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Supplementary material: Kernelized Stein Discrepancy Tests of
Goodness-of-Fit for Time-to-Event Data

A. Proofs and Derivations
A.1. Proofs of Section 3.1: Survival Stein Operator

A.1.1. PROOF OF PROPOSITION 2

Let ω ∈ H(s). Then

E0((T0ω)(T,∆)− (T s0 ω)(T,∆)) = E0

(
ω(T )

[
∆

(
f ′0(T )

f0(T )
− λC(x)

)
−
(

∆
λ′0(T )

λ0(T )
− λ0(T )

)])
(23)

Observe that

E0 (∆ω(T )λC(T )) =

∫ ∞
0

ω(x)
fC(x)

SC(x)
SC(x)f0(x)dx =

∫ ∞
0

ω(x)
f0(x)

S0(x)
S0(x)fC(x)dx = E0((1−∆)ω(T )λ0(T )),

therefore, the RHS of Equation (23) is equal to

E0

(
ω(T )∆

(
f ′0(T )

f ′0(T )
+ λ0(T )− λ0(T )

λ0(T )

))
.

Finally, the last expectation is 0 due to the identity f ′
0(x)
f0(x) =

λ′
0(x)
λ0(x) − λ0(x), which follows from a simple computation.

A.1.2. PROOF OF PROPOSITION 3

By definition,

sup
ω∈B1(H)

1

n

n∑
i=1

(T (s)
0 ω)(Ti,∆i)− (T0ω)(Ti,∆i) = sup

ω∈B1(H)

1

n

n∑
i=1

ω(Ti) (∆iλC(Ti)− (1−∆i)λ0(Ti))

= sup
ω∈B1(H)

〈
ω,

1

n

n∑
i=1

K(Ti, ·) (∆iλC(Ti)− (1−∆i)λ0(Ti))

〉
H

=

∥∥∥∥∥ 1

n

n∑
i=1

K(Ti, ·) (∆iλC(Ti)− (1−∆i)λ0(Ti))

∥∥∥∥∥
H

We continue by proving that the previous norm converges to zero in probability. Observe that by the symmetrization lemma
(?)Lemma 6.4.2]vershynin2019high, it holds

E

[∥∥∥∥∥ 1

n

n∑
i=1

K(Ti, ·) (∆iλC(Ti)− (1−∆i)λ0(Ti))

∥∥∥∥∥
H

]
≤ 2E

[∥∥∥∥∥ 1

n

n∑
i=1

WiK(Ti, ·) (∆iλC(Ti)− (1−∆i)λ0(Ti))

∥∥∥∥∥
H

]
where W1, . . . ,Wn are i.i.d. Rademacher random variables, independent of the data (Ti,∆i)

n
i=1. Then, by Jensen’s

inequality, and by using that E(Wi) = 0, we conclude that the previous expression converges to zero in probability, as

E

∥∥∥∥∥ 1

n

n∑
i=1

WiK(Ti, ·) (∆iλC(Ti)− (1−∆i)λ0(Ti))

∥∥∥∥∥
2

H

 = E

[
1

n2

n∑
i=1

K(Ti, Ti) (∆iλC(Ti)− (1−∆i)λ0(Ti))
2

]
→ 0,

a.s., where the limit result holds due the law of large numbers which can be applied under the Condition in Equation (12)
and since |K(x, y)| ≤ c1, as

E
[
K(Ti, Ti) (∆iλC(Ti)− (1−∆i)λ0(Ti))

2
]
≤ c1E

[(
∆iλC(Ti)

2 + (1−∆i)λ0(Ti)
2
)]

= c1

∫ ∞
0

(λC(x) + λ0(x)) fC(x)f0(x)dx <∞.
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A.2. Proofs of Section 3.3: Proportional Stein Operator

PROOF OF PROPOSITON 4

We start by claiming that the following equation holds true for every ω ∈ H(s):

1

n

n∑
i=1

(
(T̂ (p)

0 ω)(Ti,∆i)− (T (p)
0 ω)(Ti,∆i)

)
P→ 0. (24)

Then, the main result follows from Equation (24), by using the law of large numbers and that

E0

[
(T (p)

0 ω)(T1,∆1)
]

=

∫ ∞
0

(ω(t)λ0(t))′

λ0(t)

1

S0(t)SC(t)
SC(t)f0(t)dt =

∫ ∞
0

(ω(t)λ0(t))′

λ0(t)
λ0(t)dt = 0,

which follows from the definition of our operator (see Equation (18)).

We finish the proof by proving our claim in Equation (24). Observe that∣∣∣∣∣ 1n
n∑
i=1

(
(T̂ (p)

0 ω)(Ti,∆i)− (T (p)
0 ω)(Ti,∆i)

)∣∣∣∣∣ ≤ 1

n

n∑
i=1

|(ω(Ti)λ0(Ti))
′|

λ0(Ti)

∣∣∣∣ ∆i

Y (Ti)/n
− ∆i

ST (Ti)

∣∣∣∣ , (25)

where ST (t) = SC(t)S0(t) holds under the null hypothesis. We proceed to prove that the previous sum tends to 0 in
probability when n grows to infinity. Let ε > 0 and define tε > 0 as the infimum of all t such that

∫∞
t
|(ω(x)λ0(x))′| dx < ε.

