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Abstract
A complementary label (CL) simply indicates an
incorrect class of an example, but learning with
CLs results in multi-class classifiers that can pre-
dict the correct class. Unfortunately, the problem
setting only allows a single CL for each example,
which notably limits its potential since our label-
ers may easily identify multiple CLs (MCLs) to
one example. In this paper, we propose a novel
problem setting to allow MCLs for each exam-
ple and two ways for learning with MCLs. In the
first way, we design two wrappers that decompose
MCLs into many single CLs, so that we could use
any method for learning with CLs. However, the
supervision information that MCLs hold is con-
ceptually diluted after decomposition. Thus, in
the second way, we derive an unbiased risk estima-
tor; minimizing it processes each set of MCLs as
a whole and possesses an estimation error bound.
We further improve the second way into minimiz-
ing properly chosen upper bounds. Experiments
show that the former way works well for learning
with MCLs but the latter is even better.

1. Introduction
Ordinary machine learning tasks generally require mas-
sive data with accurate supervision information, while it
is expensive and time-consuming to collect the data with
high-quality labels. To alleviate this problem, the re-
searchers have studied various weakly supervised learning
frameworks (Zhou, 2018), including semi-supervised learn-
ing (Chapelle et al., 2006; Li & Liang, 2019; Miyato et al.,
2018; Niu et al., 2013; Zhu & Goldberg, 2009), positive-
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unlabeled learning (du Plessis et al., 2014; 2015; Elkan &
Noto, 2008; Kiryo et al., 2017; Sakai et al., 2017; 2018),
noisy-label learning (Han et al., 2018a;b; Menon et al.,
2015; Wei et al., 2020; Xia et al., 2019), partial label learn-
ing (Cour et al., 2011; Feng & An, 2018; 2019a;b; Zhang
& Yu, 2015), positive-confidence learning (Ishida et al.,
2018), similar-unlabeled learning (Bao et al., 2018), and
unlabeled-unlabeled classification (Lu et al., 2019; 2020).

Here, we consider another weakly supervised classifica-
tion framework called complementary-label learning (Ishida
et al., 2017; 2019; Yu et al., 2018). In complementary-label
learning, each training example is supplied with a com-
plementary label (CL), which specifies one of the classes
that the example does not belong to. Compared with ordi-
nary labels, it is obviously easier to collect CLs. Recently,
complementary-label learning has been applied to online
learning (Kaneko et al., 2019) and medical image segmen-
tation (Rezaei et al., 2019). In addition, another potential
application of learning with CLs would be data privacy.
For example, collecting some survey data may require ex-
tremely private questions (Ishida et al., 2017; 2019). It
may be difficult for us to directly obtain the true answer
(label) to the question. Nonetheless, it would be mentally
less demanding if we ask the respondent to provide some
incorrect answers. Besides, the respondent may provide
multiple incorrect answers, rather than exactly one. In this
case, multiple complementary labels (MCLs) would be more
widespread than a single CL.

In this paper, we propose a novel problem setting (Sec-
tion 3.1) that allows MCLs for each example, and pro-
vide a real-world motivation (Section 3.2). Although exist-
ing complementary-label learning approaches (Ishida et al.,
2017; 2019; Yu et al., 2018) have provided solid theoretical
foundations and achieved promising performance, they are
all restricted to the case where each example is associated
with a single CL. To learn with MCLs, we first design two
wrappers (Section 4.1) that decompose each example with
MCLs into multiple examples, each with a single CL, in dif-
ferent manners. With the two wrappers, we are able to use
arbitrary ordinary complementary-label learning approaches
for learning with MCLs. However, the derived data with
many single CLs may not match the assumed data distribu-
tion for complementary-label learning (Ishida et al., 2017;
2019). In addition, the supervision information would be
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conceptually diluted after decomposition.

In order to solve the above problems, we further propose
an unbiased risk estimator (Section 4.2) for learning with
MCLs, which processes each set of MCLs as a whole. Our
risk estimator is conceptually consistent, and builds a proto-
type baseline for the new problem setting that may inspire
more specially designed methods for this new setting in the
future. Then, we theoretically derive an estimation error
bound, which guarantees that the empirical risk minimizer
converges to the true risk minimizer with high probability
as the number of training data approaches infinity. Fur-
thermore, we improve the risk estimator into minimizing
properly chosen upper bounds for practical implementation
(Section 4.3), and we show that they bring benefits to gra-
dient update. Experimental results show that the wrappers
work well for learning with MCLs while the (improved) risk
estimator is even better on various benchmark datasets.

2. Related Work
In this section, we introduce some notations and briefly
review the formulations of multi-class classification and
complementary-label learning.

2.1. Multi-Class Classification

Suppose the feature space is X P Rd with d dimensions
and the label space is Y “ t1, 2, . . . , ku with k classes, the
instance x P X with its class label y P Y is sampled from
an unknown probability distribution with density ppx, yq.
Ordinary multi-class classification aims to induce a learning
function fpxq : Rd Ñ Rk that minimizes the classification
risk:

Rpfq “ Eppx,yq

“

L
`

fpxq, y
˘‰

, (1)

where L
`

fpxq, y
˘

is a multi-class loss function. The pre-
dicted label is given as ŷ “ argmaxyPYfypxq, where fypxq
is the y-th coordinate of fpxq.

