Kernelized Stein Discrepancy Tests of Goodness-of-fit for Time-to-Event Data

Supplementary material: Kernelized Stein Discrepancy Tests of
Goodness-of-Fit for Time-to-Event Data

A. Proofs and Derivations
A.1. Proofs of Section 3.1: Survival Stein Operator
A.1.1. PROOF OF PROPOSITION 2

Letw € H(®). Then

Eal(T5)(T. ) ~ (7)1, ) = o (@) |& (BT —ac)) - (2D )]} e

Observe that
Eo (Aw(T)Ac(T)) = /0 w(x) »J;Z((:?)) Sc(z) fo(z)dx = /0 w(m)gz((i)) So(z) fo(z)dx = Eo((1 — A)w(T) Ao (T)),

therefore, the RHS of Equation (23) is equal to
fo(T) Ao(T) ) >
E A + Xo(T) — .
o (s (g + 20 - 5007y

Finally, the last expectation is O due to the identity }cggg = :\\ggg — Ao(z), which follows from a simple computation.

A.1.2. PROOF OF PROPOSITION 3

By definition,
1 <& . 1 &
sup — Y (ToVw)(T, Ay) — (Tow) (T, A)) = sup = > w(T3) (Ade(T) — (1 — A)Xo(T3))
weB:1 (M) M ] weB(H) T i

wEB1(H)

= sup <wZK B AMC(Ti)—(l—Ai)AO(Ti))>
H

Z ) (Aide(Th) — (1 — A)Xo(T))

H
We continue by proving that the previous norm converges to zero in probability. Observe that by the symmetrization lemma
(?)Lemma 6.4.2]vershynin2019high, it holds
1 n
E [ - ZK(Tm ) (AiAe(T;) — (1= Ay)Ao(Th)) ZWK i) (Bide(T) — (1 = Aq)Xo(T7))
=

<2E[

H H

where Wy,...,W,, are i.i.d. Rademacher random variables, independent of the data (T}, A;)I;. Then, by Jensen’s
inequality, and by using that E(W;) = 0, we conclude that the previous expression converges to zero in probability, as

:

a.s., where the limit result holds due the law of large numbers which can be applied under the Condition in Equation (12)
and since | K (z,y)| < ¢1, as

E[K(T, ) (Ao (T) = (1= A)M(T)?] < el [(Ae(T)? + (1= A)h(T)?)]

— e /0 T el@) + 2o(@)) fol@)fo()dz < .

n 2

L D WK (Ti, ) (Aide(Ty) = (1= Ai)ho(T))

n <
i=1

— 0,

] [12 Zn: K(T;, T;) (Ade(Th) — (1= Ag)ro(Th))?

H
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A.2. Proofs of Section 3.3: Proportional Stein Operator
PROOF OF PROPOSITON 4

We start by claiming that the following equation holds true for every w € H(®):

n Z ( w)(Ti; A;) — (%(p)w)(TiaAi)) B> 0. (24)

Then, the main result follows from Equation (24), by using the law of large numbers and that

o) SO0 @)
o [(TP)mi, ] = [T e setar = [ A @i = o,

which follows from the definition of our operator (see Equation (18)).

We finish the proof by proving our claim in Equation (24). Observe that

LS (70, N v A o LS @ TN | A A,
5;(7 Ay~ (T, w)(Tz,AZ))<n; en ‘Y(E)/n eIk

where St(t) = Sc(t)So(t) holds under the null hypothesis. We proceed to prove that the previous sum tends to 0 in
probability when n grows to infinity. Let ¢ > 0 and define ¢. > 0 as the infimum of all ¢ such that [, |(w(2)Xo(2))'| dz < e.
Notice that such ¢. is well-defined since [;° |(w(z)Ao(z))’| dz < oo. We continue by splitting the sum in Equation (25)
into two regions, {T; < t.} and {T; > t.}, obtaining that Equation (25) equals

