Learning with Multiple Complementary Labels: Supplementary Material

A. Proofs about the Problem Setting
A.1. Proofs of Theorem 1

Firstly, we define the set of all the possible label sets whose size is j as
={Y|Yel|Y|=j}
Then, by the definition of p(z,Y"), we can obtain
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which concludes the proof of Theorem 1. O

A.2. Proof of Lemma 1

Let us consider the case where the correct label y is a specific label ¢ (i € {1,2,--- | k}), then we have

plyeY,y=ilm,s)=plyeY |y=iz s)ply=ilw,s)
_ZceyperY Cly=i,z)ply=1ilax,s).

Here, p(y = i | @, s) = p(y = i | ) since the labeling rule is independent of s. In addition, >,y p(y € Y,Y=C|y=
i, x,8) = Dloey, PY € Y,Y = C |y = i,x) since given the size s of the label set, the whole set of all the possible label
sets becomes ;. Then, we can obtain
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where the last equality holds due to the fact that for each instance x, Y is uniformly and randomly chosen. Since
pY =C) = D—}—ll if C € Y5 where |Vs| = (’;) we have

plyeY,y=ilzs)=), o plyeYY =Cy=iz)py=ilz)p¥ =0C)

_(i) Dicey, PUEYY = Cy =i a)py = ilz)
—i)yip(y =ilg) (Y ={Ye)|ieY})

o~~~
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iy — o (i = (D)
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=y = ilz).
By further summing up the both side over all the possible ¢, we can obtain
- S
plyeYle,s) =1,
which concludes the proof of Lemma 1. O

A.3. Proof of Theorem 2
Let us express p(Y|y ¢ Y, @, s) as

P ply¢Y.Y|z,s
Pl ¢ ¥ ,0) LU E LTI 0)
p(y¢Ylz,s)
_pyeYY,z s)p(Y|z, s)
p(y ¢ Ylw,s)
_ply¢YY m s)p(Yls)
p(y ¢ Ylx,s)
where the last equality holds because}7 is influenced by the size s, and for each instance @, Y is uniformly and randomly
chosen. Note that given s, there are |V, | possible label sets, thus p(Y|s) = \71| where |Vs| = (¥). In this way, we have
— = ply ¢ YY,x, s)p(Y]|s
p(Yly¢ Y,z s) = we | p(¥]s)
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By multiplying p() on both side, we have

P, Vly ¢ V,s) = 3
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Then taking into account the variable s, we have

_ _ k—1 _
p@ Yyt V)= pls=jp@Yly¢Y,s=))
=
k—1 1
=D, pls=1) GO Dy DY)
B J
—ﬁ(x,Y),
which concludes the proof. O

B. Proofs of the Unbiased Risk Estimator
B.1. Proof of Lemma 2

According to our defined distribution, we have already obtained
— X7 . 1 /
plx,Y |s=j) = Wzy/ﬂ?p(w’y ).
J

Then, we can obtain the following equality by operating Zyejy on both the left and the right hand side:
J

S . 1 ,
Zyeyy p(x,Y |s=j)= (16771)2}765}? Zy/¢1? p(z,y), (13)
J ] j

where )_)]y ={Y eY|yeY,|Y| = j}. Inthis way, the right hand side of the above equality can be transformed by the
following derivations:

1 !
k 1 ZYeyy Zy 734 z,y) ﬁ 2{/@7;4 <1 - Zy’ef/ p(z,y ))

1Yj |
TE-ny T k D ZYeyyZer z,y')

play) (1YY= (5)))
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G- j
A G R
= = p(@). (14)

Combing Eq. (13) and Eq. (14), we obtain

Pyl s=5)=pl@y) =1- "= bV |s=) (1)
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In the end, by taking into account the variable s, we have

pla.y) = Y pls = ey 5= J)
Y T = (1Y pa Y 5= )

J Yey!

- _Zjll(ki_‘lZYE)/yp( Y,s zj))’

J

which concludes the proof of Lemma 2.