2.2. Complementary-Label Learning

Suppose the dataset for complementary-label learning is
denoted by tpxi, syiqu

n
i“1, where syi P Y is a complementary

label of xi, and each complementarily labeled example is
sampled from sppx, syq. Ishida et al. (2017; 2019) assumed
that sppx, syq is expressed as:

sppx, syq “ 1
k´1

ř

y‰sy ppx, yq. (2)

This assumption implies that all other labels except the
correct label are chosen to be the complementary label
with uniform probabilities. This is reasonable as we do
not have extra labeling information except a complemen-
tary label. Under this assumption, it was proved by Ishida

et al. (2017) that an unbiased estimator of the original clas-
sification risk can be obtained from only complementarily
labeled data, when the loss function satisfies certain condi-
tions. Specifically, they used the multi-class loss functions
with the one-versus-all strategy and the pairwise comparison
strategy (Zhang, 2004):

sLOVA
`

fpxq, sy
˘

“ 1
k´1

ř

y1‰sy `
`

fy1pxq
˘

` `
`

´ f
sypxq

˘

,

sLPC
`

fpxq, sy
˘

“
ř

y1‰sy `
`

fy1pxq ´ fsypxq
˘

,

where `pzq is a binary loss function that satisfies `pzq `
`p´zq “ 1, such as sigmoid loss `Spzq “

1
1`ez and ramp

loss `Rpzq “
1
2 maxp0,minp2, 1´ zqq.

Later, another different assumption was used by Yu et al.
(2018). They assumed that all other labels except the cor-
rect label are chosen to be the complementary label with
different probabilities, and proposed to estimate the class
transition probability matrix for model training. Although
they showed that the minimizer of their learning objective
coincides with the minimizer of the original classification
risk, they did not provide an unbiased risk estimator.

Recently, a more general unbiased risk estimator (Ishida
et al., 2019) was proposed, which does not rely on specific
losses or models. Their formulation is as follows:

sLFREE
`

fpxq, sy
˘

“
k
ř

y“1
L
`

fpxq, y
˘

´ pk ´ 1qL
`

fpxq, sy
˘

.

(3)

For this formulation, they showed that due to the negative
term, the empirical risk could be unbounded below, which
leads to over-fitting. In order to alleviate this issue, the
authors further proposed modified versions by using the
max operator and the gradient ascent strategy.

In summary, although the above methods have provided
solid theoretical foundations and achieved promising per-
formance for complementary-label learning, they are all
restricted to the case where each example is associated with
a single CL. In this paper, we propose a novel problem
setting that allows MCLs for each example.

3. Multiple Complementary Labels
In this section, we first introduce our problem setting where
each example is associated with MCLs, and then provide a
corresponding real-world motivation.

3.1. Data Generation Process

Suppose the given dataset for learning with MCLs is rep-
resented as sD “ tpxi, sYiqu

n
i“1, where sYi is a set of com-

plementary labels for the instance xi. It is obvious that
learning with MCLs is a generalization of complementary-
label learning that learns with a single CL. Specifically, if
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sYi contains only one complementary label with probability
1, we obtain a complementary-label learning problem. In
addition, if sYi contains k ´ 1 complementary labels where
k denotes the total number of classes, we obtain an ordinary
multi-class classification problem. It is easy to know that
for all i, sYi cannot be the empty set nor the full label set,
hence sYi P sY where sY “ t2Y ´H´Yu and | sY| “ 2k ´ 2.

For the generation process of each example with MCLs, we
assume that it relies on the size of the set of MCLs. Let us
represent the size of the complementary label set by a ran-
dom variable s, and assume s is sampled from a distribution
ppsq. In this way, we assume that each training example
pxi, sYiq is drawn from the following data distribution:

sppx, sY q “
ÿk´1

j“1
pps “ jqsppx, sY | s “ jq, (4)

where

sppx, sY | s “ jq :“

$

&

%

1
`

k´1
j

˘

ř

yR sY ppx, yq, if |sY | “ j,

0, otherwise.

It is clear that when pps “ 1q “ 1, our introduced distri-
bution reduces to the assumed distribution (e.g., Eq. (2)) in
ordinary complementary-label learning approaches (Ishida
et al., 2017; 2019). Then, we show that sppx, sY q is a valid
probability distribution by the following theorem.

Theorem 1. The following equality holds:
ż

sY

ż

X
sppx, sY qdx dsY “ 1. (5)

The proof is provided in Appendix A.1.

3.2. Real-World Motivation

Here, we present a real-world motivation for the assumed
data distribution.

Since directly choosing the correct label is hard for labelers,
it would be easier if a labeling system can randomly choose
a label set and ask labelers whether the correct label is
included in the proposed label set or not. Given a pattern x,
suppose the labeling system first randomly samples the size
s of the proposed label set from ppsq, and then randomly
and uniformly chooses a specific label set with size s from
sY . In this way, the collected label sets that do not include
the correct label precisely follow the same distribution as
Eq. (4). We will demonstrate this fact in the following.