(25)

3 |~ st [t + 2 3 LN B | ten

ni M) Y@/ Se(m)| s @) Y@/ S|
(26)

and we prove that both sums tend to 0 in probability when n grows to infinity. We start with the first term. Observe that

L= [W(T)M(T)]| A A ‘ 1 1 ¢ 73))'|

= - Typ < su S e —————7&1.

n T T |V S| e S S ST @ sy

i=1
= OP(1)7

where the previous result holds since sup, <, ) #(t)) — 0 almost surely by the Glivenko-Cantelli Theorem, and

1 _
] Y(t)/n
simce
“[w(®M @)
Ao(t)

fZ' AAO >>Al{TNﬁE{I(MMWAJ{TﬁE}}: / Sc(t)fo(t)dt

o Xo(Th)

:AWW@%mﬂﬁ<w

where the last expression is finite due to Equation (17).

Next, we deal with the second term in equation (26). Theorem 3.2.1. of Gill (1980) yields supt<T 1-— );(TT(:)/ =0 »(1),
where 7,, = max{T1,...,T,}, and, Lemma 2.7 of Gill (1983) yields sup,, nSr(t)/Y (t) = O,(1) (recall that Sp(t) =
So(t)Sc(t)). From the previous results, we get

Y CILETIE) ) S ’1 SRR & o €5 €41) NS W DD £ VL1 PG
n TN (YT Se(T)| T T =TT Y@/l Se(m) |

L\ [@(T)A(T)] 1
1)E ;Az )\O(jo“l) Y(TZ)/n]l{Tl>ts}

1" [(w(T5) Mo (T3))| 1
1)ﬁ;Az Ao(Tl) SO(:Z_‘Z)SC(E)]I{TI>tE}
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Now, notice that
1= o @(T)o(Th)| 1 as. |[(w(T1)Ao(T1))'| 1
W AT smserm e [Al WD) oS L
_ /Oo [(w(@)Ao(2))'| fo(z)Sc(x) dx
te Xo(@)  So(@)Sc(x)

— [ wlaa(o))lds < =

€

where the first equality holds by Equation (4), and the last inequality comes from the definition of .. Since we can choose
€ > 0 as small as desired, we conclude the result.

A.3. Proofs Section 4: Censored-Data Kernel Stein Discrepancy

A.3.1. PROOF OF PROPOSITION 5

Proof. Notice that, by the definition of the random function £(©) (A, T'), we have that (7 (Dw)(T, A) = (w, (T, A)) 3o
Also notice that, £(¢)(z, §) € H(©) for each fixed (z,4), and that the expectation, Ex [¢(9)(T, A)] € () if and only if
equation (21) is satisfied (the previous expectation has to be understood in the Bochner sense, as we are taking expectation
of a random function).

Then,

X 2
KSD(fx|lfo)? = sup Ex (TO(°>w)(T,A)] —  sup Eyx [<w,§<c)(T,A)>
wEB1(H()) wEB (H()

= sup <w, Ex {f(c) (T, A)] >

WEBL(H()

[ex [ ][,

= (Ex [¢9(@.0)] Ex [¢9 1, 2]
= Ex [(¢9(T.0).60(T", &)
= Ex [n(T.2),(T",87)]

H<c>]
2
H()
2

()

H(C)}

where the third equality is due to the linearity of expectation and the inner product, the fourth equality follows from the
definition of norm (and since we are taking supremum in the unit ball), and the second to last equality is, again, due to the
linearity of the expectation and inner product. O

A.3.2. EXPLICIT COMPUTATION OF h(¢)

Y : : 2 :
Denote ¢(x,§) = (5%53 —Xo(z), and Ly (z,y) = £ KO (z,y), La(z,y) = %K(C)(at,y) and L = %%K(C)(:ay). For
simplicity of exposition, we will drop the superindex (c) in all cases.
Survival Stein operator (¢ = s): For this case, we have

0

£60.8) = (RR)(2.0).) =35 Kl + (5300~ Na(a)) K, + J(0)K (0.