B.2. Proof of Theorem 3

It is intuitive to obtain
k—1 .
R(f) = ]Ep(w,y) [E(f(w)7y)] = Zj:l p(s = J)Ep(:c,y\s:j) [E(f(m)7y)]
Then, we express the right hand side for each j € {1,...,k — 1} as

Ep(ayls=) [£(f(®),9) ] = Epals=i) En(ylz,s=) [ £ (f (@), )]

= Ep(als=) Zzzlp(ylwas = )E(f(fv),y)]

~Buotems| Ty, (1= 550 By iV les = ) ) £ @0) | (B (1)
~Eyatimy| X, L0 @10 - 2 X B s = L))

= Ep(afo=) :Zz_l L(f(@),y) - % Divey, 2uyey PV |25 = J)L(f (=), y)]

= Ep(als=) 251 L(f(x).y) - % Dyey, P15 =) (2, LU @), y’))]

= Ep@|s=j) Ep(v|e,s=j) [Zz_l L(f(x),y) - % nyef/ L(f(=), y’)]
b1
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=FE._
By 5= [ Li (f(2),Y)]
R;(f).

In this way, we can obtain R(f) = Z im1 Lp(s = §)R;(f), which concludes the proof of Theorem 3. O

C. Proof of Theorem 4

Recall that the expected risk and empirical risk are represented as

k—1

R(F) = Y pls = DR;(F) = X pls = DBygayioc 15 (). V)],

S ORI p(s=0) o & N

R(f) = Ejzl T, Zim L;(f(w:),Ys).
Here, with a slight abuse of notation, we simply write R;(f) as R;(f), and define R;(f) = 1/n; X120, L;(f(x:), V).
Thus we have R(f) = X521 p(s = j)R;(f) and R(f) = X571 p(s = j)R;(f). Since f* = argminger R(f) and
f = argmingser R(f) we can obtain the following lemma.
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Lemma 3. The following inequality holds:

RF) = R(f) <23 ps = ) sup | B(f) — Ry(h)|.

Proof. 1t would be intuitive to obtain

R(f) — R(f*) =R(f) — R(J) + R(J) — R(S*)
<R(f) = R(f) + R(J) = R(f*)
<2sup R(f) - R(f)
=2sup |3 (s = DR = X, w6 = DR

which concludes the proof of Lemma 3. O

In this way, we will bound sup ;. »

]ij(f) — Rj(f)‘ for j = {1,...,k — 1}. Before that, we define a function space as

Hj = {(SC,?)GX ij sz(f(m)a)_/) |f€]:}7

where
(@) 7) =X, LU @) =S Y L (@)y).

Besides, we introduce the definition of Rademacher complexity (Bartlett & Mendelson, 2002).

Definition 1 (Rademacher complexity (Bartlett & Mendelson, 2002)). Let Z1,. .., Z, be n i.i.d. random variables drawn
Sfrom a probability distribution D, H = {h : Z — R} be a class of measurable functions. Then the expected Rademacher
complexity of H is defined as

1 n
Ru(H) = Ezl,...,Z,,L~DE0'|:SupheH - Zi:l Uih(Zi)],

where o = (01, ..., 0y, ) are Rademacher variables taking the value from {—1, +1} with even probabilities.

Then, we have the following lemma.

Lemma 4. Let Cr = SUDycx fer yey L(f(x),y). Then, forall j = {1,...,k — 1}, for any § > 0, with probability at
least 1 — 0,

~ - ‘ log 2
sup [ R (f) = By(f)] < 2%, (Hy) + (2K — 2] = 1)Cey |22,
feF 2n;

where
_ 1 >
R, (M) = E(wi,mw(w,ns—j)Ea[;;;5’)_ ML Yi)]'

Proof. To prove this lemma, we first show that the single direction sup ; » (]% (f) — R;(f)) is bounded with probability

at least 1 — g: and the other direction can be similarly proved. By the definition of Ej, we can easily know the possible

maximum of £; is (k — j)C, and the possible minimum is —(k — 1 — j)Cz. Suppose an example (x;, Y;) is replaced by
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another arbitrary example (z/, Y;), then the change of SUD fe r (I:Bj (f) = R;([)) is no greater than ((2k — 2j — 1)C)/n;.
Then, by applying McDiarmid’s inequality (McDiarmid, 1989), for any § > 0, with probability at least 1 — g,

~ ~ log 2
sup (R;(f) = Ry(f)) < E[sup (R;(f) = R;(f))] + 2k = 2j = 1)Cey |52 (16)
feF feF n;
In addition, it is routine (Mohri et al., 2012) to show
E[ sup (B;(f) = R;(1) | < 2%, (#,), a7)

feF
Combing Eq. (16) and Eq. (17), we have for any § > 0, with probability at least 1 — %,
~ _ , log 2
sup (Rj(f)—R](f)) < anJ(IH]) + (2k-2] —1)01; T
fer nj

By further taking into account the other side sup . (R;(f) — ]/%j (f)), we have for any § > 0, with probability at least
1-9,

~ = . log 2
sup [ R (f) = By ()] < 2%, (H;) + (2K = 2) = 1)Cry |52
fer n;j
which concludes the proof of Lemma 4. O

Next, we will bound the expected Rademacher complexity of the function space H;, i.e., 9_‘inj (H;).