We start by considering the case where the labeling system
has already sampled the size s of the proposed label set.
Then we have the following lemma.

Lemma 1. Given the sampled size s of the proposed label
set, for any pattern x with its correct label y and any label

set sY with size s (i.e., |sY | “ s), the following equality
holds:

ppy P sY | x, sq “
s

k
. (6)

The proof is provided in Appendix A.2.

Theorem 2. In the above setting, the distribution of col-
lected data where the correct label y (y P Y) is not included
in the label set sY (sY P sY) is the same as Eq. (4), i.e.,

ppx, sY | y R sY q “ sppx, sY q. (7)

The proof is provided in Appendix A.3.

4. Learning with Multiple Complementary
Labels

In this section, we first present two wrappers that enable us
to use any ordinary complementary-label learning approach
for learning with MCLs. Then, we present an unbiased risk
estimator for learning with MCLs as a whole, and establish
an estimation error bound.

4.1. Wrappers

Since ordinary complementary-label learning approaches
cannot directly deal with MCLs, it would be natural to ask
whether there exist some strategies that can enable us to
use any existing complementary-label learning approach for
learning with MCLs.

Motivated by this, we propose two wrappers that decom-
pose each example with MCLs into multiple examples, each
with a single CL. Specifically, suppose a training exam-
ple with MCLs is given as pxi, sYiq where sYi “ tsy1, sy2u.
Then ordinary complementary label learning approaches
may learn from pxi, sy1q and pxi, sy2q. According to whether
decomposition is after shuffling the training set, there are
two decomposition strategies (wrappers) when we optimize
a loss function by a stochastic optimization algorithm:

Decomposition after Shuffle. Given the shuffled train-
ing set with MCLs, in each mini-batch, we decompose each
example into multiple examples, each with a single CL.

Decomposition before Shuffle. Given the training set
with MCLs, we drive a new training set by decomposing
each example into multiple examples, each with a single CL.
Then, we shuffle the derived training set.

Both the above decomposition strategies enable us to use
arbitrary ordinary complementary-label learning approaches
for learning with MCLs. However, the derived training
data with many single CLs may not match the originally
assumed data distribution (i.e., Eq. (2)) for complementary-
label learning, since these CLs are completely derived from
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Table 1. Supervision information for a set of MCLs (with size s).

Setting #TP #FP Supervision Purity

Many single CLs s pk ´ 2qs 1{pk ´ 1q
A set of MCLs 1 k ´ s´ 1 1{pk ´ sq

MCLs while the data distribution with MCLs is relevant
to the size of each set of MCLs. As a consequence, the
learning consistency would no longer be guaranteed even
if the complementary-label learning approach inside the
wrappers is originally risk-consistent or classifier-consistent.

Moreover, since ordinary complementary-label learning ap-
proaches can only learn with a single CL for each example at
a time and treat each example independently, the supervision
information for each set of MCLs would be conceptually
diluted. We demonstrate this issue by Table 1. As shown
in Table 1, there are two settings according to whether to
decompose a set of MCLs into many single CLs or not.
Since all the non-complementary labels have the possibility
to be the correct label, we specially count how many times
the correct label serves as a non-complementary label (de-
noted by #TP), and how many times the other labels except
the correct label serve as a non-complementary label (de-
noted by #FP). Then the supervision purity is calculated by
(#TP)/(#TP+#FP).

Clearly, the wrappers follow the setting where a set of MCLs
is decomposed into many single CLs. If the size of the set
of MCLs is s, then #TP equals s, since the correct label
would serve as a non-complementary label for s times after
decomposition, and the other labels except the correct label
would serve as a non-complementary label for pk ´ s ´
1qs ` sps ´ 1q “ pk ´ 2qs times, hence the supervision
purity would be s{ps ` pk ´ 2qsq “ 1{pk ´ 1q. However,
for the setting where the set of MCLs is not decomposed,
we can easily know that the correct label serves as a non-
complementary label once, and the other labels expect the
correct label serve as a non-complementary label for k´s´1
times, hence the supervision purity is 1{pk ´ sq. These
observations clearly show that the supervision information
is diluted after decomposing MCLs (s ě 2), which also
motivate us to take a set of MCLs as a whole set. In the
following, we will introduce our proposed unbiased risk
estimator, which is able to learn with MCLs as a whole.

4.2. Unbiased Risk Estimator

The above example has shown that the supervision informa-
tion is diluted after decomposition. The basic reason lies
in that ordinary complementary-label learning approaches
are designed by only considering the data distribution with
a single CL, i.e., sppx, syq. However, the data distribution
with MCLs sppx, sY q becomes much different, and the wrap-
pers fail to capture such distribution because they do not
treat MCLs as a whole for each example. To solve this

problem, we propose an unbiased estimator of the original
classification risk for learning with MCLs as a whole.

We first relate the data distribution with ordinary labels to
that with MCLs by the following lemma.