= 0L1(x,) + ¢z, 6)K (x, ) + Ao(0)E (0, ).

Notice that a simple computation shows that L(x,y) = (Li(x,-), L1(y, -)) 4, then
W) ((2,6), (2/,8")) = 66'L(x,2') + 6(a’,6') Ly (w, ") + A0 (0) L1 (, 0)
+ ¢(x,0)0'La(z,2") + p(x,0) (2", ") K (x, ") + ¢(x, 6) Ao (0) K (, 0)
+ X0(0)8" Lo (0, 2") + Xo(0)p (', 8"V K (0, 2") + Xo(0)2K(0,0).
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Martingale Stein operator (¢ = m): Observe that in this case

f(l‘, 5) = (%K)((376)7 ) = L1(CL', ) - K(.%‘, ) + K(O’ )

Then, by the reproducing kernel property

h(m) (!L‘7 6)) (m/, 6/)) = - )\Q(zl’)Ll ($7 LE’) + )m.(;l‘)Ll(x’ 0)

Ly(z,2") + K(z,2') — K(,0)

B )\0(!17/)
5 / /
+ 3oy L(0:2) — K(0,2) + K (0,0).

Proportional Stein operator (¢ = p): Notice that, in this case, we use 7A5(p ), given in Equation (16), to compute

30 (z,0) = (%(p)K(p))((x, d), ) since 76(p) is not available, as it depends on S¢, which is unknown even under the null
hypothesis. Then,

~ ~ Ao (x 4]
Ew.0) = (T)(@0).) = (Lalo) + 2D K@) g7
Define K*(z,y) = (%Zy/\0(:10))\0(y)K(:z;7 y)) Then, by the reproducing kernel property,

~ 0o’

P ((z,6), (', 8")) = n2WK*(x, z').

Recall that Y (¢) = Zzzl 17, >¢) denotes the risk function, which depends on all the data points, hence we write P to
recall the reader that this kernel is a random one.

A.4. Proofs of Section 5: Goodness-of-fit via c-KSD

The following lemmas show that, under Conditions c¢) and d) (depending on which case), the kernels h(©) have finite first
and second moment. These moment conditions on the kernel are important to deduce asymptotic results.

Lemma9. Ler (T',A’) and (T, A) be independent samples from j1x, and assume that Condition d) holds. Then,
Ex [T, 8),(T, )] < o0, and Ex [[WO(T, 8), (1", A)]] < o0

for ¢ € {s, m,p}, under the alternative hypothesis.
Lemma 10. Ler (T',A’) and (T, A) be independent samples from i, and assume that Condition c) holds. Then

E, [|h(c)((T,A)7(T,A))|] < oo, and Eg [W((T,A),(T’,A’))?} < o0

Sor ¢ € {s, m,p}, under the null hypothesis.

We just proof Lemma 9 since the proof of Lemma 10 is essentially the same.

Proof of Lemma 9. First of all, note that for any kernel (positive-definite function), it holds
(c) 1ot 1 (c) 1 (c) /v AV
h ((33,5),(33,(5)) < §h ((xaé)’($75))+§h ((.’L’,(S),(Q?,(S)),

hence, it is enough to only prove the first part of the lemma.
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Survival Stein operator (¢ = s): Recall ¢¥)(z,8) = 6Li(x,-) + ¢(x,0)K (z,-) + Ao(0)K(0,-), where L (z,y) =

Ag(z
a%K(a@y) o(x,0) = 5)\08 Ao(z), then

x [IK(T,8),(7,8))]] = Ex [HE(S)(TA)H;J

< 4Ex [ ALUT, 0 + 19T, AYK(T, )50 | + 4 IM0(O)K (O, ) e
< 4Ex [IALUT, )0 | +4Ex [19(T, A)K(T, )30 | +420(0)2K(0,0).
The first and third term in the previous equation are finite under the technical Conditions a) and b). Thus, we only need to
check
Ex (11607, A)K(T )3, | = Ex [6(T, A2 (T, T)]] < oo
which is guaranteed by Condition d).

