorem relates the
continuous symmetries of the Hamiltonian of a system with
conserved quantities, and has been deeply impactful in the
understanding of classical physics. We give a review of
Noether’s theorem, loosely following Butterfield (2006).

More on Hamiltonian Dynamics

As introduced earlier, the Hamiltonian is a function acting
on the state H(z) = H(q,p), (we will ignore time depen-
dence for now) can be viewed more formally as a function
on the cotangent bundle (¢,p) = z € M = T*C where C
is the coordinate configuration space, and this is the setting
for Hamiltonian dynamics.

In general, on a manifold M, a vector field X can be viewed
as an assignment of a directional derivative along M for
each point z € M. It can be expanded in a basis using
coordinate charts X =) X“0,, where 0, = 3% and
acts on functions f by X(f) = > X“0af. In the chart,
each of the components X * are functions of z.

In Hamiltonian mechanics, for two functions on M, there
is the Poisson bracket which can be written in terms of the
canonical coordinates ¢;, p;, >
of dg Of 9g
{f.9 Z o
dp; Jq; 5‘q1 Ip;

The Poisson bracket can be used to associate each function
f to a vector field

of 0
_{f7 }_Zap 0q;

which specifies, by its action on another function g, the di-
rectional derivative of g along X : X;(g) = {f, g}. Vector
fields that can be written in this way are known as Hamil-
tonian vector fields, and the Hamiltonian dynamics of the

af 0
a(h apz

SHere we take the definition of the Poisson bracket to be nega-
tive of the usual definition in order to streamline notation.

Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data

system is a special example Xy = {H,-}. This vector
field in canonical coordinates z = (p, q) is the vector field
Xg = F(z) = JV,H (i.e. the symplectic gradient, as
discussed in Section 6.1). Making this connection clear, a
given scalar quantity evolves through time as f = {H, f}.
But this bracket can be used to evaluate the rate of change of
a scalar quantity along the flows of vector fields other than
the dynamics, such as the flows of continuous symmetries.

Noether’s Theorem

The flow ¢ by A € R of a vector field X is the set of
integral curves, the unique solution to the system of ODEs
z% = X with initial condition z and at parameter value
A, or more abstractly the iterated application of X: ¢3 =
exp(AX). Continuous symmetries transformation are the
transformations that can be written as the flow ¢ of a
vector field. The directional derivative characterizes how a
function such as the Hamiltonian changes along the flow of
X and is a special case of the Lie Derivative L.

d
LxH = a(Ho ¢§)\A:0 = X(H)
A scalar function is invariant to the flow of a vector field if

and only if the Lie Derivative is zero
H(¢pX(2)) = H(z) & LxH = 0.

For all transformations that respect the Poisson Bracket®,
which we add as a requirement for a symmetry, the vector
field X is (locally) Hamiltonian and there exists a function
fsuch that X = Xy = {f,-}. If M is a contractible
domain such as R?", then f is globally defined. For every
continuous symmetry qﬁff ,

EXfH:Xf(H) :{f>H}:_{H>f}:_XH(f)7

by the antisymmetry of the Poisson bracket. So if ¢ is a
symmetry of H, then X = X for some function f, and

H(¢y! (2)) = H(z) implies
Lx,H=0&Lx,[=0s f(¢77(2) = [(2)

or in other words f(z(t+7)) = f(2(t)) and f is a conserved
quantity of the dynamics.

®More precisely, the Poisson Bracket can be formulated in
a coordinate free manner in terms of a symplectic two form w,
{f, 9} = w(Xy, Xy). In the original coordinates w = >, dp; A
dq’, and this coordinate basis, w is represented by the matrix
J from earlier. The dynamics Xy are determined by dH =
w(Xm,) =tx yw. Transformations which respect the Poisson
Bracket are symplectic, £xw = 0. With Cartan’s magic formula,
this implies that d(¢xw) = 0. Because the form ¢ xw is closed,
Poincare’s Lemma implies that locally (¢xw) = df) for some
function f and hence X = X7 is (locally) a Hamiltonian vector
field. For more details see Butterfield (2006).

This implication goes both ways, if f is conserved then gi)ff

is necessarily a symmetry of the Hamiltonian, and if ¢f\<f is
a symmetry of the Hamiltonian then f is conserved.

