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Abstract

Motivated by economic applications such as rec-
ommender systems, we study the behavior of
stochastic bandits algorithms under strategic be-
havior conducted by rational actors, i.e., the arms.
Each arm is a self-interested strategic player who
can modify its own reward whenever pulled, sub-
ject to a cross-period budget constraint, in or-
der to maximize its own expected number of
times of being pulled. We analyze the robust-
ness of three popular bandit algorithms: UCB,
e-Greedy, and Thompson Sampling. We prove
that all three algorithms achieve a regret upper
bound O(max{B, K InT}) where B is the total
budget across arms, K is the total number of arms
and T is length of the time horizon. This regret
guarantee holds under arbitrary adaptive manip-
ulation strategy of arms. Our second set of main
results shows that this regret bound is tight— in
fact for UCB it is tight even when we restrict the
arms’ manipulation strategies to form a Nash equi-
librium. The lower bound makes use of a simple
manipulation strategy, the same for all three algo-
rithms, yielding a bound of Q(max{B, K InT'}).
Our results illustrate the robustness of classic ban-
dits algorithms against strategic manipulations as
long as B = o(T).

1. Introduction

Multi-armed bandits (MAB) algorithms play a significant
role in learning to make decisions across the digital econ-
omy, for example in online advertising (Chapelle et al.,
2014; Feng et al., 2019), search engines (Kveton et al.,
2015), and recommender systems (Li et al., 2010). Classical
stochastic MAB models assume that the reward feedback
of each arm is drawn from a fixed distribution. However, in
many economic applications, an arm may be strategic and
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able to modulate its own reward feedback in order to further
its own objective, e.g., increasing the number of times it
is selected. For instance, restaurants may offer discounts
or free dishes in order to entice customers to return, and
sellers on Amazon may offer discounts or coupons in order
to receive higher ratings and thus increase their ranking.

We distinguish two different kinds of actors in our strategic
setting: the principal and the arms. The principal repre-
sents a multi-armed bandit algorithm, corresponding to a
system, such as the Amazon marketplace platform. The
arms represent the parties who generate reward feedback
to the principal, for example the sellers on Amazon. We
assume that the true reward of each arm is drawn from an
underlying distribution. Further, we model each arm : as
a strategic agent, able to manipulate its own reward, but
subject to a total budget B; across all time periods. The
objective of an arm is to maximize its expected number of
times being pulled. Arms can only modify their own re-
ward feedback, and have no control over the rewards of the
other arms. An arm’s strategy can be adaptive— that is, the
amount by which an arm modulates the current reward can
depend on his own history of realized rewards and manipu-
lations. Since arms’ strategies affect each other, through the
MAB algorithm, this dynamic interaction forms a situation
of strategic interdependence among arms, more precisely, a
stochastic game.

This study is motivated by various economic applications of
MAB, where strategic manipulations appear more realistic
than the more conservative consideration of adversarial
attacks (Jun et al., 2018; Lykouris et al., 2018). The central
question that we study in this paper is the following:

Are existing stochastic bandit algorithms robust
to strategic manipulation by arms? Quantitatively,
can we characterize their regret bounds?

For a motivating example, suppose that a recommender
system such as Yelp runs a stochastic bandit algorithm to
recommend a single restaurant to each user. The arms cor-
respond to restaurants to be recommended and each user
access to the system corresponds to a pull of the arms. The
true service quality of each restaurant follows some under-
lying distribution. However, restaurants are strategic, and
a natural objective is to maximize the expected number of
times a restaurant is recommended to users. To do so, it
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is common to provide discounts to some user (modified re-
wards in our model), subject to budget constraints because
the restaurants cannot provide arbitrarily many discounts.
In this context, our goal is to understand how the strategic
behavior of restaurants can affect the platform’s regret.

1.1. Our Results and Implications

Results. Our main results illustrate that the three pop-
ular stochastic bandits algorithms of Upper Confidence
Bound (UCB), e-Greedy, and Thompson Sampling, are
robust to strategic manipulations. Specifically, we show
that the regret of all three algorithms is upper bounded by
o( D izie max{ B, IZ—iT ), where i* indexes the optimal
arm w.r.t. the true rewards, and A; is the difference in the
mean of the true reward between arm ¢ and ¢*. For conve-
nience, we assume throughout the paper that B;« = 0, since
any B;- > 0 would only help ¢* to be pulled more, and thus
benefit the principal. Interestingly, the regret bound holds
for arbitrary adaptive arm strategies.