Notice that such tε is well-defined since
∫∞

0
|(ω(x)λ0(x))′| dx <∞. We continue by splitting the sum in Equation (25)

into two regions, {Ti ≤ tε} and {Ti > tε}, obtaining that Equation (25) equals

1

n

n∑
i=1

|(ω(Ti)λ0(Ti))
′|

λ0(Ti)

∣∣∣∣ ∆i

Y (Ti)/n
− ∆i

ST (Ti)

∣∣∣∣1{Ti≤tε} +
1

n

n∑
i=1

|(ω(Ti)λ0(Ti))
′|

λ0(Ti)

∣∣∣∣ ∆i

Y (Ti)/n
− ∆i

ST (Ti)

∣∣∣∣1{Ti>tε},
(26)

and we prove that both sums tend to 0 in probability when n grows to infinity. We start with the first term. Observe that

1

n

n∑
i=1

|(ω(Ti)λ0(Ti))
′|

λ0(Ti)

∣∣∣∣ ∆i

Y (Ti)/n
− ∆i

ST (Ti)

∣∣∣∣1{Ti≤tε} ≤ sup
t≤tε

∣∣∣∣ 1

Y (t)/n
− 1

ST (t)

∣∣∣∣ 1

n

n∑
i=1

|(ω(Ti)λ0(Ti))
′|

λ0(Ti)
∆i1{Ti≤tε}

= op(1),

where the previous result holds since supt≤tε

∣∣∣ 1
Y (t)/n −

1
ST (t)

∣∣∣→ 0 almost surely by the Glivenko-Cantelli Theorem, and
since

1

n

n∑
i=1

|(ω(Ti)λ0(Ti))
′|

λ0(Ti)
∆i1{Ti≤tε} → E

[
|(ω(T1)λ0(T1))′|

λ0(T1)
∆11{T1≤tε}

]
=

∫ tε

0

|(ω(t)λ0(t))′|
λ0(t)

SC(t)f0(t)dt

=

∫ tε

0

|(ω(t)λ0(t))′| dt <∞,

where the last expression is finite due to Equation (17).

Next, we deal with the second term in equation (26). Theorem 3.2.1. of Gill (1980) yields supt≤τn

∣∣∣1− Y (Ti)/n
ST (Ti)

∣∣∣ = Op(1),
where τn = max{T1, . . . , Tn}, and, Lemma 2.7 of Gill (1983) yields supt≤τn nST (t)/Y (t) = Op(1) (recall that ST (t) =
S0(t)SC(t)). From the previous results, we get

1

n

n∑
i=1

∆i
|(ω(Ti)λ0(Ti))

′|
λ0(Ti)

∣∣∣∣ 1

Y (Ti)/n
− 1

ST (Ti)

∣∣∣∣1{Ti>tε} =
1

n

n∑
i=1

∆i
|(ω(Ti)λ0(Ti))

′|
λ0(Ti)

1

Y (Ti)/n

∣∣∣∣1− Y (Ti)/n

ST (Ti)

∣∣∣∣1{Ti>tε}
= Op(1)

1

n

n∑
i=1

∆i
|(ω(Ti)λ0(Ti))

′|
λ0(Ti)

1

Y (Ti)/n
1{Ti>tε}

= Op(1)
1

n

n∑
i=1

∆i
|(ω(Ti)λ0(Ti))

′|
λ0(Ti)

1

S0(Ti)SC(Ti)
1{Ti>tε}.
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Now, notice that

1

n

n∑
i=1

∆i
|(ω(Ti)λ0(Ti))

′|
λ0(Ti)

1

S0(Ti)SC(Ti)
1{Ti>tε}

a.s.→ E0

[
∆1
|(ω(T1)λ0(T1))′|

λ0(T1)

1

S0(T1)SC(T1)
1{T1>tε}

]
=

∫ ∞
tε

|(ω(x)λ0(x))′|
λ0(x)

f0(x)SC(x)

S0(x)SC(x)
dx

=

∫ ∞
tε

|(ω(x)λ0(x))′|dx < ε,

where the first equality holds by Equation (4), and the last inequality comes from the definition of tε. Since we can choose
ε > 0 as small as desired, we conclude the result.

A.3. Proofs Section 4: Censored-Data Kernel Stein Discrepancy

A.3.1. PROOF OF PROPOSITION 5

Proof. Notice that, by the definition of the random function ξ(c)(∆, T ), we have that (T (c)ω)(T,∆) = 〈ω, ξ(c)(T,∆)〉H(c) .
Also notice that, ξ(c)(x, δ) ∈ H(c) for each fixed (x, δ), and that the expectation, EX

[
ξ(c)(T,∆)

]
∈ H(c) if and only if

equation (21) is satisfied (the previous expectation has to be understood in the Bochner sense, as we are taking expectation
of a random function).