Lemma 2. The following equality holds:

ppx, yq “ 1´
ÿk´1

j“1

´k ´ 1

j

ÿ

sY P sYyj
sppx, sY , s “ jq

¯

,

where sYy
j is the set of all the possible label sets with size j

that include a specific label y P Y , i.e.,

sYy
j :“ tsY P sY | y P sY , |sY | “ ju.

The proof is provided in Appendix B.1.

Based on Lemma 2, we derive an unbiased estimator of the
ordinary classification risk Eq. (1) by the following theorem.

Theorem 3. The ordinary classification risk Eq. (1) can be
equivalently expressed as

Rpfq “
ÿk´1

j“1
pps “ jq sRjpfq, (8)

where

sRjpfq :“ E
sppx, sY |s“jqr

sLj

`

fpxq, sY
˘

s, (9)

and

sLj

`

fpxq, sY
˘

:“
ÿ

yR sY
L
`

fpxq, y
˘

´
k ´ 1´ j

j

ÿ

y1P sY
L
`

fpxq, y1
˘

. (10)

The proof is provided in Appendix B.2.

It is easy to verify that Eq. (8) reduces to Eq. (3) when pps “
1q “ 1. Which means, our approach is a generalization
of Ishida et al. (2019). Furthermore, according to Corollary
2 in Ishida et al. (2019), our approach is also a generalization
of Ishida et al. (2017).

Given the dataset with MCLs sD “ tpxi, sYiqu
n
i“1, we can

empirically approximate pps “ jq by nj{n where nj de-
notes the number of examples whose complementary label
set size is j. By further taking into account Eqs. (8)-(10),
we can obtain the following empirical approximation of the
unbiased risk estimator introduced in Theorem 3:

pRpfq “
1

n

ÿn

i“1

´

ÿ

yR sYi
L
`

fpxiq, y
˘

´
k ´ 1´ |sYi|

|sYi|

ÿ

y1P sYi
L
`

fpxiq, y
1
˘

¯

. (11)

Estimation Error Bound. Here, we derive an estima-
tion error bound for the proposed unbiased risk estimator
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based on Rademacher complexity (Bartlett & Mendelson,
2002). Let F Ă tf : Rd Ñ Rku be the hypothesis class,
pf :“ argminfPF pRpfq be the empirical risk minimizer,
and f‹ “ argminfPF Rpfq be the true risk minimizer. Be-
sides, we define the functional space Gy for the label y P Y
as Gy “ tg : x Ñ fypxq | f P Fu. Then, we have the
following theorem.

Theorem 4. Assume the loss function Lpfpxq, yq is ρ-
Lipschitz with respect to fpxq p0 ă ρ ă 8q for all y P Y .
Let CL “ supxPX ,fPF,yPY Lpfpxq, yq and RnpGyq be the
Rademacher complexity of Gy given the sample size n. Then,
for any δ ą 0, with probability at least 1´ δ,

Rp pfq ´Rpf‹q

ď

k´1
ÿ

j“1

pps “ jq
´4
?
2ρkpk ´ 1q

j

k
ÿ

y“1

Rnj pGyq `
Cj
?
nj

¯

,

where Cj “ p4k ´ 4j ´ 2qCL

b

log
2pk´1q
δ

2 for all j P
t1, . . . , k ´ 1u and nj denotes the number of examples
whose complementary label set size is j.

The definition of Rademacher complexity and the proof of
Theorem 4 are provided in Appendix C. Theorem 4 shows
that the empirical risk minimizer converges to the true risk
minimizer with high probability as the number of training
data approaches infinity. It is worth noting that this bound is
not only related to the Redemacher complexity of the func-
tion class, but also s and k. This observation accords with
our intuition that the learning task will be harder if the num-
ber of classes k increases or the size of the complementary
label set s decreases.

4.3. Practical Implementation

In this section, we present the practical implementation of
our proposed formulation and improvements of the used loss
functions. As described above, we have provided a general
unbiased risk estimator that is able to use arbitrary loss
functions. There arises a question: Can all loss functions
work well in our approach? Unfortunately, the answer is
negative.

The original classification risk estimator in Eq. (1) includes
an expectation over a non-negative loss L : Rkˆrks Ñ R`,
hence the expected risk and the empirical approximation are
both lower-bounded by zero. However, our proposed risk
estimator in Theorem 3 contains a negative term. Although
the expected risk estimator is unbiased, the empirical estima-
tor may become unbounded below if the used loss function
is unbounded, thereby leading to over-fitting. Similar issues
have also been shown by Ishida et al. (2019); Kiryo et al.
(2017). The above analysis suggests that a bounded loss is
probably better than an unbounded loss, in our empirical
risk estimator (i.e., Eq. (11)).

To demonstrate the above conjecture, we would like to
insert bounded and unbounded losses into Eq. (11), for
comparison studies. Note that we assume that the soft-
max function is absorbed in each loss, and denote by
pθpy|xq “ exppfypxqq{p

řk
j“1 exppfjpxqqq the predicted

probability of the instance x belonging to class y, where θ
denotes the parameters of the model f . In this way, we list
the compared loss functions as follows.