Hamiltonian vs Dynamical Symmetries

So far we have been discussing Hamiltonian symmetries, in-
variances of the Hamiltonian. But in the study of dynamical
systems there is a related concept of dynamical symmetries,
symmetries of the equations of motion. This notion is also
captured by the Lie Derivative, but between vector fields.
A dynamical system 2 = F'(z), has a continuous dynami-
cal symmetry qbi(if the flow along the dynamical system
commutes with the symmetry:

3 (01 (2) = &1 (93 (2)). (20)

Meaning that applying the symmetry transformation to the
state and then flowing along the dynamical system is equiv-
alent to flowing first and then applying the symmetry trans-
formation. Equation (20) is satisfied if and only if the Lie
Derivative is zero:

LxF =[X,F]=0,

where [-, -] is the Lie bracket on vector fields.’

For Hamiltonian systems, every Hamiltonian symmetry is
also a dynamical symmetry. In fact, it is not hard to show
that the Lie and Poisson brackets are related,

(X5, Xg] = X(1.0)

and this directly shows the implication. If X is a Hamilto-
nian symmetry, { f, H} = 0, and then

(X, Fl = [Xf, Xu] = X¢p,my = 0.

However, the converse is not true, dynamical symmetries
of a Hamiltonian system are not necessarily Hamiltonian
symmetries and thus might not correspond to conserved
quantities. Furthermore even if the system has a dynamical
symmetry which is the flow along a Hamiltonian vector field

X, X = Xy = {f,}, but the dynamics F are not Hamil-
tonian, then the dynamics will not conserve f in general.
Both the symmetry and the dynamics must be Hamiltonian
for the conservation laws.

This fact is demonstrated by Figure 9, where the dynamics
of the (non-Hamiltonian) equivariant LieConv-T(2) model
has a T(2) dynamical symmetry with the generators 9,, 9,
which are Hamiltonian vector fields for f = p,, f = py,
and yet linear momentum is not conserved by the model.

"The Lie bracket on vector fields produces another vector field
and is defined by how it acts on functions, for any smooth function

g: [X, Fl(g) = X(F(9)) — F(X(9))

Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data

Ener
100 &

50

0 50 100 150 200 250

25 Linear Momentum

2.0
15

0 50 100 t 150 200 250

e |jeCony-T2 === HLieConv-Trivial === HLieConv-T2 ----- Truth

Figure 9. Equivariance alone is not sufficient, for conservation we
need both to model ‘H and incorporate the given symmmetry. For
comparison, LieConv-T(2) is T(2)-equivariant but models ', and
HLieConv-Trivial models H but is not T(2)-equivariant. Only
HLieConv-T(2) conserves linear momentum.

Conserving Linear and Angular Momentum

Consider a system of IV interacting particles described in Eu-
clidean coordinates with position and momentum ¢;, , Dim,
such as the multi-body spring problem. Here the first index
i = 1,2, 3 indexes the spatial coordinates and the second
m = 1,2,..., N indexes the particles. We will use the
bolded notation q.,,, P, to suppress the spatial indices, but
still indexing the particles m as in Section 6.1.

The total linear momentum along a given direction n is
n-P = Zi’m NiPim = N - (D, Pm). Expanding the
Poisson bracket, the Hamiltonian vector field

0 0
an:{n.P’.}:ZZr;niaq?:n.;ﬁqim

which has the flow (bf""(qm, Pm) = (dm + An,pn), a
translation of all particles by An. So our model of the
Hamiltonian conserves linear momentum if and only if it is
invariant to a global translation of all particles, (e.g. T(2)
invariance for a 2D spring system).

The total angular momentum along a given axis n is
n-L =n § am XPm =
m i,5,k,m m

, where ¢, is the Levi-Civita symbol and we have defined
the antisymmetric matrix A by Ay; = . €;5n;.

0 1o}
Xan = -L,-} = E ApiQim—=—— — AipDiy ———
L {n } jkeom quj 8ka]kpj apkm
1o} 0
Xo1 = E T AT — T AT _—
v (4 qu+pm apm)

m

where the second line follows from the antisymmetry of A.
We can find the flow of X1, from the differential equations

Z €ijkTiqdimPkm = Z pngQm

m = Aq, Pm = Aq which have the solution

G (A, Pm) = (€7 m, € Prn) = (RoAim, RoPm),

where Ry is a rotation about the axis n by the angle 6, which
follows from the Rodriguez rotation formula. Therefore, the
flow of the Hamiltonian vector field of angular momentum
along a given axis is a global rotation of the position and
momentum of each particle about that axis. Again, the
dynamics of a neural network modeling a Hamiltonian con-
serve total angular momentum if and only if the network is
invariant to simultaneous rotation of all particle positions
and momenta.