Then,

c-KSD(fX‖f0)2 = sup
ω∈B1(H(c))

EX
[
(T (c)

0 ω)(T,∆)
]2

= sup
ω∈B1(H(c))

EX
[〈
ω, ξ(c)(T,∆)

〉
H(c)

]2
= sup
ω∈B1(H(c))

〈
ω,EX

[
ξ(c)(T,∆)

]〉2

H(c)

=
∥∥∥EX

[
ξ(c)(T,∆)

]∥∥∥2

H(c)

=
〈

EX
[
ξ(c)(T,∆)

]
,EX

[
ξ(c)(T ′,∆′)

]〉
H(c)

= EX
[〈
ξ(c)(T,∆), ξ(c)(T ′,∆′)

〉
H(c)

]
= EX

[
h(c)((T,∆), (T ′,∆′))

]
,

where the third equality is due to the linearity of expectation and the inner product, the fourth equality follows from the
definition of norm (and since we are taking supremum in the unit ball), and the second to last equality is, again, due to the
linearity of the expectation and inner product.

A.3.2. EXPLICIT COMPUTATION OF h(c)

Denote φ(x, δ) = δ
λ′
0(x)
λ0(x) − λ0(x), and L1(x, y) = ∂

∂xK
(c)(x, y), L2(x, y) = ∂

∂yK
(c)(x, y) and L = ∂2

∂x∂yK
(c)(x, y). For

simplicity of exposition, we will drop the superindex (c) in all cases.

Survival Stein operator (c = s): For this case, we have

ξ(x, δ) = (T0K)((x, δ), ·) = δ
∂

∂x
K(x, ·) +

(
δ
λ′0(x)

λ0(x)
− λ0(x)

)
K(x, ·) + λ0(0)K(0, ·)

= δL1(x, ·) + φ(x, δ)K(x, ·) + λ0(0)K(0, ·).

Notice that a simple computation shows that L(x, y) = 〈L1(x, ·), L1(y, ·)〉H, then

h(s)((x, δ), (x′, δ′)) = δδ′L(x, x′) + δφ(x′, δ′)L1(x, x′) + δλ0(0)L1(x, 0)

+ φ(x, δ)δ′L2(x, x′) + φ(x, δ)φ(x′, δ′)K(x, x′) + φ(x, δ)λ0(0)K(x, 0)

+ λ0(0)δ′L2(0, x′) + λ0(0)φ(x′, δ′)K(0, x′) + λ0(0)2K(0, 0).
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Martingale Stein operator (c = m): Observe that in this case

ξ(x, δ) = (T0K)((s, δ), ·) =
δ

λ0(x)
L1(x, ·)−K(x, ·) +K(0, ·).

Then, by the reproducing kernel property

h(m)(x, δ), (x′, δ′)) =
δ

λ0(x)

δ′

λ0(x′)
L(x, x′)− δ

λ0(x)
L1(x, x′) +

δ

λ0(x)
L1(x, 0)

− δ′

λ0(x′)
L2(x, x′) +K(x, x′)−K(x, 0)

+
δ′

λ0(x′)
L2(0, x′)−K(0, x′) +K(0, 0).

Proportional Stein operator (c = p): Notice that, in this case, we use T̂ (p)
0 , given in Equation (16), to compute

ξ̂(p)(x, δ) = (T̂ (p)
0 K(p))((x, δ), ·) since T (p)

0 is not available, as it depends on SC , which is unknown even under the null
hypothesis. Then,

ξ̂(x, δ) = (T̂0K)((x, δ), ·) =

(
L1(x, ·) +

λ′0(x)

λ0(x)
K(x, ·)

)
δ

Y (x)/n
.

Define K?(x, y) =
(

∂2

∂x∂yλ0(x)λ0(y)K(x, y)
)

. Then, by the reproducing kernel property,

ĥ(p)((x, δ), (x′, δ′)) = n2 δδ′

Y (x)Y (x′)
K?(x, x′).

Recall that Y (t) =
∑n
k=1 1{Tk≥t} denotes the risk function, which depends on all the data points, hence we write ĥ(p) to

recall the reader that this kernel is a random one.

A.4. Proofs of Section 5: Goodness-of-fit via c-KSD

The following lemmas show that, under Conditions c) and d) (depending on which case), the kernels h(c) have finite first
and second moment. These moment conditions on the kernel are important to deduce asymptotic results.

Lemma 9. Let (T ′,∆′) and (T,∆) be independent samples from µX , and assume that Condition d) holds. Then,

EX
[
|h(c)((T,∆), (T,∆))|

]
<∞, and EX

[
|h(c)((T,∆), (T ′,∆′))|

]
<∞

for c ∈ {s,m, p}, under the alternative hypothesis.

Lemma 10. Let (T ′,∆′) and (T,∆) be independent samples from µ0, and assume that Condition c) holds. Then

E0

[
|h(c)((T,∆), (T,∆))|

]
<∞, and E0

[
h(c)((T,∆), (T ′,∆′))2

]
<∞

for c ∈ {s,m, p}, under the null hypothesis.

We just proof Lemma 9 since the proof of Lemma 10 is essentially the same.