One natural question is whether it is possible to achieve
smaller regret bounds if we restrict strategies to form a Nash
equilibrium, which is the standard solution concept in game
theory. We answer this question in the negative, at least for
UCB. We characterize the dominant-strategy equilibrium
of the game induced by the UCB algorithm, and prove a
lower bound on regret of Q(max{B, K InT'}) for equilib-
rium arm manipulations, where K is the number of arms
and B is the total budget across arms. This shows that the
upper bound is essentially tight, even under equilibrium
behaviors. All our bounds hold for both bounded and un-
bounded rewards. We also provide a matching lower bound
for e-Greedy and TS under a natural, lump sum investing
strategy, in which an arm spends all of its budget the first
time it is pulled. We have not been able to show whether or
not this strategy forms a Nash equilibrium in the induced
stochastic game, and leave open the question of whether
the regret bound is also tight for e-Greedy and Thompson
sampling (TS) under equilibrium behavior.

Implications. These results show that the performances of
all three MAB algorithms deteriorates linearly in the total
budget B =3, .. B;. Aslong as B = o(T), the optimal
arm will be pulled T — o(T") times. The simulation results
also validate this linear dependence on B.

Since our upper bounds on regret hold for arbitrary arm
behaviors, even allowing for reducing the reward on arms,
they can also correspond to the choices of a single adver-
sary, and the results also shed light on adversarial attacks
on stochastic bandit algorithms. In contrast to existing ad-
versarial models, the key difference is that the reward of the
optimal arm, ¢*, cannot be modified. With rational behavior,
this is without loss; if the optimal arm had an associated
budget then this can only lead to more pulls of this arm and

lower regret. Our results show that if a single adversary
cannot contaminate the optimal arm, then standard bandits
algorithms are already robust. The bound would also hold
in a more general setting in which the optimal arm’s reward
can only be increased.

Concretely, the results can be alternatively interpreted as
follows: for an adversarial corruption model that is modi-
fied to prevent contamination of the optimal arm, then UCB,
e-Greedy, and TS all have regret O(max{B, K InT}), and
are robust as long as B = o(T'). This is in sharp con-
trast to the situation of unrestricted adversarial attacks,
where an attack budget of O(InT') can lead algorithms such
as UCB and e-Greedy to suffer regret (7") (Jun et al.,
2018; Lykouris et al., 2018). Even for state-of-the-art,
robust bandits algorithms (Gupta et al., 2019), the regret
bound O(KB + 3, ;. IOEiT log(% log T)) is worse than
the bound in the present paper by a factor of K (when
B = Q(logT)).

Another implication of the present work is to the problem
of incentivizing exploration, where the principal relies on
users to pull arms (Frazier et al., 2014; Wang & Huang,
2018), and users are modeled as myopic and only care about
their immediate reward. The idea is that the principal can
provide rewards to encourage more exploration. At the same
time, it has been observed in field experiments that users are
generally biased towards reporting a higher evaluation when
provided with these kinds of incentives, i.e., an upwards-
biased reward. Our results have been applied by Liu et al.
(2020) to show that bandit algorithms are robust to this kind
of bias: if reported rewards can only be upwards-biased (a
special case of our model), then the bandit algorithm will be
robust, also allowing for the reward feedback on the optimal
arm to be affected.

1.2. Additional Related Work

In this work, we study strategic manipulation in the context
of classical stochastic bandit algorithms. This is similar in
spirit to Jun et al. (2018), who study adversarial attacks to
UCB and e-Greedy. The relation and differences between
their results and ours are elaborated above. Another related,
and complementary, line of research is on designing new
algorithms for stochastic bandits that are robust to adversar-
ial corruptions (Lykouris et al., 2018; Gupta et al., 2019).
In principle, we could have also studied these algorithms in
the present context. However, we believe that it remains im-
portant to understand the conditions under which classical,
simple bandit algorithms work well, because they are likely
to be used in real-world applications. Moreover, the regret
guarantees of these classical algorithms, in our strategic
setup, is better than the bounds available for these robust
algorithms under adversarial corruptions. It is an interesting
open question to understand whether these robust algorithms
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can achieve the same or even better regret bound when re-
stricted to our strategic setup. Another further work is to
understand strategic behavios in the recent line of works in
non-stationary bandits, e.g., Besbes et al. (2019); Cheung
etal. (2019).