Martingale Stein operator (c = m): Recall that £ (2, 0) = ¢(x,0)L1(z,-) — K(z,-) + K(0,-), where L;(x,y) =
2 K(z,y) and ¢(z,4) = /\O(w) Then

x [ an @) =ex e s, |
< 4Ex (|60, A) L1 (T, ) o | +4E [T o | + 41K 0, e

Observe that the second and third term are finite under Condition a). Additionally, define L(z,y) = 8x ay K(z,y) and
notice that

A
B 1007 A) (T, ] = Ex [6(T APLIET)] =B | 55 LT < o0
holds under Condition d) (Notice that L = K* in Condition d.2)).
Proportional Stein operator (c = p). This case follows directly from Condition d.3). O

A.4.1. PROOF OF THEOREM 6

We distinguish between two cases: first, when h(©) is a deterministic kernel (thatis ¢ € {s,m}), and second, when ) isa
random kernel, meaning ¢ = p.

Deterministic kernel (c € {s,m}): For the first case, we have

cKSD (fx|lfo) = 2221# (T3, &), (T, A5)),

i=1 j=1

which is a V-statistic of order 2. Thus, by using the law of large numbers for V-statistics, we deduce
CKSD (fxlfo) “% Ex (BT, ), (17, &) = e KSD*(fx]|fo),

as n grows to infinity. Notice that the previous limit result requires the following conditions: Ex (|h{®)((T, A), (T, A))|) <
oo and Ex (|9 ((T, A), (T",A"))|) < oo, which are satisfied under Condition d) by Lemma 9.

Random kernel (¢ = p): For the second case, recall that

pKSD (x| o) ZZW) (Ti, ), (T, Af)), (27)

=1 j=1
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where h(®) is a random kernel. Our first step will be to assume that we can replace the random kernel E(”),
given by hP)((z,0), (2',6")) = n253(§)7<"§"6)>, by its limit h®)((z,0), (¢/,6")) = SEi5es), where K*(z,y) =

(agfzy K (z,y)Ao(7)Ao (y)) . We claim that

%ZZ:@ﬂA ) (T3 200) = 5 S0 S HO((T, A, (T3, ) + 0,(1), (28)

i=1 j=1

and then we have that

%ifjﬁ@((ﬂ,ai),@,%))

i=1 j=1

*ZZW) s (T3, A)) + 0, (1)

=1 j=1

= Ex(hP)((T, A),(T', A"))) + 0p(1) = p-KSD*(fx || fo) + 0p(1),

P'/Kﬁf(fx”fo)

where the third equality is due to the standard law of large numbers for V statistics, and by Condition d.3) and Lemma 9.

We finish the proof by proving the claim made in Equation (28). Recall that

2
]. n n ~ 1 n
ﬁzzh(m((ﬂ,Ai),(Tj,A ) = ﬁzgm@ A 7
s i=1 H(P)
and
1 n 2
*ZZW’ 118 = | EY e, an)| .
s =1 H ()

where g(p)(m, 0) = HWW and £P)(z,8) = (K(ac/\ )(/;o)(r)) ST(*(I), Then, by the triangular inequality, and by

taking square (notice that ||b]| — |la — ]| < ||la|| < ||b]] + ||a — b]|), the claim in Equation (28) follows from proving:

) [|2 S (T ) — €0(T5 8| = 0p(1), and

H(P)

i) |3 i1 €T A0 = Op(1).
Notice that item ii) holds trivially by Equation (29), and by the law of large numbers for V-statistics, which can be applied due
to Lemma 9, under Condition d). We finish by proving the result in item i). Following the same steps used in Equation (25),

we have that

%i@m(nai) — (T, A) 1 Z (K(T5, )Xo (T3)) ( (Ai A ))

i=1 HP) i Ao(T3) T)/n  So(T; 5
— swp 1"(MMMMW( A A )
weB (o) M= Ao(Th) (Ti)/n S7(T3)
1y (w(Ti)Ao(Tvz))’( A, A )
< sup - - Tir<iy (30)
wemuon 2 Ho(T) @)/~ Sp(m)) st
RS (W(Ti))‘O(Ti))/( A; A; )
+ su — . ,
weBl(%m) n— Ao(T7) (T))/n~ Sp(Ty) ) >t

€2V
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where ¢ > 0 and £, > 0, and ¢, is the infimum over all ¢ > 0 such that

/ / ™o |K* (t,s)] Sc(t)Sc(s)fx () fx(s)dtds < e.

St(t)St(s)
Notice that such a ¢, is well-defined by Lemma 9 and Condition d.3). For the term in Equation (30), observe that
2
1o~ @(T)(Th)) ( A A )
L oy - Lir<e, (32)
<we31<w>> w2 T \Y@yn sy )t
1 1 T“ T. )
<su AA; 1 1
< tStI: (Y(t)/n St(t ) 2121 j)\o 2o(T5) {T; <ty {T;<t.}
= 0p(1) (33)

where the last line holds since sup,;_ W - #(t) ’ = 0,(1) a.s., by an application of Glivenko-Cantelli, and since the

K*(Ty, Ts) )
E(AA— 172 g 1 ,
( 1 2/\O(T1)/\O(T2) {T, <t} L {Tx<t.}

double sum converges to

which is finite by Lemma 9 and Condition d.3).

Finally, we prove that the term in Equation (31) is o0,(1). Define R(t) = ‘YS(Tt)(j)n - 1‘. Gill (1983) proved that

sup;<,, R(t) = O,(1) where 7, = max{T1,...,T,}. By using this result, the term in Equation (31) satisfies

T @@ (A A 2
<we§fi%p>>n§ Mo(T;) (Y(To/n sm))“m»s})

n n

A A IK (T3, T5)|
R(T)R(T;) 1y, L7,
= ?12 ZZ )\O ST( i)ST(Tj) (T3)R( j) {Ti>te} H{T; >t}

n

A A IK (T3, T5)|
1 1
n2 ZZ Xo(T, T;)Sr(T3)Sr(T;) {Ti>te} H{Ty >t}

o [T |K*<t, 5) ) o
- Op(]') ~/tg . Ao(t)Ao(S)ST(t)ST(S)SC(t)SC( )fX(t)fX( )dtd
= Op(1)€7

where in the second line we used that sup, .. R(t) = O,(1), and in the fourth line we used the law of large numbers, and
the definition of ¢.. Since ¢ is arbitrary, we conclude that equation (31) tends to O in probability.

A.4.2. PROOF OF THEOREM 7
Survival Stein operator (c=s): We proceed by contradiction. Assume that fx # fo but ¢-KSD(fx|fo) =
SUPye B, (1(9) EX((%(S)W)(T, A)) = 0. Recall that

X (T3 w)(T, A))
= Ex((Tow)(T, A))

— Ex [Aw’(T) + Aw(T) ﬁg; — Aw(T)Ac(T) | + w(0) £o(0).