Lemma 5. Assume the loss function L(f(x),y) is p-Lipschitz with respect to f(x) (0 < p < o) for all y € Y. Then, for
all j = {1,...,k — 1}, the following inequality holds:

_ <p(k—1) k

’ J y=1 R, (Gy),

where

Gy ={g: @~ fy(x) | f e F},

1 n;
%nj (gy) :]Eccl ~p(m)E0‘ [ sup — Z g(mz)] :

9EGy nj i=1

Proof. The expected Rademacher complexity of H; can be expressed as

_ i 1 «ny _
Rn;(Hj) =E(a, v)~p(@,7|s=j) Bo hiu?gj W Zi=1 oih(z;, Yi)]

=E, o\ — o . . F _Supiznj oj Z L’,(f(ac) y)_L_j_lZ ﬁ(f(a:) yl)

(@i, Vo) ~plaVis=j) R | SR~ Zaima 71\ Liyey, ’ ] Ve, ’
- _—
<E(mi7371:)~Z3(9ﬂ,37|S:J')IEC’ ;LEIJP: TTJ Z¢=1 i <Zy¢yi ﬁ(f(m), y)) ]
I k—j—1 ,
+ Ee, 7)) ~p(e, v |s=j) Eo l e D "Z‘( j nyez L(f()y )> ] '

Here, we introduce random variables o ,, = I[y € Y;], Vi € {1,--- ,n},y € V, where I[-] denotes the indicator function.

In other words, given a complementary label set Y;, if a specific label y satisfies the condition y € Y;, then I[y € Y;] = 1,
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otherwise I[y € Y;] = 0. Then, we can obtain

1 n;
E)%nj (H]) <E(wi,?¢)~§(w,§7|s:j)Ea' [ sup — Zi:l oF} (Zyeﬂ’l ‘C(f(m)7 y))]

feF 1y
- 1w (kg :
+ B, v)~p(@ v]s=j) Eo [ Sup P (j Diyer, L @)y )ﬂ
=K, o Eo | su ian o Zk (1-a )E(f(:c) )
“HenYop(e Y st | SID 0 24y Ti\ 2y, (T i Y
E o, v1)-p(o.5smiEo | SUD — i(—— il (f(=),
+ B, ) ~p(a. ¥ 15=) l;ggnjzila( ; D iyl (f(@) y))]
B, ~pto oo | 2= T s T, 501 200, + VLG @).0)
(x:,Yi)~p(,Y |s=j) o fegnj i=1 " y=12 vy Y

1 «n, [(k—j—Tlek 1
+ E(z,.%,)~p(@,7|s=j) Eo [ sup — Zi:l g < Zy=1 5(2011,;, -1+ 1)L(f(x), y))}

feF Ny J

1 n;
:]E(m,,,Yi)~p(m,Y|sj)EGlsup o Zi:l <25=1(1 - 20&17y)0'1'£(f($), y) + O'lﬁ(f(m)vy))]

feF 2n;

n; k — 7 — 1 / /
+E(z, ) ~p(@,¥|s=j) Ec l sup N Zi:l (J Z’“:l(Qai,y — Do L(f (), y) + o L(f(),y )) ]

feF 2n; J v

Here, because (1 — 2«; ,)o; and (2, — 1)o;, and o; follow the same distribution, we have

_ 1 n;
mnj (7‘[]) gE(mmVi)~ﬁ(m,f’ls:j)E“ sSup o— Z <Zk (1- 20‘i,y)0i£(f(w)v y) + U'iﬁ(f(m)a y))

feF 2”] i=1 y=1

+E (@, ¥i)~p(a,¥|s=j) o | SUD i Zni <k_j_1 Zk (20, — D)o L(f(x),y) + o L(f (), y’))]
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| 1 oni ok
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1 k—j—1
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=B, 7)~p@ V15— Ee l sup — > D OiL(f (i), y)]