This work belongs to the general field of no-regret learning
with strategic agents. Much of this literature is focused
on designing no-regret learning algorithms under strategic
behavior, and has studied problems arising from concrete
applications such as auctions, e.g., (Blum et al., 2004; Weed
et al., 2016; Feldman et al., 2016; Feng et al., 2018) and rec-
ommender systems (Mansour et al., 2015; Immorlica et al.,
2019). However, the strategic behavior in these models
do not correspond to arm manipulation, but rather corre-
spond to bidding strategies or auction mechanisms. To our
knowledge, Braverman et al. (2019) are the first to consider
strategic behaviors of arms in stochastic bandit settings. In
their model, when an arm is pulled, it receives a private
reward v and strategically chooses an amount x to pass to
the principal, leaving the remaining amount of v — x to
the arm itself. Motivated by a different application context,
our model considers strategic arms that seek to maximize
their expected number of plays by manipulating their reward
feedback under a budget.

2. The Model: Strategic Manipulations in
Stochastic Bandits

We consider a strategic variant of the stochastic multi-
armed bandit problem. There are K arms, denoted by
[K] = {1,2,..., K}. The reward of each arm ¢ € [K]
follows a o-sub-Gaussian distribution (see Definition A.1
in Appendix) with mean p;, where parameter o is publicly
known. The o-sub-Gaussian assumption is widely used
in MAB literature (Bubeck & Cesa-Bianchi, 2012). Let
i* = arg max;¢ g pi denote the unique arm (WLOG) with
maximum mean, A; = p;« — p; > 0 denote the difference
of the reward mean between the optimal arm +* and arm ¢
(75 i*), andé = min#i* Ai.

There are two different parties: the principal and the arms.
The principal represents a bandit algorithm, in particular,
UCB, e-Greedy, or TS. At each time ¢ = 1,---, T, the
principal pulls arm I;, which generates a reward r;. Here
T is some fixed time horizon. Let n;(t) = 32" _ 1(I; = 4)
denote the number of times that arm ¢ has been pulled up to
and including time ¢, and fi;(t) = ﬁ 23:1 rr-I(I, = 1)
denote the average rewards obtained from pulling arm ¢ up
to and including time ¢.

Each arm ¢ € [K] is a strategic actor, equipped with the
objective of maximizing E[n;(T)], i.e., the expected total
number of times it is pulled. This is a natural objective in
systems such as recommender systems.

The actions available to arm ¢ is to modify its reward feed-
back when pulled, subject to a total budget B; across rounds.
Concretely, when I; = 4, arm ¢ can add an additional reward

amount agi) to the realized reward 7,! subject to budget con-

straint Zthl |a§i)| < B, so that the revealed reward to the
principal is 7y = 74 + aE’). We refer to r; as the true reward
and 7; the manipulated reward. The adaptive manipulation
strategy of arm i is a function S Hiz_)l x [K] — R, map-
ping its own up-to-t¢ history hgl_)l € ’Hgl_)l and I; to a ma-
nipulation ") The history h{" = {I,, 7,0\ }ror i o<
is the information that arm ¢ observed up to time ¢, which
includes the pulling history, realized rewards, and manipula-
tions of arm ¢ at past ¢ rounds. Let h; = {hy)}ie[n] denote
the histories of all arms until time . Arm 7 has no access to
the information of the other arms, hence the strategy only
takes his own historical information as input. We use S(~%
to define the strategies of the other arms. Given a history

hy) , the remaining budget and n;(¢) are determined.

Arm 7 has no control over other arms’ rewards. Therefore,
agl) must equal 0 for I; # ¢ and any history h§?1 For
convenience of the analysis, we assume B;~ = 0 throughout
the paper and thus atl*) = 0 for any ¢, since any reasonable
S with By« > 0 would only lead to more pulls of i* and
thus benefit the principal. Let

BOD 1) =8O | 1)

<t

denote the total manipulation by arm ¢ until time ¢ with
manipulation strategy S(*) and a realized history 1), which

satisfies 8% (h, Ir) < Bi,Vh € HY) | and Iy € [K].
When the history hgi) 1 and selected arm I, are clear from the

context, we sometimes omit this and write 5@ for notational
convenience.

The objective of arm i is to find a strategy S() to maximize
E[Zz;l I{1; = i}],? by manipulating its reward to trick the
principal to pull arm ¢ more. The principal observes only
r¢ and not true reward r;. The goal of the principal is to
minimize regret with respect to the true reward r;. This is
without loss of generality since the aggregated reward with
respect to 7 differs from the true reward by at most the total
manipulation budget B = ), B;, which is the same order
as our regret bounds.

LSI manipulation. A particular manipulation strategy that
will be of interest is the Lump Sum Investing (LSI) strat-
egy, in which an arm simply spends all of its remaining
budget whenever first pulled. For arm i, the LST is a strat-
©)

'In this paper, " can be negative, if that helps . None of our

results rely on the positivity of ati) ’s.
>Throughout the paper, the expectation is over all the random-
ness in algorithms and the rewards.
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egy S that at any time ¢ and any history h§’31 € 7—[,@1,
SOMY 1) =B, =Y ol when I, = i.