Proof of Lemma 9. First of all, note that for any kernel (positive-definite function), it holds

h(c)((x, δ), (x′, δ′)) ≤ 1

2
h(c)((x, δ), (x, δ)) +

1

2
h(c)((x′, δ′), (x′, δ′)),

hence, it is enough to only prove the first part of the lemma.
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Survival Stein operator (c = s): Recall ξ(s)(x, δ) = δL1(x, ·) + φ(x, δ)K(x, ·) + λ0(0)K(0, ·), where L1(x, y) =
∂
∂xK(x, y) φ(x, δ) = δ

λ′
0(x)
λ0(x) − λ0(x), then

EX
[
|h(s)((T,∆), (T,∆))|

]
= EX

[∥∥∥ξ(s)(T,∆)
∥∥∥2

H(s)

]
≤ 4EX

[
‖∆L1(T, ·)‖2H(s) + ‖φ(T,∆)K(T, ·)‖2H(s)

]
+ 4 ‖λ0(0)K(0, ·)‖2H(s)

≤ 4EX
[
‖∆L1(T, ·)‖2H(s)

]
+ 4EX

[
‖φ(T,∆)K(T, ·)‖2H(s)

]
+ 4λ0(0)2K(0, 0).

The first and third term in the previous equation are finite under the technical Conditions a) and b). Thus, we only need to
check

EX
[
‖φ(T,∆)K(T, ·)‖2H(s)

]
= EX

[
φ(T,∆)2|K(T, T )|

]
<∞,

which is guaranteed by Condition d).

Martingale Stein operator (c = m): Recall that ξ(m)(x, δ) = φ(x, δ)L1(x, ·) − K(x, ·) + K(0, ·), where L1(x, y) =
∂
∂xK(x, y) and φ(x, δ) = δ

λ0(x) . Then

EX
[
|h(m)((T,∆), (T,∆))|

]
= EX

[∥∥∥ξ(m)(T,∆)
∥∥∥2

H(m)

]
≤ 4EX

[
‖φ(T,∆)L1(T, ·)‖2H(s)

]
+ 4E

[
‖K(T, ·)‖2H(s)

]
+ 4 ‖K(0, ·)‖2H(s) .

Observe that the second and third term are finite under Condition a). Additionally, define L(x, y) = ∂2

∂x∂yK(x, y) and
notice that

EX
[
‖φ(T,∆)L1(T, ·)‖2H(s)

]
= EX

[
φ(T,∆)2L(T, T )

]
= EX

[
∆

λ0(T )2
L(T, T )

]
<∞

holds under Condition d) (Notice that L = K? in Condition d.2)).

Proportional Stein operator (c = p). This case follows directly from Condition d.3).

A.4.1. PROOF OF THEOREM 6

We distinguish between two cases: first, when h(c) is a deterministic kernel (that is c ∈ {s,m}), and second, when ĥ(c) is a
random kernel, meaning c = p.

Deterministic kernel (c ∈ {s,m}): For the first case, we have

ĉ-KSD
2
(fX ||f0) =

1

n2

n∑
i=1

n∑
j=1

h(c)((Ti,∆i), (Tj ,∆j)),

which is a V-statistic of order 2. Thus, by using the law of large numbers for V-statistics, we deduce

ĉ-KSD
2
(fX ||f0)

a.s.→ EX
(
h(c)((T,∆), (T ′,∆′))

)
= c-KSD2(fX ||f0),

as n grows to infinity. Notice that the previous limit result requires the following conditions: EX
(
|h(c)((T,∆), (T,∆))|

)
<

∞ and EX
(
|h(c)((T,∆), (T ′,∆′))|

)
<∞, which are satisfied under Condition d) by Lemma 9.

Random kernel (c = p): For the second case, recall that

p̂-KSD
2
(fX ||f0) =

n∑
i=1

n∑
j=1

ĥ(p)((Ti,∆i), (Tj ,∆j)), (27)
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where ĥ(p) is a random kernel. Our first step will be to assume that we can replace the random kernel ĥ(p),
given by ĥ(p)((x, δ), (x′, δ′)) = n2 δδ

′K?(x,x′)
Y (x)Y (x′) , by its limit h(p)((x, δ), (x′, δ′)) = δδ′K?(x,x′)

ST (x)ST (x′) , where K?(x, y) =(
∂2

∂x∂yK(x, y)λ0(x)λ0(y)
)

. We claim that

1

n2

n∑
i=1

n∑
j=1

ĥ(p)((Ti,∆i), (Tj ,∆j)) =
1

n2

n∑
i=1

n∑
j=1

h(p)((Ti,∆i), (Tj ,∆j)) + op(1), (28)

and then we have that

p̂-KSD
2
(fX ||f0) =

1

n2

n∑
i=1

n∑
j=1

ĥ(p)((Ti,∆i), (Tj ,∆j))

=
1

n2

n∑
i=1

n∑
j=1

h(p)((Ti,∆i), (Tj ,∆j)) + op(1)

= EX(h(p)((T,∆), (T ′,∆′))) + op(1) = p-KSD2(fX ||f0) + op(1),

where the third equality is due to the standard law of large numbers for V statistics, and by Condition d.3) and Lemma 9.