J feF 1y

feF My =l

it 25_1Emi~p(m>Ea[sup12f’j oiﬁ(f<wi>7y)] (o p(@) = B | s = 4),

= k—1 ok 1 nj
n; i) S—— Eac ~p(x IE10' - . A 1)y
R, (H;) ] Zy:1 i~p(@) lig}g " lelaﬁ(f(w) y)}
k—1 ik
<72y=19% (LoF)

where we applied the Rademacher vector contraction inequality (Maurer, 2016) in the last inequality. O
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Table 5. Statistics of the used benchmark datasets.

Dataset #Train #Test #Features #Classes Model

MNIST 60,000 10,000 784 10 Linear Model, MLP (d-500-10)
Fashion-MNIST 60,000 10,000 784 10 Linear Model, MLP (d-500-10)
Kuzushiji-MNIST 60,000 10,000 784 10 Linear Model, MLP (d-500-10)
20Newsgroups 16,961 1,885 1,000 20 Linear Model, MLP (d-500-20)
CIFAR-10 50,000 10,000 3,072 10 ResNet, DenseNet

Yeast 1,335 149 8 10 Linear Model

Texture 4,950 550 40 11 Linear Model
Dermatology 329 37 34 6 Linear Model
Synthetic Control 540 60 60 6 Linear Model

Under the assumptions described in the above three lemmas (Lemma 3, Lemma 4, and Lemma 5), for any § > 0, with
probability at least 1 — 6,

~ k—1 (4 2pk(k — 1) ok . log 251
— )< = _— n; 4k — 45 —2 — .
R() = R <Y pls y)( ; o B (G0) + (4k = 45 =2)Ce\ [ =5
It is clear that by combining the above three lemmas, Theorem 4 is proved. O

D. Derivations and Boundness of the Used Loss Functions
D.1. Derivations of the Used Loss Functions

Conventionally, the label for each instance x is in one-hot encoding. Concretely, if the label of « is y, then we represent the
label vector as e, where e,; = 1if j = y, otherwise 0. In this way, we provide the detailed derivations of CCE, MAE, and
MSE as follows.

e Categorical Cross Entropy (CCE):
Lece(f(@).y) = =3 eyilogpoljle) = —logpo(yle).
e Mean Absolute Error (MAE):
Lure(F(@).y) = Y. Ipoljl) — €] =2 = 2po(y]).
e Mean Square Error (MSE):
Luse(F @) = Y (ol7le) — e0s)’ = 1~ 200ule) + 3 polile)®

D.2. Boundness of the Used Loss Functions

Firstly, it is clear that each loss function is non-negative. Besides, for each loss function, the loss becomes larger if pg (y|x)
gets smaller given the correct label y. Note that 0 < pg(y|x) < 1, hence the upper bound of each loss function is stated as
follows.

e MAE: Lyae(f(x),y) < 2.

o MSE: Lyse(f(x),y) <1-0+ 3 pe(jlz)? < 2.

e GCE: Lgce(f(x),y) < 1/q where ¢ = 0.7.

e PHuber-CE: Lpgyber.ce(f(x),y) < logT + 1 where 7 = 10.

Note that for CCE, Lcce(f(x),y) < —log0 = co. Therefore, we can know that MAE, MSE, GCE, and PHuber-CE are
upper-bounded, while CCE is not upper-bounded.
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Figure 2. Experimental results of different loss functions for different datasets and models. Dark colors show the mean accuracy of 5 trials
and light colors show the standard deviation.

E. Additional Information of Experiments

E.1. Datasets and Models

In the experiments of Section 5, we use 5 widely-used large-scale benchmark datasets and 4 regular-scale datasets from
the UCI Machine Learning Repository. The statistics of these datasets with the corresponding base models are reported in
Table 5. Hyper-parameters for all the approaches are selected so as to maximize the accuracy on a validation set, which is
constructed by randomly sampling 10% of the training set. We report the characteristics, the parameter settings (to reproduce
the experimental results), and the sources of these datasets as follows.