T

2.1. Solution Concepts

This is a situation of strategic interaction, where the MAB
algorithms induce a stochastic game. Our main goal is to
quantify the principal’s regret in this game, as measured
with respect to the true reward. Despite the widely-known
intractability in characterizing Nash Equilibria for general
stochastic games (Ben-Porath, 1990; Conitzer & Sandholm,
2003), we show that when the principal runs UCB, there
is a subgame perfect Nash equilibrium (SPE) in our game,
where each arm simply plays the LSI strategy. A strategy
profile $* = (S*(M ... §*(K)) s a SPE if S*(*) is an
optimal strategy for any arm ¢, given any history h;_1, and
given the strategies S(—%) of the other arms, for any ¢. In fact,
we show that LSI is dominant strategy when the principal
runs the UCB algorithm, that is LST is an optimal strategy
for arm ¢ for any ¢, given any history h;_;, and whatever
the strategies S(~% of the other arms. This provides a very
strong suggestion as to the kind of behavior we should
expect from arms. The upper bounds on regret hold for
arbitrary adaptive manipulations, regardless whether they
form a SPE or not. The matching lower bounds on regret
for UCB are proved under the dominant-strategy SPE. Not
only does this show that the upper bounds are tight, but it
highlights the special role of the SPE in this UCB setting.

3. UCB is Robust to Strategic Manipulations

In this section, we provide a regret analysis for the Upper
Confidence Bound (UCB) principal in our strategic setup.
We first show an upper bound on the regret for arbitrary arm
strategies. Next, we prove that this regret bound is tight
even under equilibrium arm behaviors. Finally, we discuss
how to generalize the results to the bounded reward setting.
The formal proofs can be found in Appendix B.

3.1. Regret Upper Bound for UCB Principal

We consider a standard (o, 1)—UCB with o = 4.5, ¢ :
A= 022)\2 and thus (¢*) ™! (¢) = v/202¢ (Bubeck & Cesa-

Bianchi, 2012) . Concretely, the algorithm selects each arm
once in the first K rounds, i.e. I; = t,Vt < K. Fort > K,

(1)
R InT Be-1
¢ = arg max {M (t=1)+30 -1 -1

where /J’t@l is the aggregated manipulation of arm ¢ up

to (including) ¢ — 1. The term fi;(t — 1) 4+ 30 nil(rfn

is the standard UCB term® for any arm i € [K] at time ¢,

3There is also a UCB variant that uses time-dependent con-
fidence width 304/ n'g&lil)' Both versions are common in the

which we denote as UCB, (). Let Iﬁz(t) = UCB;(t) +
Bt@l /ni(t — 1) represent the modified UCB term for the
strategic arm i (i # i*) with manipulation strategy S*)
(recall ﬁt(i) is induced by S, and Bt(m = 0 always).

The main result in this section is an upper bound for regret
E[R(T)] under an arbitrary adaptive manipulation strategy
S.

Theorem 3.1. For any manipulation strategy S of the strate-
gic arms, the regret of the UCB principal is bounded by

812InT
E[R(T)] < Z [ max {SBi, Ai} + (1+34]
iFEL*

Theorem 3.1 reveals that the UCB algorithm is robust in our
strategic model of arm manipulations. If the budget of each
arm is bounded by O(InT), the regret of the principal is
still bounded by O(InT). If B; = Q(InT') for some arm
i’s, the regret is upper bounded by O(3_, ;- B;). This is
sublinear in T"as long as B = }_, ;. B; = o(T).

Theorem 3.1 strictly generalizes the regret bound of the
standard UCB framework, which corresponds to a special
case with no budgets. Fixing any manipulation strategy .S,
the proof starts by re-writing the regret in the following
format:

EIRT)] = 3 A -ERS (D). (1)
iF#i*
What remains is to bound E[n?(T')] for each arm 4. For
convenience, we omit the superscript S' since it is clear that
we focus on an arbitrary S. Lemma 3.2 gives the upper
bound of E[n;(T)] for each arm ¢, and combined with (1),
yields a proof of Theorem 3.1.