• Categorical Cross Entropy (CCE):

LCCEpfpxq, yq “ ´ log pθpy|xq.

• Mean Absolute Error (MAE):

LMAEpfpxq, yq “ 2´ 2pθpy|xq.

• Mean Square Error (MSE):

LMSEpfpxq, yq “ 1´ 2pθpy|xq `
ÿk

j“1
pθpj|xq

2.

• Generalized Cross Entropy (GCE) (Zhang & Sabuncu,
2018):

LGCEpfpxq, yq “ p1´ pθpy|xq
qq{q,

where q P p0, 1s is a user-defined hyper-parameter. We
set q “ 0.7, as suggested by Zhang & Sabuncu (2018).

• Partially Huberised Cross Entropy (PHuber-CE)
(Menon et al., 2020):

LPHuber-CEpfpxq, yq “

"

´ log pθpy|xq, if pθpy|xq ě 1
τ
,

´τpθpy|xq ` log τ ` 1, else,

where τ ą 0 is a user-defined hyper-parameter. We set
τ “ 10, because it works well in Menon et al. (2020).

The detailed derivations of the above loss functions and
their bounds are provided in Appendix D. Among these
losses, CCE is unbounded while others are bounded. We
will experimentally demonstrate (Figure 1) that by insert-
ing the above losses into Eq. (11), bounded loss is sig-
nificantly better than unbounded loss. Furthermore, we
conduct a deeper analysis of MAE because MAE has the
special property that MAE is not only bounded, but also
satisfies the symmetric condition (Ghosh et al., 2017), i.e.,
řk

y“1 LMAE
`

fpxq, y
˘

“ 2k ´ 2, which means the sum of
the losses over all classes is a constant for arbitrary examples.
However, is MAE good enough? Previous studies (Wang
et al., 2019; Zhang & Sabuncu, 2018) have already shown
that MAE suffers from the optimization issue, which would
affect its practical performance. To alleviate this problem,
we further improve MAE by proposing two upper-bound
surrogate loss functions. Specifically, by using MAE in
Eq. (11), we obtain

pRpfq “
k ´ 1

|sYi|

ÿ

yR sYi
LMAE

`

fpxiq, y
˘

“
2k ´ 2

|sYi|
L1MAE

`

fpxiq, sYi
˘

` Zi, (12)
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(a) MNIST, linear
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(b) MNIST, MLP
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(c) Fashion MNIST, linear
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(d) Fashion MNIST, MLP
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(e) Kuzushiji MNIST, linear
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(f) Kuzushiji MNIST, MLP
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(g) CIFAR-10, ResNet
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(h) CIFAR-10, DenseNet

Figure 1. Experimental results of different loss functions for different datasets and models. Dark colors show the mean accuracy of 5 trials
and light colors show the standard deviation.

where L1MAE

`

fpxiq, sYi
˘

:“ 1 ´
ř

jR sYi
pθpj|xiq, and Zi

is a constant independent of fpxiq. It is clear that
minimizing L1MAE

`

fpxiq, sYi
˘

is equivalent to minimizing
ř

yR sYi
LMAE

`

fpx, yq
˘

.

Based on this fact, we further introduce two upper-bound
surrogate loss functions of L1MAE:

LEXPpfpxiq, sYiq “ exp
´

´
ÿ

jR sYi
pθpj|xiq

¯

,

LLOGpfpxiq, sYiq “ ´ log
´

ÿ

jR sYi
pθpj|xiq

¯

.

One can easily verify that L1MAE is upper bounded by LEXP
and LLOG using the two inequalities 1 ´ z ď expp´zq
and 1 ´ z ď ´ log z, respectively. By replacing L1MAE by
LLOG and LLOG in Eq. (12), we obtain two new methods for
learning with MCLs. We explain the advantage of LEXP and
LLOG over L1MAE by closely examining their gradients:

BL1MAE

Bθ
“

"

´∇θpθpj|xiq, if j R sYi,
0, else,

BLEXP

Bθ
“

"

´∇θpθpj|xiq ¨ wEXP, if j R sYi,
0, else,

BLLOG

Bθ
“

"

´∇θpθpj|xiq ¨ wLOG, if j R sYi,
0, else,

where wEXP “ exp
`

´
ř

jR sYi
pθpj|xiq

˘

and wLOG “
`
ř

jR sYi
pθpj|xiq

˘´1
. From their gradients, we can clearly

observe that L1MAE basically treats each example equally,
while LEXP and LLOG give more weights to difficult exam-
ples. Concretely, if

ř

jR sYi
pθpj|xiq is small, both wEXP and

wLOG would be large. In other words, LEXP and LLOG pay
more attention to hard examples whose sum of the predicted
confidences of all the non-complementary labels is small.

5. Experiments
In this section, we conduct extensive experiments to evaluate
the performance of our proposed approaches including the
two wrappers, the unbiased risk estimator with various loss
functions and the two upper-bound surrogate loss functions.