We finish the proof by proving the claim made in Equation (28). Recall that

1

n2

n∑
i=1

n∑
j=1

ĥ(p)((Ti,∆i), (Tj ,∆j)) =

∥∥∥∥∥ 1

n

n∑
i=1

ξ̂(p)(Ti,∆i)

∥∥∥∥∥
2

H(p)

,

and

1

n2

n∑
i=1

n∑
j=1

h(p)((Ti,∆i), (Tj ,∆j)) =

∥∥∥∥∥ 1

n

n∑
i=1

ξ(p)(Ti,∆i)

∥∥∥∥∥
2

H(p)

, (29)

where ξ̂(p)(x, δ) = n (K(x,·)λ0(x))′

λ0(x)
δ

Y (x) and ξ(p)(x, δ) = (K(x,·)λ0(x))′

λ0(x)
δ

ST (x) . Then, by the triangular inequality, and by
taking square (notice that ‖b‖ − ‖a− b‖ ≤ ‖a‖ ≤ ‖b‖+ ‖a− b‖), the claim in Equation (28) follows from proving:

i)
∥∥∥ 1
n

∑n
i=1 ξ̂

(p)(Ti,∆i)− ξ(p)(Ti,∆i)
∥∥∥
H(p)

= op(1), and

ii)
∥∥ 1
n

∑n
i=1 ξ

(p)(Ti,∆i)
∥∥
H(p) = Op(1).

Notice that item ii) holds trivially by Equation (29), and by the law of large numbers for V-statistics, which can be applied due
to Lemma 9, under Condition d). We finish by proving the result in item i). Following the same steps used in Equation (25),
we have that∥∥∥∥∥ 1

n

n∑
i=1

ξ̂(p)(Ti,∆i)− ξ(p)(Ti,∆i)

∥∥∥∥∥
H(p)

=

∥∥∥∥∥ 1

n

n∑
i=1

(K(Ti, ·)λ0(Ti))
′

λ0(Ti)

(
∆i

Y (Ti)/n
− ∆i

ST (Ti)

)∥∥∥∥∥
H(p)

= sup
ω∈B1(H(p))

1

n

n∑
i=1

(ω(Ti)λ0(Ti))
′

λ0(Ti)

(
∆i

Y (Ti)/n
− ∆i

ST (Ti)

)

≤ sup
ω∈B1(H(p))

1

n

n∑
i=1

(ω(Ti)λ0(Ti))
′

λ0(Ti)

(
∆i

Y (Ti)/n
− ∆i

ST (Ti)

)
1{Ti≤tε} (30)

+ sup
ω∈B1(H(p))

1

n

n∑
i=1

(ω(Ti)λ0(Ti))
′

λ0(Ti)

(
∆i

Y (Ti)/n
− ∆i

ST (Ti)

)
1{Ti>tε},

(31)
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where ε > 0 and tε > 0, and tε is the infimum over all t > 0 such that∫ ∞
t

∫ ∞
t

|K?(t, s)|
λ0(t)λ0(s)ST (t)ST (s)

SC(t)SC(s)fX(t)fX(s)dtds ≤ ε.

Notice that such a tε is well-defined by Lemma 9 and Condition d.3). For the term in Equation (30), observe that(
sup

ω∈B1(H(p))

1

n

n∑
i=1

(ω(Ti)λ0(Ti))
′

λ0(Ti)

(
∆i

Y (Ti)/n
− ∆i

ST (Ti)

)
1{Ti≤tε}

)2

(32)

≤ sup
t≤tε

(
1

Y (t)/n
− 1

ST (t)

)2
1

n2

n∑
i=1

n∑
j=1

∆i∆j
K?(Ti, Tj)

λ0(Ti)λ0(Tj)
1{Ti≤tε}1{Tj≤tε}

= op(1) (33)

where the last line holds since supt≤tε

∣∣∣ 1
Y (t)/n −

1
ST (t)

∣∣∣ = op(1) a.s., by an application of Glivenko-Cantelli, and since the
double sum converges to

E

(
∆1∆2

K?(T1, T2)

λ0(T1)λ0(T2)
1{T1≤tε}1{T2≤tε}

)
,

which is finite by Lemma 9 and Condition d.3).

Finally, we prove that the term in Equation (31) is op(1). Define R(t) =
∣∣∣ ST (t)
Y (t)/n − 1

∣∣∣. Gill (1983) proved that
supt≤τn R(t) = Op(1) where τn = max{T1, . . . , Tn}. By using this result, the term in Equation (31) satisfies

(
sup

ω∈B1(H(p))

1

n

n∑
i=1

(ω(Ti)λ0(Ti))
′

λ0(Ti)

(
∆i

Y (Ti)/n
− ∆i

ST (Ti)

)
1{Ti>tε}

)2

≤ 1

n2

n∑
i=1

n∑
j=1

∆i∆j |K?(Ti, Tj)|
λ0(Ti)λ0(Tj)ST (Ti)ST (Tj)

R(Ti)R(Tj)1{Ti>tε}1{Tj>tε}

= Op(1)
1

n2

n∑
i=1

n∑
j=1

∆i∆j |K?(Ti, Tj)|
λ0(Ti)λ0(Tj)ST (Ti)ST (Tj)

1{Ti>tε}1{Tj>tε}

= Op(1)

∫ ∞
tε

∫ ∞
tε

|K?(t, s)|
λ0(t)λ0(s)ST (t)ST (s)

SC(t)SC(s)fX(t)fX(s)dtds

= Op(1)ε,

where in the second line we used that supt≤τn R(t) = Op(1), and in the fourth line we used the law of large numbers, and
the definition of tε. Since ε is arbitrary, we conclude that equation (31) tends to 0 in probability.