Similarly, define

(Tiio),8) = 80/ (0) + i) B — () cle) + (0} x(0),
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and notice that Ex ((Txw)(T, A)) = 0 by the Stein’s identity. Then

Ex ((T4"w)(T,4)) = Ex ((Tow)(T, &)
Ex ((Tow)(T, A) = (Txw)(T, A)
- x (20 (¢ 53 fﬁ‘ﬁii) D0~ 15(0)
—Eyx (Aw(T) ? )/> +w(0 — fx(0)),
and thus, we have
0= sKSD(/xllfo) = sup Ex((73"w)(T, )
- e (Awm (1og J{X((?Q/) FO(Ro(0) - £x(0)

dv(x

= sup < / K(x,)dv(z >
weB: (H(9)

i
where dv(z) = (log f;’((&))) Sc(z) fx (z)dz + (fo(z) — fx(x))do(x), and where we identify [;° K (z,-)dv(x) as the
mean kernel embedding of the measure . We shall assume that the above embedding is well-defined, otherwise we have
s-KSD(fx||fo) # 0. Since the kernel is cp-universal, the previous set of equations implies v is the zero measure, which

implies that fo(0) = fx(0), and
fo(z) >/ _
<log @) = 0, (34)

as long as fx(x) > 0 implies Sc(z)fx(z) > 0 (which does, since we assume Sc(z) = 0 implies Sx(x) =
f fx (z)dz = 0). Equation (34) yields fy  fx and fx = fo since both, f, and fx, are probability density functions.
This ﬁnahzes our proof.

H()

Martingale Stein operator (c=m): Define

(T w)(x,0) = w'(z)

and notice that E x ((7, )((m)w) (T, A)) = 0 follows from the martingale identity. Observe that

m-KSD(fx|lfo) = sup  Ex((T{™w)(T,A))
w€B; (H(M)
= swp  Ex((T{™Mw)(T,A)) — Ex(T{Vw)(T, A))
wEB1 (H(m)

weBSll(l%mnEX (w/(T)A (Aoz T) /\Xl(T))>

o0
- sup / W' () ( )fX
weB (1) Jo

Denote ax) = (ﬁ(z) /\X(I )fX( )Sc(x), and, as usual, K*(z,y) = agayK( y). Then,

m-KSD2(f]| o) / / 2)K*(z, y)aly)dady.

Since K™ is cp-universal by Cond1t10n a), the previous term is equal to 0 if and only if a(z) = 0 for all z > 0. Now,

a(z) = 0if and only if (I) AX(I) = 0, which holds if and only if fo(z) = fx(z) forall z > 0.
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A.4.3. PROOF OF THEOREM 8

Deterministic kernels (¢ € {s,m}): For ¢ € {s,m} which are associated to a deterministic kernel function
R (T, A), (T, A")), the result follows from the classical theory of V-statistics since h(°) are degenerate kernels, and
under the following moment conditions:

i) Eo([hl9((T, A), (T, A))]) < o0, and
i) Eo(h9((T,A), (T, A"))?) < o,

which are satisfied due to Lemma 10.

Random kernel (¢ € {p}): Observe that

. B = ;) A
\/HC_KSD(fX“fO) - welel}E[(p) 2:: ) Y(Tl)/n

= su O(I ! x

- we&(%m e )

where dN (z) = Y7 | A;é7, (). By hypothesis, [ (w(z)Ao(2)) dz = 0 for all w € H®), then
KST = su " Jol@)) 1 z) —n Oowx x)) dx
VKDl = s o [T /\0 B @) VA [ e
= su do(@))' 1 z)—+/n h w(x)Ao(x)) dz
" weBi () f/ C13) Y(m)/ndM( : f/fn (Wl olw)d

where dM (z) = dN(z) — Y () Ao(x)dz. Therefore we conclude that \/ﬁcm(fxﬂfo) € la — b,a + b, where

o L[ @) 1 2), an
o= o R M (@), and

wEB) (HW) Y(x)/n

b= s va [ ” (@@ o)) de

weBl(‘H(P))

We will prove that b = 0,,(1). Let K*(z,y) = (%Ao(x)/\o(y)l((x, y)), then

oo oo * )
<we§f§5<p>)\/ﬁ/m (w(x)Ao() > —n/ G ( )f 7(x) fr(y)dzdy

) 00 T 2 1/2
< ()2 (/ ([ A2t frayas ) ety >dy>

u
)
)2 1/2
(e )fT<y>dxdy) 7

< r{m) (/ . R

where the two inequalities above follow from the Cauchy-Schwarz inequality, by the fact that n.Sp(7,) = O,(1) (Yang,
1994), and the previous double integral converges to 0 by Condition ¢.3), since 7, = max{71,...,T,} — oo. From the
previous result, we deduce

VieKSD(fxlfo) =  sup f/rn )\0 y_1 dM (z) + 0,(1).