Lemma 3.2. Suppose the principal runs UCB. For any
manipulation strategy S of strategic arms, the expected
number of times that arm i(i # i*) is pulled up to time T
can be bounded as follows,

B; 81¢%2InT
]E[m(T)]SmaX{?w 8011} 3

AT A2
Proof Sketch. The main difference from the analysis of the
standard UCB is to choose a proper threshold C;(T') for

n;(t — 1) so that we can have the best trade-off between the
two terms in the following decomposition of E[n;(T)]:

i {1, = i,ni(t — 1) < C4(T)}
t=K+1
> I =idni(t—1) > Ci(T)}

t=K+1

E[ni(T)] <1+E

+E

literature. Our regret upper bound holds for both, but it appears
that the (In T") version is more convenient for the analysis of lower
bounds in equilibrium.
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After careful manipulation, it turns out that C;(T) =

2 . .
max {813#, :SAB; } gives the correct regret bound, af-

ter bounding the first term directly by C;(T") and bounding
the second term via the Chernoff-Hoeffding inequality. The
formal proof is shown in Appendix B.1. O

3.2. Tightness of the Regret Bounds at Equilibrium

The above regret bound for UCB holds for arbitrary adaptive
manipulation strategies. This raises the following question:
is it possible to achieve better regret upper bounds by re-
stricting arm manipulations to form a subgame perfect Nash
equilibrium? We provide a negative answer to this question,
and prove that the regret upper bounds are tight even in equi-
librium. We first prove that LSI is a dominant strategy for
each arm in any subgame — an optimal strategy regardless
of what strategies other arms use, given any realized history
hi—1 — when the principal runs UCB. As a consequence,
each arm playing LSI forms a dominant-strategy SPE. We
then establish a lower bound on regret when each arm plays
the LST strategy, and show that this bound matches the upper
bound.

Concretely, we first prove that the (random) number of
times that arm ¢ is pulled under strategy LSI first-order
stochastically dominates the number of times pulled under
any other adaptive manipulation strategy S, given any
fixed history.

Theorem 3.3. Suppose T' > K, and the principal runs
the UCB algorithm. For any arm i, any strategy S, and
any strategy profile S\~ of others, and for any time t and

history hglll we have

PS5 (¢ T) > 0] > PnS(t : T) > n], Vn €N,

K3

(2)

where n;(t : T) = Zzzt I{I, = i} is the total number
(—i)

of pulls of arm i from t to T. That is, nELSI’S )(t : T)

first-order stochastically dominates n; (¢ : T). Therefore,
(=9

E[n{"" (¢t : T)] > E[nS(t : T)), and thus LST is a

best response to any S(~7),

It follows directly from Theorem 3.3 that each arm playing
LSI forms a dominant-strategy SPE. The complete proof
of Theorem 3.3 is quite involved, and can be found in Ap-
pendix B.2.

To see why this conclusion is not obvious, let us illustrate
the trade-off in designing the optimal manipulation strategy.
The advantage of the LSI strategy in UCB is to signifi-
cantly increase the arm’s UCB term and receive many pulls
at the very beginning. This, however, also comes with a
disadvantage— it quickly decreases the confidence width
(the 30vInT'/+/n;(t — 1) term) and the effect of the manip-

ulation (the 3¢{_, /n;(t — 1) term) in the UCB term, whereas

other arms’ confidence width and manipulation effect re-
main large. For this reason, it may also be beneficial for
an arm to defer its manipulation to later rounds so that it
avoids fierce competition in the early few rounds resulting
from other arms’ large confidence width, large manipulation
effect, and possibly large rewards due to lucky draws.

The proof shows that in this intricate random process, the
aforementioned advantage of using LSI always domi-
nates its disadvantage. We make use of the coupling tech-
nique (Thorisson, 2000) to compare the random sequence
of pulled arms when arm ¢ uses LSI compared with an ar-
bitrary strategy S(*). A crucial step is to show that under
coupling of the two stochastic processes, either LSI results
in more pulls of arm i than S(*) or they must result in each
of the other arms to be pulled for the same number of times.
We then argue that in the latter case, LSI must also be better
than S%) because they face the same outside competition but
the modified UCB term of LST is larger than the modified
UCB term of S(9). As a consequence, LSI performs better
than S in both cases, yielding a proof of the theorem.

To show that the regret bounds in Section 3.1 are tight, it
will suffice to develop a lower bound on regret for when
each arm plays LSI , as shown in the following theorem.

Theorem 3.4 (Regret Lower Bound at Equilibrium). Sup-
pose the principal uses UCB algorithm and each arm uses
LSI. For any o-sub-Gaussian reward distributions on arms,
the regret of the principal satisfies,

Bi InT
2a, ¢ (A> |

The proof of Theorem 3.4 differs from standard techniques
in proving regret lower bounds, and is carefully tailored to
achieve tight bounds with respect to budget B;’s. Classical
regret lower bounds are typically proved by constructing a
particular class of distributions, i.e., Bernoulli (Bubeck &
Cesa-Bianchi, 2012), and then arguing that the given algo-
rithm cannot do very well on these constructed instances.
These bounds are usually distribution-dependent. Our proof
takes a completely different route. Indeed, our technique
results in a lower bound that holds for arbitrary o-sub-
Gaussian distributions and thus is distribution-independent.

