A. Details of Section 3.1: Benamou-Brenier formulation in Lagrangian coordinates

The Benamou-Brenier formulation of the optimal transportation (OT) problem in Eulerian coordinates is

$$\min_{\mathbf{f},\rho} \qquad \int_0^T \int \|\mathbf{f}(\mathbf{x},t)\|^2 \rho_t(\mathbf{x}) \, \mathrm{d}\mathbf{x} \mathrm{d}t \qquad (18a)$$

subject to
$$\frac{\partial \rho_t}{\partial t} = -\operatorname{div}\left(\rho_t \mathbf{f}\right),$$
 (18b)

$$\rho_0(\mathbf{x}) = p,\tag{18c}$$

$$\rho_T(\mathbf{z}) = q. \tag{18d}$$

The connection between continuous normalizing flows (CNF) and OT becomes transparent once we rewrite (18) in Lagrangian coordinates. Indeed, for regular enough velocity fields \mathbf{f} one has that the solution of the continuity equation (18b), (18c) is given by $\rho_t = \mathbf{z}(\cdot,t) \sharp p$ where \mathbf{z} is the flow

$$\dot{\mathbf{z}}(\mathbf{x},t) = \mathbf{f}(\mathbf{z}(\mathbf{x},t),t), \quad \mathbf{z}(\mathbf{x},0) = \mathbf{x}.$$

The relation $\rho_t = \mathbf{z}(\cdot, t) \sharp p$ means that for arbitrary test function ϕ we have that

$$\int \phi(\mathbf{x})\rho_t(\mathbf{x},t)d\mathbf{x} = \int \phi(\mathbf{z}(\mathbf{x},t))p(\mathbf{x})d\mathbf{x}$$

Therefore (18) can be rewritten as

$$\min_{\mathbf{f}} \qquad \int_{0}^{T} \int \|\mathbf{f}(\mathbf{z}(\mathbf{x},t),t)\|^{2} p(\mathbf{x}) \, d\mathbf{x} dt \quad (19a)$$

subject to
$$\dot{\mathbf{z}}(\mathbf{x},t) = \mathbf{f}(\mathbf{z}(\mathbf{x},t),t),$$
 (19b)

$$\mathbf{z}(\mathbf{x},0) = \mathbf{x},\tag{19c}$$

$$\mathbf{z}(\cdot, T)\sharp p = q. \tag{19d}$$

Note that ρ_t is eliminated in this formulation. The terminal condition (18d) is trivial to implement in Eulerian coordinates (grid-based methods) but not so simple in Lagrangian ones (19d) (grid-free methods). To enforce (19d) we introduce a penalty term in the objective function that measures the deviation of $\mathbf{z}(\cdot,T)\sharp p$ from q. Thus, the penalized objective function is

$$\int_0^T \int \|\mathbf{f}(\mathbf{z}(\mathbf{x},t),t)\|^2 p(\mathbf{x}) \, d\mathbf{x} dt + \frac{1}{\lambda} \operatorname{KL}(\mathbf{z}(\cdot,T) \sharp p \mid\mid q),$$
(20)

where $\lambda>0$ is the penalization strength. Next, we observe that this objective function can be written as an expectation with respect to $\mathbf{x}\sim p$. Indeed, the Kullback-Leibler divergence is invariant under coordinate transformations, and therefore

$$KL(\mathbf{z}(\cdot, T)\sharp p \mid\mid q) = KL(p \mid\mid \mathbf{z}^{-1}(\cdot, T)\sharp q) = KL(p \mid\mid p_{\theta})$$

$$= \underset{\mathbf{x} \sim p}{\mathbb{E}} \log \frac{p(\mathbf{x})}{p_{\theta}(\mathbf{x})}$$

$$= \underset{\mathbf{x} \sim p}{\mathbb{E}} \log p(\mathbf{x}) - \underset{\mathbf{x} \sim p}{\mathbb{E}} \log p_{\theta}(\mathbf{x})$$

Hence, multiplying the objective function in (20) by λ and ignoring the **f**-independent term $\mathbb{E}_{\mathbf{x} \sim p} \log p(\mathbf{x})$ we obtain an equivalent objective function

$$\mathbb{E}_{\mathbf{x} \sim p} \left\{ \lambda \int_0^T \|\mathbf{f}(\mathbf{z}(\mathbf{x}, t), t)\|^2 dt - \log p_{\theta}(\mathbf{x}) \right\}$$
 (21)

Finally, if we assume that $\{\mathbf{x}_i\}_{i=1}^N$ are iid sampled from p, we obtain the empirical objective function

$$\frac{\lambda}{N} \sum_{i=1}^{N} \int_{0}^{T} \|\mathbf{f}(\mathbf{z}(\mathbf{x}_{i}, t), t)\|^{2} dt - \frac{1}{N} \sum_{i=1}^{N} \log p_{\theta}(\mathbf{x}_{i})$$
 (22)

B. Additional results

Here we present additional generated samples on the two larger datasets considered, CelebA-HQ and ImageNet64. In addition bits/dim on clean images are reported in Table 2.

Figure 7. Quality of FFJORD RNODE generated images on ImageNet-64.

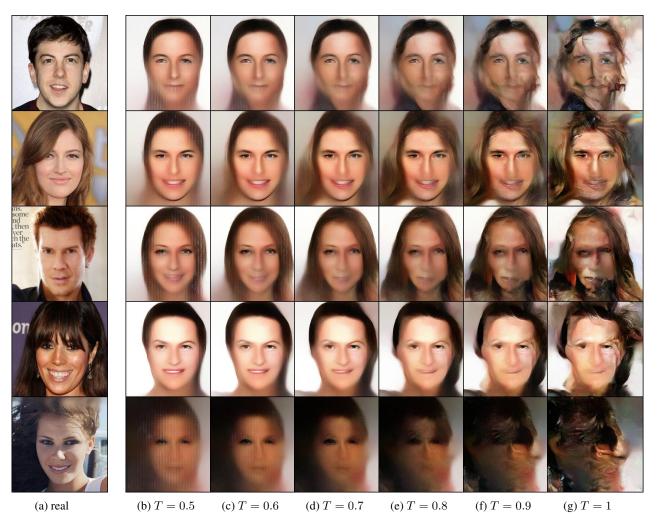


Figure 8. Quality of FFJORD RNODE generated images on CelebA-HQ. We use temperature annealing, as described in (Kingma & Dhariwal, 2018), to generate visually appealing images, with $T=0.5,\ldots,1$.

Table 2. Additional results and model statistics of FFJORD RNODE. Here we report validation bits/dim on both validation images, and on validation images with uniform variational dequantization (ie perturbed by uniform noise). We also report number of trainable model parameters.

DATASET	BITS/DIM (CLEAN)	BITS/DIM (DIRTY)	# PARAMETERS
MNIST	0.92	0.97	8.00e5
CIFAR10	3.25	3.38	1.36e6
IMAGENET64	3.72	3.83	2.00e6
CELEBA-HQ256	0.72	1.04	4.61e6