A.4.2. PROOF OF THEOREM 7

Survival Stein operator (c=s): We proceed by contradiction. Assume that fX 6= f0 but c-KSD(fX‖f0) =

supω∈B1(H(s)) EX((T (s)
0 ω)(T,∆)) = 0. Recall that

EX((T (s)
0 ω)(T,∆))

= EX((T0ω)(T,∆))

= EX

[
∆ω′(T ) + ∆ω(T )

f ′0(T )

f0(T )
−∆ω(T )λC(T )

]
+ ω(0)f0(0).

Similarly, define

(TXω)(x, δ) = δω′(x) + δω(x)
f ′X(x)

fX(x)
− δω(x)λC(x) + ω(0)fX(0),
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and notice that EX((TXω)(T,∆)) = 0 by the Stein’s identity. Then

EX
(

(T (s)
0 ω)(T,∆)

)
= EX ((T0ω)(T,∆))

= EX ((T0ω)(T,∆)− (TXω)(T,∆))

= EX

(
∆ω(T )

(
f ′0(T )

f0(T )
− f ′X(T )

fX(T )

)
+ ω(0)(f0(0)− fX(0))

)
= EX

(
∆ω(T )

(
log

f0(T )

fX(T )

)′)
+ ω(0)(f0(0)− fX(0)),

and thus, we have

0 = s-KSD(fX‖f0) = sup
ω∈B1(H(s))

EX((T (s)
0 ω)(T,∆))

= sup
ω∈B1(H(s))

EX

(
∆ω(T )

(
log

f0(T )

fX(T )

)′)
+ ω(0)(f0(0)− fX(0))

= sup
ω∈B1(H(s))

〈
ω,

∫ ∞
0

K(x, ·)dν(x)

〉
=

∥∥∥∥∫ ∞
0

K(x, ·)dν(x)

∥∥∥∥
H(s)

,

where dν(x) =
(

log f0(x)
fX(x)

)′
SC(x)fX(x)dx + (f0(x) − fX(x))δ0(x), and where we identify

∫∞
0
K(x, ·)dν(x) as the

mean kernel embedding of the measure ν. We shall assume that the above embedding is well-defined, otherwise we have
s-KSD(fX‖f0) 6= 0. Since the kernel is c0-universal, the previous set of equations implies ν is the zero measure, which
implies that f0(0) = fX(0), and (

log
f0(x)

fX(x)

)′
= 0, (34)

as long as fX(x) > 0 implies SC(x)fX(x) > 0 (which does, since we assume SC(x) = 0 implies SX(x) =∫∞
x
fX(x)dx = 0). Equation (34) yields f0 ∝ fX and fX = f0 since both, f0 and fX , are probability density functions.

This finalizes our proof.

Martingale Stein operator (c=m): Define

(T (m)
X ω)(x, δ) = ω′(x)

δ

λX(x)
− (ω(x)− ω(0)),

and notice that EX((T (m)
X ω)(T,∆)) = 0 follows from the martingale identity. Observe that

m-KSD(fX‖f0) = sup
ω∈B1(H(m))

EX((T (m)
0 ω)(T,∆))

= sup
ω∈B1(H(m))

EX((T (m)
0 ω)(T,∆))− EX((T (m)

X ω)(T,∆))

= sup
ω∈B1(H(m))

EX

(
ω′(T )∆

(
1

λ0(T )
− 1

λX(T )

))
= sup
ω∈B1(H(m))

∫ ∞
0

ω′(x)

(
1

λ0(x)
− 1

λX(x)

)
fX(x)SC(x)dx.

Denote α(x) =
(

1
λ0(x) −

1
λX(x)

)
fX(x)SC(x), and, as usual, K?(x, y) = ∂2

∂x∂yK(x, y). Then,

m-KSD2(fX‖f0) =

∫ ∞
0

∫ ∞
0

α(x)K?(x, y)α(y)dxdy.

Since K? is c0-universal by Condition a), the previous term is equal to 0 if and only if α(x) = 0 for all x > 0. Now,
α(x) = 0 if and only if 1

λ0(x) −
1

λX(x) = 0, which holds if and only if f0(x) = fX(x) for all x > 0.
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A.4.3. PROOF OF THEOREM 8

Deterministic kernels (c ∈ {s,m}): For c ∈ {s,m} which are associated to a deterministic kernel function
h(c)((T,∆), (T ′,∆′)), the result follows from the classical theory of V-statistics since h(c) are degenerate kernels, and
under the following moment conditions:

i) E0(|h(c)((T,∆), (T,∆))|) <∞, and

ii) E0(h(c)((T,∆), (T ′,∆′))2) <∞,

which are satisfied due to Lemma 10.