E[R(T)] > A

The proof of Theorem 3.4 starts with a simple lower bound
for the regret E[R(T")] by utilizing Equation (1):

E[R(T)] = 3 AEn(T)] > A- S Eny(T). (3
i£i* iti*

We then only need to focus on lower bounding
>_izi+ E[ni(T)] when all the arms play strategy LSI. We
prove an upper bound for E[n; (T")], which translates to a
lower bound for ), ;. E[n;(T")]. However, upper bound-
ing E[n;« (T)] requires quite different techniques than upper
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bounding E[n;(T)] for any non-optimal arm i. A crucial
step is to argue that when +* has been pulled more than
C times (for some carefully chosen threshold C), it will
become much less likely to be pulled again. This differs
from standard techniques for upper bounding E[n;(7")] for
non-optimal arm ¢, for two reasons: (1) we have to com-
pare the UCB term of arm ¢* with all the other non-optimal
arms’ UCB terms, whereas to upper bound E[n,;(T")], one
typically compares ¢ with only the optimal arm *; (2) we
need to argue ¢* is pulled with small probability despite
wix > p; whereas upper bounding E[n;] is more natural
when p;«+ > p;. To overcome these challenges, we carefully
decompose the E[n;« (T')] term and pick thresholds not only
for n;« (t — 1), but also for n;(¢t — 1) for each non-optimal
arm ¢ # i*. A complete proof of Theorem 3.4 can be found
in Appendix B.3.

Remarks: The lower bound holds for arbitrary o-Gaussian
distributions, and may be negative in value, and thus not
meaningful when B; = o(InT). However, the bound
can be easily converted to a distribution-dependent lower
bound max {AY", .. 55 — O(BL), Q(KInT) } be-
cause there exist distributions such that any no-regret learn-
ing algorithm will suffer regret Q (K InT") (Bubeck & Cesa-
Bianchi, 2012) and the non-optimal arms’ manipulation
strategy would only increase the regret. This distribution-
dependent lower bound precisely matches the upper bound
O(max{B, KInT}) in Section 3.1.

3.3. Generalization to Bounded Rewards

In many applications, such as where the rewards are ratings
provided by customers on platforms such as those oper-
ated by Yelp and Amazon, the rewards are bounded within
some known interval (e.g. 0 ~ 5 stars rating). Suppose,
for example, that the reward is bounded within [0, 1]. In
such settings, the LSI strategy may be infeasible since the
strategic arm can increase its reward to at most the upper
bound. In this case, arms can use a natural variant of LSI for
bounded rewards: each arm ¢ spends its budget to promote
the realized reward to the maximum limit of 1 whenever it is
pulled, and does so until it runs out of budget B;. We term
this natural variant the Lump Sum Investment for Bounded
Rewards strategy, or LSIBR for short.

Theorem 3.3 can be easily generalized to this bounded re-
ward setting. Each arm playing LSIBR forms a dominant-
strategy subgame perfect Nash equilibrium in the bounded
reward setting. The more challenging task is to prove a
similar lower bound on regret. To do so, we provide a uni-
fied reduction from any regret lower bound under LSI to a
regret lower bound under LSIBR, with an additional loss of
O(InT). Our reduction applies to any stochastic bandit algo-
rithms.The main findings are summarized in Theorem 3.5.

Theorem 3.5. For any stochastic bandit algorithm, let

E [RYY(T)] (resp. E[R™S™(T')] ) denote the regret in the
unbounded (resp. bounded) reward setting, where each arm
uses LSI (resp. LSIBR(T')). We have

AlnT
(1= pi)?

4. The Robustness of c-Greedy and
Thompson Sampling

E [RLSIBR(T)] 2 E [RLSI (T)] _ O( )

In this section, we turn our attention to two other popular
classes of MAB algorithms, i.e., e-Greedy and Thompson
Sampling (TS) (Thompson, 1933; Agrawal & Goyal, 2017).
Unlike UCB, these are randomized algorithms: e-Greedy
algorithm involves a random exploration phase and TS em-
ploys random sampling during arm selection (note: the
randomness when executing UCB comes purely from the
random rewards and not the algorithm itself). We establish
the same regret upper bound for e-Greedy and Thompson
Sampling, again for arbitrary adaptive manipulation strate-
gies. However, the additional randomness involved in e-
Greedy and TS makes it much more challenging to exactly
characterize the SPE in the induced games. Nevertheless,
we show that the regret upper bounds remain tight under the
LST strategy.

