How to Train Your Neural ODE: the World of Jacobian and Kinetic Regularization

A. Details of Section 3.1: Benamou-Brenier
formulation in Lagrangian coordinates

The Benamou-Brenier formulation of the optimal transporta-
tion (OT) problem in Eulerian coordinates is

T

I?in / /||f(x,t)||2pt(x) dxdt  (18a)
P 0

subject to % = —div (p:f), (18b)

po(x) = p, (18¢c)

pr(z) = q. (18d)

The connection between continuous normalizing flows
(CNF) and OT becomes transparent once we rewrite (18) in
Lagrangian coordinates. Indeed, for regular enough velocity
fields f one has that the solution of the continuity equation
(18b), (18c¢) is given by p; = z(+, t)fip where z is the flow

z(x,t) = f(z(x,t),t), z(x,0)=x.

The relation p; = z(-,t)fp means that for arbitrary test
function ¢ we have that

/ 6()pr (. £)dx = / o(a(x, 1))p(x)dx

Therefore (18) can be rewritten as

T

mfin / /||f(z(x7 t),t)||I*p(x) dxdt  (19a)
0

subject to z(x,t) = f(z(x,1),t), (19b)

z(x,0) = x, (19¢)

z( T)ip=q (19d)

Note that p, is eliminated in this formulation. The terminal
condition (18d) is trivial to implement in Eulerian coordi-
nates (grid-based methods) but not so simple in Lagrangian
ones (19d) (grid-free methods). To enforce (19d) we intro-
duce a penalty term in the objective function that measures
the deviation of z(-, T')fip from ¢. Thus, the penalized ob-
jective function is

T
| [ 1gtatx. o). 01Fp0) dxdt + 5 KL(a( Dt | )

’ (20)
where A > 0 is the penalization strength. Next, we observe
that this objective function can be written as an expectation
with respect to x ~ p. Indeed, the Kullback-Leibler di-
vergence is invariant under coordinate transformations, and
therefore

KL(z(-,T)ip || ) =KL(p || 2~ (-, T)lq) = KL(p || ps)
p(x)
X~vp Po(X)

L logp(x) — E logpy(x)

Hence, multiplying the objective function in (20) by A and
ignoring the f-independent term E ., log p(x) we obtain
an equivalent objective function

T
E {A / ||f<z<x,t>,t>2dtlogmx)} @)

X~p

Finally, if we assume that {x;} ; are iid sampled from p,
we obtain the empirical objective function

AL [T , 1N
Nz_;/o 1£(z(xi, 1), )] dt—N;h)gPO(Xi) (22)

B. Additional results

Here we present additional generated samples on the two
larger datasets considered, CelebA-HQ and ImageNet64. In
addition bits/dim on clean images are reported in Table 2.
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Figure 7. Quality of FFJORD RNODE generated images on ImageNet-64.
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Figure 8. Quality of FFJORD RNODE generated images on CelebA-HQ. We use temperature annealing, as described in (Kingma &
Dhariwal, 2018), to generate visually appealing images, with 7" = 0.5, ..., 1.
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Table 2. Additional results and model statistics of FFIORD RNODE. Here we report validation bits/dim on both validation images, and on
validation images with uniform variational dequantization (ie perturbed by uniform noise). We also report number of trainable model

parameters.

DATASET

BITS/DIM (CLEAN)

BITS/DIM (DIRTY)

# PARAMETERS

MNIST
CIFARI10
IMAGENET64
CELEBA-HQ256

0.92
3.25
3.72
0.72

0.97
3.38
3.83
1.04

8.00e5
1.36e6
2.00e6
4.61e6