Datasets. We use five widely-used benchmark datasets
MNIST (LeCun et al., 1998), Kuzushiji-MNIST (Clanuwat
et al., 2018), Fashion-MNIST (Xiao et al., 2017), 20News-
groups (Lang, 1995), and CIFAR-10 (Krizhevsky et al.,
2009), and four datasets from the UCI repository (Blake
& Merz, 1998). We use four base models including lin-
ear model, MLP model (d-500-k), ResNet (34 layers) (He
et al., 2016), and DenseNet (22 layers) (Huang et al., 2017).
The detailed descriptions of these datasets with the cor-
responding base models are provided in Appendix E.1.
To generate MCLs, we instantiate ppsq “

`

k
s

˘

{p2k ´ 2q,
@s P t1, ¨ ¨ ¨ , k ´ 1u, which means ppsq represents the ratio
of the number of label sets whose size is s to the number
of all possible label sets. For each instance x, we first
randomly sample s from ppsq, and then uniformly and ran-
domly sample a complementary label set sY with size s (i.e.,
ppsY q “ 1{

`

k´1
s

˘

).

Approaches. We absorb five ordinary complementary-
label learning approaches in the two wrappers (introduced
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Table 2. Classification accuracy (mean˘std) of each algorithm on the four UCI datasets using a linear model for 5 trials. The best
performance among all the approaches is highlighted in boldface. In addition, ‚{˝ indicates whether the performance of our approach (the
best of EXP and LOG) is statistically superior/inferior to the comparing algorithm on each dataset (paired t-test at 0.05 significance level).

Approach Yeast Texture Dermatology Synthetic Control

Upper-bound Losses EXP 54.94˘1.56%‚ 97.51˘0.09%‚ 98.89˘0.37% 27.87˘5.13%‚
LOG 60.11˘1.93% 98.88˘0.43% 99.46˘1.14% 90.73˘4.41%

Bounded Losses

MAE 33.07˘0.37%‚ 85.29˘7.93%‚ 85.39˘2.58%‚ 23.50˘2.44%‚
MSE 58.17˘1.52%‚ 97.59˘0.16%‚ 97.84˘1.21%‚ 34.20˘8.69%‚
GCE 57.56˘1.56%‚ 97.25˘0.31%‚ 97.53˘1.81%‚ 23.67˘3.10%‚

Phuber-CE 55.54˘1.03%‚ 94.89˘3.28%‚ 95.14˘2.41%‚ 24.71˘3.18%‚

Unbounded Loss CCE 49.50˘3.58%‚ 92.08˘1.15%‚ 83.19˘3.65%‚ 63.47˘6.91%‚

Decomposition before Shuffle

GA 27.91˘5.02%‚ 90.93˘1.34%‚ 36.05˘9.79%‚ 18.12˘1.74%‚
NN 32.73˘3.59%‚ 96.29˘0.39%‚ 61.49˘6.83%‚ 55.12˘4.43%‚

FREE 35.50˘2.79%‚ 94.36˘1.08%‚ 86.30˘5.62%‚ 76.95˘3.26%‚
PC 53.89˘3.53%‚ 92.68˘0.81%‚ 96.27˘3.07%‚ 72.63˘5.86%‚

Forward 58.15˘1.54%‚ 98.95˘0.17% 99.37˘0.85% 38.77˘6.06%‚

Decomposition after Shuffle

GA 28.21˘1.53%‚ 83.66˘2.27%‚ 42.05˘7.94%‚ 25.46˘1.28%‚
NN 36.04˘2.24%‚ 93.91˘0.40%‚ 62.54˘9.19%‚ 59.80˘5.14%‚

FREE 43.47˘1.36%‚ 93.94˘0.72%‚ 86.22˘6.07%‚ 73.33˘2.17%‚
PC 54.58˘2.57%‚ 94.19˘1.21%‚ 95.73˘3.33%‚ 69.53˘9.01%‚

Forward 59.46˘1.16% 97.65˘0.32%‚ 99.03˘1.33% 43.57˘5.83%‚

Partial Label Convex Formulation CLPL 55.39˘1.21%‚ 92.07˘0.88%‚ 99.42˘0.54% 63.57˘5.46%‚

Table 3. Classification accuracy (mean˘std) of each algorithm on the four benchmark datasets using a linear model for 5 trials. The best
performance among all the approaches is highlighted in boldface. In addition, ‚{˝ indicates whether the performance of our approach (the
best of EXP and LOG) is statistically superior/inferior to the comparing algorithm on each dataset (paired t-test at 0.05 significance level).