4.1. Regret Upper Bound for -Greedy Principal

As with UCB, we assume that the algorithm pulls arm ¢
when t < K, i.e., first exploring each arm once. At round
t > K, the algorithm selects an arm as follows:

uniformly drawn from [K], W.p. €

I, — (1)
! argmax{ﬁv(tl)JrH} oW
i ! n; (t — 1) ’ o
The first step above is Exploration, while the second step
is Exploitation. We choose £, = © (1), which guarantees
the convergence of the algorithm (Auer et al., 2002b). We
prove the following regret bound for £-Greedy, again for
an arbitrary adaptive manipulation strategy S. As with the
UCB case, the result strictly generalizes previous analysis
for e-Greedy to incorporate the effect of manipulations.

Theorem 4.1. For any adaptive manipulation strategy S

of strategic arms, the regret of the e-Greedy principal with
« 2

e, = min{1, “£} and c = max{20, 35}, is bounded by

E(R(T) <Y [3B: + 0 (IZT) !

i£i* v

4.2. Regret Upper Bound for Thompson Sampling
Principal

We model rewards with Gaussian priors and likelihood. As
with UCB and e-Greedy, we also assume that the algorithm
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pulls each arm once in the first K rounds. At round ¢t > K,
the algorithm selects an arm according to the following
procedure:

(1) For each i € [K], sample 6;(t — 1) from a Gaussian
distribution N (7% (t — 1), 57—y ), Where fi;(t — 1) =

(i)
it — 1) + 67y

(2) Select arm I; = arg max; 0;(t — 1).

The total manipulation by arm ¢ until time ¢, Bt(l), is in-
duced by a strategy profile S. TS is widely known to be
challenging to analyze, and its regret bound was proved
only recently (Agrawal & Goyal, 2017). This is because the
algorithm does not directly depend on the empirical mean
of each arm, but relies on random samples from the prior
distribution centered at the empirical mean. This sampling
process further complicates the analysis of the stochasticity
in the algorithm. Moreover, it is unclear whether there ex-
ists an effective adversarial attack to TS. This was left as an
open problem in Jun et al. (2018).

Nevertheless, we prove that TS admits the same regret upper
bound as UCB and e-Greedy for any adaptive manipulation,
up to constant factors. These results serve as an evidence
of the intrinsic robustness of stochastic bandits to strate-
gic manipulations, regardless of which no regret learning
algorithm is used.

Theorem 4.2. For any manipulation strategy profile S of
strategic arms, the regret of the Thompson Sampling princi-
pal can be bounded as

2
E[R(T)] < ) max {631-7 721&} +0 (hzT) L@
i v v

The proof of Theorem 4.2 is quite involved as it requires
us to strictly generalize the analysis in Agrawal & Goyal
(2017), which is already involved, and further incorporate
each arm’s manipulation. Here we describe the key lemma
(Lemma 4.3) that leads to the above regret lower bound,
and outline its proof. All formal proofs can be found in
Appendix C.

Lemma 4.3. For any manipulation strategy profile S, the
expected number of times that arm i is pulled up to time T
can be bounded as follows:

6B; T20%2InT InT
E[n;(T)] < maX{T, R } +0 (AZ) NG

Proof Sketch. Let us start with some useful notation. For
each arm k € K|, we pick two thresholds xj and y, such
that f1, < 2, <y < pg=. Let B} (t) be the event fi (t —
1) <z, and EY (¢) be the event 0 (t) < yi.. We also denote
F3 as the history of plays until time ¢. Let 7, be the time
step at which arm k is played for the s*® time and py, ; be
the probability that pg = P(0;+ (t) > y|Fi—1).