WEB (H®) Y(CL’)/'H
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The previous step is important in our analysis as it allows us to write v/nc-KSD(fx || fo) in terms of M (x). Our next step is
to prove that we can replace the term Y () /n, in the previous equation, by St (z). Observe

\/ﬁcm(fx\\fo)

_ @) (111 o
= weBl(H(p)) \F/ )\0 .’E) <Y($>/n ST($> + ST(.%‘)) dM( )JF p(l)
_ O(ZC 1 "
a weBl(?-L(p)) \f/ ) ST(g;)dM( )

)/ 1 _ 1 - o
we];fi%mf/ Ao (Y(m)/n ST<oc>>dM”+ ().

The + notation above denotes lower, given by —, and upper, given by +, bounds for ﬁcm( fx|lfo). Finally, by taking
square, the result is deduced by proving

1 (w(z)Xo(x))’ 1 1 z)=o0
By () \/77/0 Ao(2) <Y($)/n ST(x)) )=o)

and

L@y 1
sup \/ﬁ/o WES dM (z) = Op(1).

weBy (H®) ST(%)

The second equation won’t be verified as, at the end of this proof, we will show that such a quantity converges in distribution
to some random variable, thus it will be bounded in probability. For the first equation, notice that

2
R B N O ) R NS A Y
(weBbl(g(P)) \/ﬁ/o )\0(%) (Y(gp)/n ST(I')) dM( ))
1 T K5 (2,y) 1 1 1 1 i
n/o /0 Ao (@)o(y) (Y(Jc)/n ST(x)> <Y(y)/n ST(y)>dM< JAM (),

is a double integral with respect to the M (z). Then, by Theorem 17 of Fernandez & Rivera (2019), it is enough to verify

1 (™ K*(z,z) 11 2 P2\ dz = o

e em - mm) YEs@i=am

Observe that
1 (™ K*(z,x) 11 2 VA (1) d — ™ K*(x,x) (0 Y(2)/n S| o\d
e e we) Y= [TRED (12008 e

B T K*(z, 1) Y(z)/n\> 1
= 0,(1) ' h()? (1 - ) 5 Ao(x)dx
= Op(l)a

where the second equality follows from n/Y (z) = O,(1)1/Sr(x) uniformly for all z < 7, (Gill, 1983), and the last

equality is due to dominated convergence in sets of probability as high as desired, as (1 — )g(;() ; )" ) — Oforall z < o0

from the Glivenko Cantelli Theorem, and

K*(z, ) Y(z)/n\> 1 B K*(z, )
SWESE (1 ST(J;)) Sy 0@ = O e @

fo(ili)7

which is integrable by Condition c.3).
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Putting everything together, we have shown that

2
2 B z)) 1 - o
VneKSD (fxllfo) - = (weBl(H(p)) \f/ )\o ST(:c)dM( )> o)
[ s s M @M ) + o)
fo(x Sc(z

)Sc(y)
_ 2 K*( fvy) (M. )
) ZZ/ / Fola o) S @) (p) D W)+ orl)
- %ZZ‘]((Ti»Ai)» (T,A5)) + op(1),
i=1 j=1

where M;(z) = Ni(z) — [y Lir>3 o @)dy = Ailir,<oy — [o Li7i>y3o(y)dy. Notice that the process M; () only
depends on the i-th observation (7}, A;). Notice that the previous expression is approximately a V-statistic with kernel

given by J((T3, A:), (T}, A;)) = foTi fOTf fo(I)fOIé!)»(SC(ZU)SC(y) dM;(x)dM;(y). By proposition 23 of Fernandez & Rivera

(2019), we have that E(J((T;, A;), (T}, A;))|Ti, A;) = 0, thus J is a degenerate V-statistic kernel.