Random kernel (c ∈ {p}): Observe that

√
nĉ-KSD(fX‖f0) = sup

ω∈B1(H(p))

1√
n

n∑
i=1

(ω(Ti)λ0(Ti))
′

λ0(Ti)

∆i

Y (Ti)/n

= sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

1

Y (x)/n
dN(x),

where dN(x) =
∑n
i=1 ∆iδTi(x). By hypothesis,

∫∞
0

(ω(x)λ0(x))′dx = 0 for all ω ∈ H(p), then

√
nĉ-KSD(fX‖f0) = sup

ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

1

Y (x)/n
dN(x)−

√
n

∫ ∞
0

(ω(x)λ0(x))′dx

= sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

1

Y (x)/n
dM(x)−

√
n

∫ ∞
τn

(ω(x)λ0(x))′dx

where dM(x) = dN(x)− Y (x)λ0(x)dx. Therefore we conclude that
√
nĉ-KSD(fX‖f0) ∈ [a− b, a+ b], where

a = sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

1

Y (x)/n
dM(x), and

b = sup
ω∈B1(H(p))

√
n

∫ ∞
τn

(ω(x)λ0(x))′dx

We will prove that b = op(1). Let K?(x, y) =
(

∂2

∂x∂yλ0(x)λ0(y)K(x, y)
)

, then

(
sup

ω∈B1(H(p))

√
n

∫ ∞
τn

(ω(x)λ0(x))′dx

)2

= n

∫ ∞
τn

∫ ∞
τn

K?(x, y)

fT (x)fT (y)
fT (x)fT (y)dxdy

≤ nST (τn)1/2

(∫ ∞
τn

(∫ ∞
τn

K?(x, y)

fT (x)fT (y)
fT (x)dx

)2

fT (y)dy

)1/2

≤ nST (τn)

(∫ ∞
τn

∫ ∞
τn

K?(x, y)2

fT (x)2fT (y)2
fT (x)fT (y)dxdy

)1/2

,

where the two inequalities above follow from the Cauchy-Schwarz inequality, by the fact that nST (τn) = Op(1) (Yang,
1994), and the previous double integral converges to 0 by Condition c.3), since τn = max{T1, . . . , Tn} → ∞. From the
previous result, we deduce

√
nĉ-KSD(fX‖f0) = sup

ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

1

Y (x)/n
dM(x) + op(1).
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The previous step is important in our analysis as it allows us to write
√
nĉ-KSD(fX‖f0) in terms of M(x). Our next step is

to prove that we can replace the term Y (x)/n, in the previous equation, by ST (x). Observe

√
nĉ-KSD(fX‖f0)

= sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

(
1

Y (x)/n
− 1

ST (x)
+

1

ST (x)

)
dM(x) + op(1)

= sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

1

ST (x)
dM(x)

± sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

(
1

Y (x)/n
− 1

ST (x)

)
dM(x) + op(1).

The ± notation above denotes lower, given by −, and upper, given by +, bounds for
√
nĉ-KSD(fX‖f0). Finally, by taking

square, the result is deduced by proving

sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

(
1

Y (x)/n
− 1

ST (x)

)
dM(x) = op(1),

and

sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

1

ST (x)
dM(x) = Op(1).

The second equation won’t be verified as, at the end of this proof, we will show that such a quantity converges in distribution
to some random variable, thus it will be bounded in probability. For the first equation, notice that(

sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

(
1

Y (x)/n
− 1

ST (x)

)
dM(x)

)2

=
1

n

∫ τn

0

∫ τn

0

K?(x, y)

λ0(x)λ0(y)

(
1

Y (x)/n
− 1

ST (x)

)(
1

Y (y)/n
− 1

ST (y)

)
dM(x)dM(y),

is a double integral with respect to the M(x). Then, by Theorem 17 of Fernandez & Rivera (2019), it is enough to verify

1

n

∫ τn

0

K?(x, x)

λ0(x)2

(
1

Y (x)/n
− 1

ST (x)

)2

Y (x)λ0(x)dx = op(1).

Observe that

1

n

∫ τn

0

K?(x, x)

λ0(x)2

(
1

Y (x)/n
− 1

ST (x)

)2

Y (x)λ0(x)dx =

∫ τn

0

K?(x, x)

λ0(x)2

(
1− Y (x)/n

ST (x)

)2
1

Y (x)/n
λ0(x)dx

= Op(1)

∫ τ

0

K?(x, x)

λ0(x)2

(
1− Y (x)/n

ST (x)

)2
1

ST (x)
λ0(x)dx

= op(1),

where the second equality follows from n/Y (x) = Op(1)1/ST (x) uniformly for all x ≤ τn (Gill, 1983), and the last

equality is due to dominated convergence in sets of probability as high as desired, as
(

1− Y (x)/n
ST (x)

)
→ 0 for all x < ∞

from the Glivenko Cantelli Theorem, and

K?(x, x)

λ0(x)2

(
1− Y (x)/n

ST (x)

)2
1

ST (x)
λ0(x) = Op(1)

K?(x, x)

f0(x)2SC(x)
f0(x),

which is integrable by Condition c.3).
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Putting everything together, we have shown that

√
nĉ-KSD

2
(fX‖f0) =

(
sup

ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

1

ST (x)
dM(x)

)2

+ op(1)

=
1

n

∫ τn

0

∫ τn

0

K?(x, y)

f0(x)f0(y)SC(x)SC(y)
dM(x)dM(y) + op(1)

=
1

n

n∑
i=1

n∑
j=1

∫ Xi

0

∫ Xj

0

K?(x, y)

f0(x)f0(y)SC(x)SC(y)
dMj(x)dMi(y) + op(1)