B. Additional Experiments
B.1. Equivariance Demo

While (7) shows that the convolution estimator is equivari-
ant, we have conducted the ablation study below examining
the equivariance of the network empirically. We trained
LieConv (Trivial, T(3), SO(3), SE(3)) models on a limited
subset of 20k training examples (out of 100k) of the HOMO
task on QM9 without any data augmentation. We then evalu-
ate these models on a series of modified test sets where each
example has been randomly transformed by an element of
the given group (the test translations in T(3) and SE(3) are
sampled from a normal with stddev 0.5). In table B.1 the
rows are the models configured with a given group equiv-
ariance and the columns N/G denote no augmentation at
training time and transformations from G applied to the test
set (test translations in T(3) and SE(3) are sampled from a
normal with stddev 0.5).

Model N/N N/T(3) N/SO(3) N/SE(3)
Trivial 173 183 239 243
T(3) 113 113 133 133
SO@3) 159 238 160 240
SE(3) 62 62 63 62

Table 4. Test MAE (in meV) on HOMO test set randomly trans-
formed by elements of GG. Despite no data augmentation (N), G
equivariant models perform as well on G transformed test data.

Notably, the performance of the LieConv-G models do not
degrade when random G transformations are applied to the
test set. Also, in this low data regime, the added equivari-
ances are especially important.

B.2. RotMNIST Comparison

While the RotMNIST dataset consists of 12k rotated MNIST
digits, it is standard to separate out 10k to be used for train-
ing and 2k for validation. However, in Ti-Pooling and E(2)-
Steerable CNNG, it appears that after hyperparameters were
tuned the validation set is folded back into the training set

Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data

to be used as additional training data, a common approach
used on other datasets. Although in table 1 we only use
10k training points, in the table below we report the perfor-
mance with and without augmentation trained on the full
12k examples.

Aug Trivil T, T2 SO®2) SO@2)xR* SE(2)
SO@2) 144 135 132 127 1.13 1.13
None 1.60 2.64 234 126 1.25 1.15

Table 5. Classification Error (%) on RotMNIST dataset for
LieConv with different group equivariances and baselines:

C. Implementation Details
C.1. Practical Considerations

While the high-level summary of the lifting procedure (Al-
gorithm 1) and the LieConv layer (Algorithm 2) provides
a useful conceptual understanding of our method, there are
some additional details that are important for a practical
implementation.

1. According to Algorithm 2, a;; is computed in every
LieConv layer, which is both highly redundant and
costly. In practice, we precompute a;; once after lift-
ing and feed it through the network with layers op-
erating on the state ({aij}%N, {f;})L,) instead of
{(us, ¢, f;)},. Doing so requires fixing the group
elements that will be used at each layer for a given
forwards pass.

2. In practice only p elements of nbhd; are sampled (ran-
domly) for computing the Monte Carlo estimator in
order to limit the computational burden (see Appendix
A4).

3. We use the analytic forms for the exponential and loga-
rithm maps of the various groups as described in Eade
(2014).

C.2. Sampling from the Haar Measure for Various
groups

When the lifting map from X — G x X /G is multi-valued,
we need to sample elements of u € G that project down to
x: uo = z in a way consistent with the Haar measure p(-).
In other words, since the restriction zi(+)|nbna is a distribu-
tion, then we must sample from the conditional distribution
u ~ p(uluo = x)|ppna- In general this can be done by
parametrizing the distribution of p as a collection of random
variables that includes z, and then sampling the remaining
variables.

In this paper, the groups we use in which the lifting map
is multi-valued are SE(2), SO(3), and SE(3). The process
is especially straightforward for SE(2) and SE(3) as these
groups can be expressed as a semi-direct product of two
groups G = H X N,

where §(h) = d/dN“(gi% (Willson, 2009). For G =

SE(d) = SO(d) x T(d), d(h) = 1 since the Lebesgue
measure dyip(q)(z) = d\(x) = d is invariant to rotations.
So simply dpisg () (R, 7) = duso(ay(R)dz.