The key step is to carefully decompose E[n;(T)], as follows:

T
S k=i, Bt), Bl (1)}
t=K+1
+ > P (L =i, BIt),E (1))
t=K+1
T
Z H{It = Z’E;u(t)}

t=K+1

E[n(T)] <1+ E

(6)

+E

The proof then proceeds by bounding each of the above
terms separately. We set x; = p; + %,yi = ix — Ad
The first term can be bounded by (% + 1) using a re-
sult of Agrawal & Goyal (2017). The second term can

be bounded by S°1 ¢ 1 E L — 1| We then bound

Pi,rix g+1

each summand by the following bounds (Lemma C.4 in the

Appendix):
1 el1/40 4 %2, Vs,
El—-1| < . n 2).max{1,02
|:pi77'i*,s+1 :| B TLA?a if s > L (TAl)Ag {1, }
Finally, we bound the third term by
max {%, M‘“’A#} + 1 (Lemma C.5). O
4.3. Regret Lower Bound

It would again be natural to consider regret under a Nash
equilibrium, and perhaps dominant strategy behavior. How-
ever, the equilibrium in the game induced by a e-Greedy or
TS principal is difficult to characterize. The main challenge
comes from the additional stochasticity due to the random
exploration phases in e-Greedy and TS. Nevertheless, we
are able to prove the following matching lower bound on
regret under LSI manipulation by using similar ideas as
in the proof of Theorem 3.4. This shows that our upper
bound is indeed tight, but does not rule out the possibility
of a better regret upper bound for e-Greedyand TS when
arms’ manipulations are restricted to a Nash equilibrium.
It remains a challenging open question to characterize the
SPE under £-Greedy and TS. The lower bound generalizes
to bounded rewards, as shown in Theorem 3.5.

Proposition 4.4. Suppose the principal runs e-Greedy* or
Thompson Sampling and each strategic arm uses LSI. For
any o-sub-Gaussian reward distributions on arms, the regret
of the principal satisfies,

E[R(T)] > A ;‘Z -0 (lnAT) :
iti* v =

4 36

2
~ )

e: = min{1, <<} where ¢ = max{20,
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Figure 1: Total Regret as a function of In ¢ for the UCB principal (left), e-Greedy principal (middle), and Thompson Sampling principal
(right), for three different choices for budgets of arms 1 and 2. B3 = 0 (the strongest arm).
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Figure 2: Total regret over T = 10* periods as a function of total budget B of arms 1 and 2, for the UCB principal (left), e-Greedy
principal (middle), and Thompson Sampling principal (right), for three different choices of how to divide the budget, and also allowing

arm 3 to have budget in one scenario.

5. Simulations

In this section, we provide the results of simulations to
validate our theoretical results. We only present only a
representative sample here, and provide additional results in
Appendix D.

Setup. There are three arms, with reward distributions
N(p1,0?), N(p2,0?) and N (p3,0?), respectively. We
assume that p1; < po < ps. In the e-Greedy algorithm, we
set &, = min{1, }. Throughout the simulations, we fix
w1 =5, ue =8, u3 = 10, and o = 1. All the arms use the
LST strategy. We run each bandit algorithm for 7' = 10*
rounds, and this forms one trial. We repeat for 100 trials,
and report the average results over these trials.

Regret of principal with different budgets. We con-
sider the regret of UCB, ¢-Greedy and Thompson Sampling
with different budgets among the arms. For each algorithm,
arm 1 and arm 2 have the same budget B;, chosen from
{0,10,100}. As explained earlier, it is WLOG to assume
arm 3 has zero budget. We show the regret as a function
of Int in Figure 1. We observe that for small budgets (i.e.,
B; = 0,10), the O(In t) term dominates the regret, whereas
for large budgets, the budget term B; comes to dominate
the regret as ¢ becomes large. This is why we see a turning
point in the regret curve for By = By = 100, where the
regret transitions to a relatively flat curve since the budget
is fixed. Interestingly, we find that Thompson sampling per-
forms better than both UCB and e-Greedy in this strategic
manipulation scenario.

Regret is linear with total budget. We validate that the

regret achieved by each stochastic bandit algorithm with
strategic manipulations is linear in the total budget available
to the strategic arms. We vary the budget B = By + Bs
available to arms 1 and 2, and consider three settings: (1)
By = By =B/2,B3 =0,2) By = B,By = B3 =0,
and (3) By = By = B3 = B/2. For setting (1), we equally
split the budget to arm 1 and arm 2. For setting (2), we give
all the budget to arm 1. For setting (3), we also give the
optimal arm some budget (and assume arm 3 uses strategy
LSI), and want to understand the effect of the budget of the
optimal arm.

Figure 2 shows the regret of each algorithm at the end of
the T = 10* rounds, as budget B = B; + Bs varies. The
regret is generally linearly increasing with B, validating the
theoretical findings. Interestingly, even if the optimal arm
also has available budget, the regret still increases as the
budget for arms 1 and 2 increase. In fact, the regret in this
case, where the optimal arm also has budget, is similar to
that when it does not, and the budget on optimal arm 3 does
not affect the regret much. This is because the optimal arm
will in any case be pulled many times, and its budget will
be diluted significantly in later rounds, so that it has only a
small effect on regret.
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