=
1

n

n∑
i=1

n∑
j=1

J((Ti,∆i), (Tj ,∆j)) + op(1),

where Mi(x) = Ni(x) −
∫ x

0
1{Ti≥y}λ0(y)dy = ∆i1{Ti≤x} −

∫ x
0
1{Ti≥y}λ0(y)dy. Notice that the process Mi(x) only

depends on the i-th observation (Ti,∆i). Notice that the previous expression is approximately a V-statistic with kernel
given by J((Ti,∆i), (Tj ,∆j)) =

∫ Ti
0

∫ Tj
0

K?(x,y)
f0(x)f0(y)SC(x)SC(y)dMj(x)dMi(y). By proposition 23 of Fernandez & Rivera

(2019), we have that E(J((Ti,∆i), (Tj ,∆j))|Ti,∆i) = 0, thus J is a degenerate V-statistic kernel.

By the classical theory of V-statistics,

1

n

n∑
i=1

n∑
j=1

J((Ti,∆i), (Tj ,∆j))
D→ rp + Yp,

where rp is a constant and Yp is a (potentially) infinite sum of independent χ2 random variables, as long as the following
moment conditions are satisfied:

i) E0(|J((T1,∆1), (T1,∆1))|) <∞, and ii) E0(J((T1,∆1), (T2,∆2))2) <∞.

Again, by Proposition 23 of Fernandez & Rivera (2019), checking those moment conditions is equivalent to verify:

i) E0

[
K?(T, T )∆

(f0(T )SC(T ))2

]
<∞ and ii) E0

[
K?(T, T ′)2∆∆′

(f0(T )f0(T ′)SC(T )SC(T ′))2

]
<∞,

which are exactly the conditions assumed in Condition c.3).

B. Known Identities
In Section 3.2, to derive the martingale Stein operator, we use the following identity

E0

[
∆φ(T )−

∫ T

0

φ(t)λ0(t)dt

]
= 0,

which holds under the null hypothesis, where λ0 is the hazard function under the null.

Let Ni(x) and Yi(x) be the individual counting and risk processes, defined by by Ni(x) = ∆i1{Ti≤x} and Yi(x) =
1{Ti≥x}, respectively. Then, the individual zero-mean martingale for the i-th individual corresponds to Mi(x) = Ni(x)−∫ x

0
Yi(y)λ0(y)dy, where E0(Mi(x)) = 0 for all x.

Additionally, let φ : R+ → R such that E0

∣∣∫ x
0
φ(y)dMi(y)

∣∣ < ∞ for all x, then
∫ x

0
φ(y)dMi(y) is a zero-mean (Fx)-

martingale (See Chapter 2 of (Aalen et al., 2008)). The, taking expectation, we have

E0

[∫ ∞
0

φ(x)dMi(x)

]
= E0

[∫ ∞
0

φ(x)(dNi(x)− Yi(x)λ0(x)dx)

]
= E0

[
∆φ(T )−

∫ T

0

φ(x)λ0(x)dx

]
= 0.
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C. Additional Experiments
C.1. Weibull experiments: small deviations from the null

SAMPLE SIZE: 30, AND CENSORING PERCENTAGES OF 30%, 50% AND 70%
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C.2. Weibull experiments: increasing sample size

SHAPE: 0.6 AND CENSORING PERCENTAGES OF 30% AND 70%
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SHAPE: 1.4 AND CENSORING PERCENTAGES OF 30% AND 70%
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C.3. Periodic experiments: small deviations from the null

SAMPLE SIZE: 30, AND CENSORING PERCENTAGES OF 30%, 50% AND 70%

●

●

●

●

●

●

●
●

● ● ●
● ● ●

5%

0

25

50

75

100

0 2 4 6
θ

R
ej

ec
tio

n 
ra

te

●●●●●●● MMD mKSD mKSDu pKSD Pearson LR1 LR2

Sample size: 30 and Censoring: 30%
●

●

●

●

●

●

●
●

● ● ●
● ● ●

5%

0

25

50

75

100

0 2 4 6
θ

R
ej

ec
tio

n 
ra

te

●●●●●●● MMD mKSD mKSDu pKSD Pearson LR1 LR2

Sample size: 30 and Censoring: 50%
●

●

●

●

●

●

●

●

● ● ●

●

● ●

5%

0

25

50

75

100

0 2 4 6
θ

R
ej

ec
tio

n 
ra

te

●●●●●●● MMD mKSD mKSDu pKSD Pearson LR1 LR2

Sample size: 30 and Censoring: 70%



Kernelized Stein Discrepancy Tests of Goodness-of-fit for Time-to-Event Data

SAMPLE SIZE: 50, AND CENSORING PERCENTAGES OF 30%, 50% AND 70%
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SAMPLE SIZE: 100, AND CENSORING PERCENTAGES OF 30%, 50% AND 70%
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SAMPLE SIZE: 200, AND CENSORING PERCENTAGES OF 30%, 50% AND 70%
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C.4. Periodic experiments: increasing sample size

FREQUENCY: 3 AND CENSORING PERCENTAGES OF 30% AND 70%
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FREQUENCY: 6 AND CENSORING PERCENTAGES OF 30% AND 70%
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