So lifts of a point x € X to SE(d) consistent with the
are just T R, the multiplication of a translation by x and
randomly sampled rotations R ~ pgo(q)(-). There are
multiple easy methods to sample uniformly from SO(d)
given in (Kuffner, 2004), for example sampling uniformly
from SO(3) can be done by sampling a unit quaternion
from the 3-sphere, and identifying it with the corresponding
rotation matrix.

C.3. Model Architecture

We employ a ResNet-style architecture (He et al., 2016),
using bottleneck blocks (Zagoruyko and Komodakis, 2016),
and replacing ReLLUs with Swish activations (Ramachan-
dran et al., 2017). The convolutional kernel gy internal to
each LieConv layer is parametrized by a 3-layer MLP with
32 hidden units, batch norm, and Swish nonlinearities. Not
only do the Swish activations improve performance slightly,
but unlike ReLUs they are twice differentiable which is a
requirement for backpropagating through the Hamiltonian
dynamics. The stack of elementwise linear and bottleneck
blocks is followed by a global pooling layer that computes
the average over all elements, but not over channels. Like
for regular image bottleneck blocks, the channels for the
convolutional layer in the middle are smaller by a factor of
4 for increased parameter and computational efficiency.

Downsampling: As is traditional for image data, we in-
crease the number of channels and the receptive field at
every downsampling step. The downsampling is performed
with the farthest point downsampling method described in
Appendix A.4. For a downsampling by a factor of s < 1,
the radius of the neighborhood is scaled up by s~/ and
the channels are scaled up by s~/2. When an image is
downsampled with s = (1/2)? that is typical in a CNN,
this results in 2x more channels and a radius or dilation of
2x. In the bottleneck block, the downsampling operation is
fused with the LieConv layer, so that the convolution is only
evaluated at the downsampled query locations. We perform
downsampling only on the image datasets, which have more
points.

BatchNorm: In order to handle the varied number of group
elements per example and within each neighborhood, we

Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data

use a modified batchnorm that computes statistics only over
elements from a given mask. The batch norm is computed
per channel, with statistics averaged over the batch size and
each of the valid locations.

C.4. Details for Hamiltonian Models
Model Symmetries:

As the position vectors are mean centered in the model for-
ward pass q; = q; — @, HOGN and HLieConv-SO2* have
additional T(2) invariance, yielding SE(2) invariance for
HLieConv-SO2*. We also experimented with a HLieConv-
SE2 equivariant model, but found that the exponential map
for SE2 (involving taylor expands and masking) was not
numerically stable enough for for second derivatives, re-
quired for optimizing through the Hamiltonian dynamics.
So instead we benchmark the HLieConv-SO2 (without cen-
tering) and the HLieConv-SO2* (with centering) models
separately. Layer equivariance is preferable for not prema-
turely discarding useful information and for better modeling
performance, but invariance alone is sufficient for the con-
servation laws. Additionally, since we know a priori that
the spring problem has Euclidean coordinates, we need not
model the kinetic energy K(p,m) = Z;.Lzl I [1?/m;
and instead focus on modeling the potential V(q, k). We
observe that this additional inductive bias of Euclidean co-
ordinates improves model performance. Table 6 shows the
invariance and equivariance properties of the relevant mod-
els and baselines. For Noether conservation, we need both
to model the Hamiltonian and have the symmetry property.

Dataset Generation: To generate the spring dynam-
ics datasets we generated D systems each with N =
6 particles connected by springs. The system param-
eters, mass and spring constant, are set by sampling
{mgl), . méz), k%z), ces kéz)}i]\il, mgl) ~ U(0.1,3.1),

kzy) ~ U(0,5). Following Sanchez-Gonzalez et al. (2019),
we set the spring constants as k;; = k;k;. For each system

F(z,t) | H(z,t) | T(2) | SO(2)
FC °
OGN °
HOGN ° *
LieConv-T(2) ° <
HLieConv-Trivial °
HLieConv-T(2) ° <
HLieConv-SO(2) . <
HLieConv-SO(2)* ° * o

Table 6. Model characteristics. Models with layers invariant to G
are denoted with %, and those with equivariant layers with €.