e MNIST (LeCun et al., 1998): It is a 10-class dataset of handwritten digits (0 to 9). Each instance is a 28 x28 grayscale
image. Source: http://yann.lecun.com/exdb/mnist/

e Kuzushiji-MNIST (Clanuwat et al., 2018): It is a 10-class dataset of cursive Japanese (“Kuzushiji”’) characters. Each
instance is a 28 x 28 grayscale image. Source: https://github.com/zalandoresearch/fashion-mnist

e Fashion-MNIST (Xiao et al., 2017): It is a 10-class dataset of fashion items (T-shirt/top, trouser, pullover, dress,
sandal, coat, shirt, sneaker, bag, and ankle boot). Each instance is a 2828 grayscale image. Source: https:
//github.com/rois—codh/kmnist

e CIFAR-10 (Krizhevsky et al., 2009): It is a 10-class dataset of 10 different objects (airplane, bird, automobile,
cat, deer, dog, frog, horse, ship, and truck). Each instance is a 32x32x3 colored image in RGB format. This
dataset is normalized with mean (0.4914,0.4822,0.4465) and standard deviation (0.247,0.243,0.261). Source:
https://www.cs.toronto.edu/~kriz/cifar.html

e 20Newsgroups: It is a 20-class dataset of 20 different newsgroups (comp.graphics, comp.os.ms-windows.misc,
comp.sys.ibm.pc.hardware, comp.sys.mac.hardware, comp.windows.x, rec.autos, rec.motorcycles, rec.sport.baseball,
rec.sport.hockey, sci.crypt, sci.electronics, sci.med, sci.space, misc.forsale, talk.politics.misc, talk.politics.guns,
talk.politics.mideast, talk.religion.misc, alt.atheism, soc.religion.christian). We obtained the tf-idf features, and
applied TruncatedSVD (Halko et al., 2011) to reduce the dimension to 1000. We randomly sample 90% of
the examples from the whole dataset to construct the training set, and the rest 10% forms the test set. Source:
http://qwone.com/~jason/20Newsgroups/
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http://qwone.com/~jason/20Newsgroups/
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Table 6. Classification accuracy (%) of each approach on Kuzushiji-MNIST using linear model. The best performance is highlighted in
boldface.

Approach ‘ s=1 ‘ s=2 ‘ s=3 ‘ s=4 ‘ s=05 ‘ 5s=6 ‘ s=7 ‘ 5=28
EXP 60.87 | 6273 | 6353 | 6403 | 6455 | 6506 | 6523 | 6565
(£038) | (£0.58) | (£0.30) | (£0.38) | (£041) | (£0.15) | (£0.10) | (+0.08)
Upper-bound Losses LOG 6011 | 6157 | 6271 | 6336 | 6401 | 6568 | 6935 | 70.10
(£049) | (£0.15) | (£0.32) | (£0.09) | (£0.13) | (£027) | (£0.22) | (+0.18)
MAE 6043 | 6271 | 6351 | 6375 | 6394 | 6461 | 6482 | 65.10
(£043) | (£045) | (+0.10) | (£0.31) | (£038) | (£0.19) | (+0.16) | (+0.16)
MSE 5897 | 6207 | 6305 | 6385 | 6447 | 6480 | 6517 | 6543
(£047) | (+0.54) | (+0.38) | (£0.57) | (£043) | (£034) | (+0.25) | (+0.10)
Bounded Losses GCE 6048 | 6271 | 6313 | 6387 | 6391 | 6428 | 6438 | 64.33%
(£0.55) | (+0.65) | (+0.30) | (+0.33) | (£030) | (£0.07) | (+0.12) | (+0.06)
Phuber-CE | 52.69 | 5658 | 6110 | 6232 | 6451 | 6493 | 6596 | 6581
(+422) | (+3.94) | (+2.58) | (£150) | (£068) | (£0.52) | (+0.37) | (+0.62)
Unbounded Loss CCE 5159 | 5508 | 5915 | 6108 | 6319 | 6505 | 6682 | 6823
(+0.64) | (£126) | (+1.18) | (+0.78) | (£0.54) | (£051) | (£041) | (+0.21)
GA 5172 | 5378 | 5458 | 5478 | 5533 | 5567 | 5591 | 5615
(£1.04) | (£1.07) | (+0.87) | (+0.58) | (£029) | (£031) | (+0.42) | (+0.23)
NN 5503 | 5768 | 5887 | 5952 | 6041 | 6089 | 6141 | 6162
(£135) | (£129) | (£1.19) | (2087) | (£059) | (£0.53) | (£0.36) | (+0.09)
Decomosition before Shutia | FREE 5726 | 6069 | 6277 | 6391 | 6454 | 6621 | 6700 | 67.71
P (£0.83) | (£0.96) | (+0.79) | (£0.65) | (£055) | (£0.56) | (£0.28) | (+0.20)
pC 5431 | 5801 | 6015 | 6132 | 6256 | 6355 | 6427 | 65.16