Approach MNIST Kuzushiji Fashion 20Newsgroups

Upper-bound Losses EXP 92.67˘0.11% 64.23˘0.33%‚ 84.56˘0.25% 81.72˘0.39%‚
LOG 92.58˘0.09%‚ 68.89˘0.25% 84.42˘0.16% 84.06˘0.57%

Bounded Losses

MAE 92.66˘0.12% 64.03˘0.19%‚ 84.50˘0.16% 79.68˘1.40%‚
MSE 92.64˘0.13% 64.51˘0.55%‚ 84.53˘0.20% 81.55˘0.52%‚
GCE 92.66˘0.12% 64.44˘0.17%‚ 84.44˘0.15% 81.78˘0.60%‚

Phuber-CE 92.02˘0.07%‚ 63.81˘0.75%‚ 83.76˘0.22%‚ 73.52˘1.04%‚

Unbounded Loss CCE 88.23˘0.19%‚ 62.27˘0.84%‚ 80.25˘0.29%‚ 63.78˘0.79%‚

Decomposition before Shuffle

GA 85.51˘0.26%‚ 55.61˘0.24%‚ 78.64˘0.33%‚ 76.64˘0.62%‚
NN 88.09˘0.16%‚ 60.54˘0.23%‚ 80.68˘0.07%‚ 76.00˘0.37%‚

FREE 89.35˘0.14%‚ 65.21˘0.45%‚ 81.22˘0.11%‚ 68.34˘0.72%‚
PC 88.21˘0.23%‚ 62.76˘0.40%‚ 80.60˘0.18%‚ 66.91˘1.20%‚

Forward 92.57˘0.05%‚ 63.51˘0.22%‚ 84.38˘0.20% 74.69˘1.14%‚

Decomposition after Shuffle

GA 83.16˘0.22%‚ 56.31˘0.42%‚ 73.37˘0.10%‚ 66.14˘0.79%‚
NN 88.79˘0.26%‚ 63.19˘0.12%‚ 79.77˘0.14%‚ 66.35˘0.53%‚

FREE 89.02˘0.22%‚ 64.18˘0.18%‚ 80.11˘0.04%‚ 66.16˘0.60%‚
PC 87.76˘0.17%‚ 61.64˘0.38%‚ 80.58˘0.17%‚ 65.64˘0.81%‚

Forward 92.54˘0.04%‚ 63.69˘0.14%‚ 84.37˘0.17%‚ 71.98˘3.41%‚

Partial Label Convex Formulation CLPL 81.85˘0.27%‚ 55.31˘0.23%‚ 77.26˘0.10%‚ 81.48˘0.45%‚

in Section 4.1): GA, NN, and Free (Ishida et al., 2019),
PC (Ishida et al., 2017), and Forward (Yu et al., 2018).We
also use an unbounded loss CCE and four bounded losses
MAE, MSE, GCE (Zhang & Sabuncu, 2018), and PHuber-
CE (Menon et al., 2020) in our empirical estimator Eq. (11).
Besides, two upper-bound loss functions LOG and EXP
are also inserted into Eq. (12). In addition, we also com-
pare with a representative partial label learning approach
CLPL (Cour et al., 2011). For all the approaches, we adopt
the same base model for fair comparison. Learning rate and

weight decay are selected from t10´6, 10´5, ¨ ¨ ¨ , 10´1u.
We implement our approach using PyTorch1, and use the
Adam (Kingma & Ba, 2015) optimization method with mini-
batch size set to 256 and epoch number set to 250. Hyper-
parameters for all the approaches are selected so as to maxi-
mize the accuracy on a validation set (10% of the training
set) of complementarily labeled data. All the experiments
are conducted on NVIDIA Tesla V100 GPUs.

1www.pytorch.org

www.pytorch.org
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Table 4. Classification accuracy (mean˘std) of each algorithm on the five benchmark datasets using neural networks for 5 trials. The best
performance among all the approaches is highlighted in boldface. In addition, ‚{˝ indicates whether the performance of our approach (the
best of EXP and LOG) is statistically superior/inferior to the comparing algorithm on each dataset (paired t-test at 0.05 significance level).

Approach MNIST Kuzushiji Fashion CIFAR-10 R CIFAR-10 D 20Newsgroups

Upper-bound Losses EXP 97.80˘0.06% 88.25˘0.28% 88.07˘0.19%‚ 72.49˘0.84%‚ 75.53˘0.58% 77.22˘1.22%
LOG 97.86˘0.13% 88.24˘0.08% 88.36˘0.26% 75.38˘0.34% 75.80˘0.62% 79.46˘0.94%

Bounded Losses

MAE 97.81˘0.04% 88.11˘0.40% 88.13˘0.23% 65.57˘4.08%‚ 68.24˘5.84%‚ 49.83˘4.01%‚
MSE 96.84˘0.08%‚ 84.97˘0.23%‚ 86.14˘0.04%‚ 63.58˘1.19%‚ 70.89˘0.81%‚ 72.19˘0.59%‚
GCE 96.62˘0.08%‚ 85.02˘0.26%‚ 87.03˘0.20%‚ 68.40˘1.05%‚ 71.54˘0.83%‚ 74.96˘0.47%‚

Phuber-CE 95.00˘0.36%‚ 80.66˘0.32%‚ 85.52˘0.18%‚ 59.64˘1.21%‚ 66.49˘0.67%‚ 62.63˘2.32%‚

Unbounded Loss CCE 88.64˘0.50%‚ 67.86˘1.01%‚ 80.97˘0.23%‚ 18.01˘0.63%‚ 44.94˘1.20%‚ 54.96˘0.38%‚