By the classical theory of V-statistics,
1 n n D
- Z Z J((T'H A7)a (Tj7 A])) — Tp + yp?

n :
=1 5=1

where 7, is a constant and ), is a (potentially) infinite sum of independent x? random variables, as long as the following
moment conditions are satisfied:

1) E0(|J((Tl, Al), (Tl, Al))l) < o0, and 11) Eo(t]((jjl7 Al), (TQ, AQ))2) < OQ.
Again, by Proposition 23 of Fernandez & Rivera (2019), checking those moment conditions is equivalent to verify:

K*(T,T)A
(fo(T)Sc(T))?

which are exactly the conditions assumed in Condition c.3).

* 7\ 2 /
} < oo and ii)Eg K (T, T')"AA < 00,

(fo(T) fo(T")Sc(T)Sc (T7))?

i) Eo[

B. Known Identities

In Section 3.2, to derive the martingale Stein operator, we use the following identity

AT /¢ Ot dt]_o

which holds under the null hypothesis, where A is the hazard function under the null.

Let N;(z) and Y;(z) be the individual counting and risk processes, defined by by N;(r) = Al 7,<,y and Y;(z) =
147, >4}, respectively. Then, the individual zero-mean martingale for the i-th individual corresponds to M;(x) = N;(x) —
Iy Yi(y)Ao(y)dy, where Eq(M;(x)) = 0 for all .

Additionally, let ¢ : Ry — R such that Eq | [ ¢(y)dM;(y)| < oo for all z, then [ ¢(y)dM;(y) is a zero-mean (F,)-
martingale (See Chapter 2 of (Aalen et al., 2008)). The taking expectation, we have

2o0) - [ ot ]

=)

Eo U ()M (z }_Eo [/ () (AN (@ i(x)/\o(x)dx)]—Eo
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C. Additional Experiments

C.1. Weibull experiments: small deviations from the null

SAMPLE SIZE: 30, AND CENSORING PERCENTAGES OF 30%, 50% AND 70%
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C.2. Weibull experiments: increasing sample size

SHAPE: 0.6 AND CENSORING PERCENTAGES OF 30% AND 70%

Shape: 0.6 and Censoring: 30% Shape: 0.6 and Censoring: 70%
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SHAPE: 1.4 AND CENSORING PERCENTAGES OF 30% AND 70%
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C.3. Periodic experiments: small deviations from the null

SAMPLE SIZE: 30, AND CENSORING PERCENTAGES OF 30%, 50% AND 70%

Sample size: 30 and Censoring: 30% Sample size: 30 and Censoring: 50% Sample size: 30 and Censoring: 70%
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SAMPLE SIZE: 50, AND CENSORING PERCENTAGES OF 30%, 50% AND 70%
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C.4. Periodic experiments: increasing sample size

FREQUENCY: 3 AND CENSORING PERCENTAGES OF 30% AND 70%

Frequency: 3 and Censoring: 30%
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FREQUENCY: 6 AND CENSORING PERCENTAGES OF 30% AND 70%

Frequency: 6 and Censoring: 30% Frequency: 6 and Censoring: 70%

60 100
= £ 75
c [
2 2 50
(8] (&)
92 8
o 20 (&)
x ¥ 25

0 100 200 300 400 500 0 100 200 300 400 500
sample size sample size

« MMD & mKSD + mKSDu * pKSD ¢ Pearson v LR1 = LR2 * MMD 24 mKSD + mKSDu

pKSD ¢ Pearson v LR1 = LR2