1, the position and momentum of body 7 were distributed
as g\ ~ N(0,0.161), p{" ~ N(0,0.36I). Using the

analytic form of the Hamiitonian for the spring problem,
H(q,p) = K(p,m)+V(q, k), we use the RK4 numerical
integration scheme to generate 5 second ground truth tra-
jectories broken up into 500 evaluation timesteps. We use
a fixed step size scheme for RK4 chosen automatically (as
implemented in Chen et al. (2018)) with a relative tolerance
of 1e-8 in double precision arithmetic. We then randomly se-
lected a single segment for each trajectory, consisting of an
(@) (@)
).

initial state z; and 7 = 4 transition states: (z;1,...,%;{,

Training: All models were trained in single precision arith-
metic (double precision did not make any appreciable differ-
ence) with an integrator tolerance of le-4. We use a cosine
decay for the learning rate schedule and perform early stop-
ping over the validation MSE. We trained with a minibatch
size of 200 and for 100 epochs each using the Adam opti-
mizer (Kingma and Ba, 2014) without batch normalization.
With 3k training examples, the HLieConv model takes about
20 minutes to train on one 1080Ti.

For the examination of performance over the range of dataset
sizes in 8, we cap the validation set to the size of the training
set to make the setting more realistic, and we also scale the
number of training epochs up as the size of the dataset
shrinks (epochs = 100(4/103/D)) which we found to be
sufficient to fit the training set. For D < 200 we use the full
dataset in each minibatch.

Hyperparameters:
channels layers Ir
(H)FC 256 4 le-2
(H)OGN 256 1 le-2
(H)LieConv 384 4 le-3

Hyperparameter tuning: Model hyperparameters were
tuned by grid search over channel width, number of layers,
and learning rate. The models were tuned with training,
validation, and test datasets consisting of 3000, 2000, and
2000 trajectory segments respectively.

C.S. Details for Image and Molecular Experiments

RotMNIST Hyperparameters: For RotMNIST we train
each model for 500 epochs using the Adam optimizer with
learning rate 3e-3 and batch size 25. The first linear layer
maps the 1-channel grayscale input to £k = 128 channels,
and the number of channels in the bottleneck blocks follow
the scaling law from Appendix C.3 as the group elements
are downsampled. We use 6 bottleneck blocks, and the
total downsampling factor S = 1/10 is split geometrically
between the blocks as s = (1/10)'/¢ per block. The initial
radius r of the local neighborhoods in the first layer is set so

Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data

as to include 1/15 of the total number of elements in each
neighborhood and is scaled accordingly. The subsampled
neighborhood used to compute the Monte Carlo convolution
estimator uses p = 25 elements. The models take less than
12 hours to train on a 1080Ti.

QM9 Hyperparameters: For the QM9 molecular data, we
use the featurization from Anderson et al. (2019), where
the input features f; are determined by the atom type
(C,H,N,O,F) and the atomic charge. The coordinates x; are
simply the raw atomic coordinates measured in angstroms.
A separate model is trained for each prediction task, all
using the same hyperparameters and early stopping on the
validation MAE. We use the same train, validation, test split
as Anderson et al. (2019), with 100k molecules for train,
10% for test and the remaining for validation. Like with
the other experiments, we use a cosine learning rate decay
schedule. Each model is trained using the Adam optimizer
for 1000 epochs with a learning rate of 3e-3 and batch size
of 100. We use SO(3) data augmentation, 6 bottleneck
blocks, each with & = 1536 channels. The radius of the
local neighborhood is set to 7 = oo to include all elements.
The model takes about 48 hours to train on a single 1080Ti.

C.6. Local Neighborhood Visualizations

In Figure 10 we visualize the local neighborhood used with
different groups under three different types of transforma-
tions: translations, rotations and scaling. The distance and
neighborhood are defined for the tuples of group elements
and orbit. For Trivial, T(2), SO(2), R x SO(2) the corre-
spondence between points and these tuples is one-to-one
and we can identify the neighborhood in terms of the input
points. For SE(2) each point is mapped to multiple tuples,
each of which defines its own neighborhood in terms of
other tuples. In the Figure, for SE(2) for a given point we vi-
sualize the distribution of points that enter the computation
of the convolution at a specific tuple.

Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data

) R* x SO(2)

Figure 10. A visualization of the local neighborhood for different groups, in terms of the points in the input space. For the computation
of the convolution at the point in red, elements are sampled from colored region. In each panel, the top row shows translations, middle
row shows rotations and bottom row shows scalings of the same image. For SE(2) we visualize the distribution of points entering the
computation of the convolution over multiple lift samples. For each of the equivariant models that respects a given symmetry, the points
that enter into the computation are not affected by the transformation.