Decomposition before Shuffle

GA 96.36˘0.05%‚ 84.35˘0.22%‚ 85.59˘0.30%‚ 69.05˘0.83%‚ 65.38˘1.40%‚ 79.06˘0.57%
NN 96.70˘0.08%‚ 82.21˘0.36%‚ 86.29˘0.10%‚ 63.85˘0.74%‚ 64.80˘1.28%‚ 76.81˘0.44%‚

FREE 88.55˘0.38%‚ 70.32˘0.80%‚ 81.17˘0.36%‚ 32.02˘1.69%‚ 39.22˘0.43%‚ 61.22˘1.24%‚
PC 92.74˘0.17%‚ 73.18˘0.59%‚ 83.32˘0.28%‚ 43.16˘2.21%‚ 49.53˘1.18%‚ 65.15˘2.05%‚

Forward 97.67˘0.04%‚ 87.65˘0.24%‚ 88.08˘0.24%‚ 71.92˘1.09%‚ 71.30˘1.16%‚ 77.19˘%0.76‚

Decomposition after Shuffle

GA 92.08˘0.22%‚ 74.64˘0.67%‚ 79.73˘0.19%‚ 53.12˘0.97%‚ 56.51˘0.89%‚ 63.37˘1.16%‚
NN 92.47˘0.14%‚ 73.88˘0.63%‚ 82.99˘0.13%‚ 36.79˘0.78%‚ 53.78˘0.92%‚ 65.15˘0.73%‚

FREE 88.99˘0.39%‚ 70.09˘0.74%‚ 81.74˘0.23%‚ 15.16˘2.22%‚ 47.45˘0.98%‚ 50.86˘1.56%‚
PC 92.94˘0.05%‚ 68.60˘1.32%‚ 82.46˘0.26%‚ 33.16˘0.92%‚ 52.23˘0.88%‚ 64.32˘0.86%‚

Forward 97.49˘0.08%‚ 86.47˘0.39%‚ 87.56˘0.14%‚ 72.16˘0.97%‚ 75.23˘1.02% 79.35˘0.82%

Loss Comparison. Figure 1 shows the mean and stan-
dard deviation of test accuracy of 5 trials, for bounded loss
functions MAE, MSE, GCE, PHuber-CE, and unbounded
loss function CCE used in our empirical risk estimator
Eq. (11). We also record the mean and standard devia-
tion of training accuracy (the training set is evaluated with
ordinary labels) of 5 trials, and put the results in Appendix
E.2. As can be seen from Figure 1, all the bounded losses
are significantly better than the unbounded loss CCE in
our formulation. This observation clearly accords with our
discussion on the over-fitting issue in Section 4.3. In ad-
dition, MAE achieves comparable performance compared
with other bounded losses in most cases, while it is some-
times inferior to other bounded losses due to its optimization
issue (Zhang & Sabuncu, 2018). Both the advantage and dis-
advantage of MAE motivate us to use the upper-bound loss
functions EXP and LOG for improving the classification
performance.

Performance Comparison. Table 2, Table 3, and Ta-
ble 4 show the experimental results of different approaches
using a linear model or neural networks on the four UCI
datasets and the other five benchmark datasets. In table 4,
“CIFAR-10 R” and “CIFAR-10 D” mean that we use ResNet
and DenseNet on CIFAR-10. Note that CLPL is a convex ap-
proach for partial label learning, which is specially designed
with a linear model. Hence CLPL does not appear in Ta-
ble 4. From the three tables, we can find that equipped with
the two wrappers “Decomposition before Shuffle” and “De-
composition after Shuffle”, ordinary complementary-label
learning approaches work well for learning with MCLs.
However, they are significantly outperformed by the upper-
bound losses in most cases, which also achieve the best

performance among all the approaches on various bench-
mark datasets. In addition, we also study the case where
the size of each complementary label set s is fixed at j
(i.e., pps “ jq “ 1) while increasing j from 1 to k ´ 2.
The corresponding experimental results are provided in Ap-
pendix E.3, which show that the classification accuracy of
our approaches increases as j increases. This observation
is clearly in accordance with our derived estimation error
bound (Theorem 4), as the estimation error would decrease
if j increases.

6. Conclusion
In this paper, we propose a novel problem setting called
learning with multiple complementary labels (MCLs),
which is a generation of complementary-label learn-
ing (Ishida et al., 2017; 2019; Yu et al., 2018). To solve this
learning problem, we first design two wrappers that enable
us to use arbitrary complementary-label learning approaches
for learning with MCLs. However, we find that the super-
vision information that MCLs hold is conceptually diluted
after decomposition. Therefore, we further propose an unbi-
ased risk estimator for learning with MCLs, which processes
each set of MCLs as a whole. Then, we theoretically derive
an estimation error bound, which guarantees the learning
consistency. Although our risk estimator does not rely on
specific models or loss functions, we show that bounded
loss is generally better than unbounded loss in our empirical
risk estimator. In addition, we improve the risk estimator
into minimizing properly chosen upper bounds for practical
implementation. Extensive experiments demonstrate the
effectiveness of the proposed approaches.
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