(£1.04) | (£0.87) | (£0.79) | (£0.68) | (£0.59) | (£0.43) | (£0.20) | (£0.18)
Forward 60.05 61.53 62.43 62.98 63.48 63.95 64.14 64.27
(£0.43) | (£0.31) | (£0.26) | (£0.40) | (£0.34) | (£0.29) | (£0.09) | (£0.16)

GA 51.72 53.79 54.59 54.83 55.33 55.67 55.90 56.18
(£1.05) | (£1.07) | (£0.85) | (£0.58) | (£0.35) | (£0.31) | (£041) | (£0.22)
NN 55.03 58.58 60.43 61.58 62.99 64.00 65.07 66.08
(£1.35) | (£1.11) | (£1.00) | (£0.72) | (£0.49) | (£0.48) | (£0.36) | (£0.10)
Decomposition after Shuffle FREE 57.26 60.32 62.11 62.98 64.30 65.18 66.02 67.02
(£0.84) | (£0.94) | (£0.64) | (£0.67) | (£0.47) | (£0.45) | (£0.28) | (£0.18)
PC 54.31 57.32 58.95 60.17 61.47 62.54 63.53 64.74
(£1.04) | (£0.76) | (£0.77) | (£0.83) | (£0.45) | (£0.40) | (£0.22) | (£0.22)
Forward 60.02 61.75 62.68 63.19 63.59 63.94 64.18 64.32

(£0.44) | (£0.25) | (£0.23) | (£0.28) | (£0.19) | (£0.09) | (£0.14) | (£0.15)

e Yeast, Texture, Dermatology, Synthetic Control: They are all the datasets from the UCI Machine Learning Repository.
Since they are all regular-scale datasets, we only apply linear model on them. For each dataset, we randomly sample
90% of the examples from the whole dataset to construct the training set, and the rest 10% forms the test set. The
detailed parameter settings can be found in our provided code package. Source: https://archive.ics.uci.
edu/ml/datasets.php

For the used models, the detailed information of the used 34-layer ResNet (He et al., 2016) and 22-layer DenseNet (Huang
et al., 2017) can be found in the corresponding papers.

E.2. Experimental Results on Training Accuracy

Here, we report the mean and standard deviation of training accuracy (the training set is evaluated with ordinary labels)
of 5 trials in Figure 2, to compare the bounded loss functions MAE, MSE, GCE, PHuber-CE, and the unbounded loss
function CCE. The training accuracy can reflect the ability of the loss function in identifying the correct label from the
non-complementary labels.

From Figure 2, we can find that CCE always achieves the worst performance among all the loss functions, which implies that
unbounded loss function is worse than bounded loss function, using our provided empirical risk estimator. This observation
clearly supports our conjecture that the negative term in our empirical risk estimator could cause the over-fitting issue. In
addition, we can also find that compared with other bounded loss functions, MAE achieves comparable performance in most


https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
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Table 7. Classification accuracy (%) of each approach on Kuzushiji-MNIST using MLP. The best performance is highlighted in boldface.

Approach | s=1 | s=2 | s=3 | s=4 | s=5 | s=6 | s=7 | s=38
EXP 71.66 82.51 84.45 87.10 88.35 89.61 90.18 90.92
o (£348) | (£3.08) | (£0.24) | (£037) | (£0.18) | (+0.33) | (£037) | (+0.15)
Upper-bound Losses LOG 77.07 82.39 85.54 87.60 $8.87 89.25 90.22 91.19
(£3.00) | (£073) | (£0.35) | (£040) | (£0.34) | (£037) | (£0.31) | (+0.11)
MAE 69.87 73.60 79.97 85.34 86.91 89.10 90.32 91.06
(£1.04) | (£577) | (£3.71) | (£278) | (£3.06) | (£046) | (£0.31) | (+0.34)
MSE 57.56 71.37 78.26 82.97 85.37 86.82 88.03 88.69
(£092) | (+0.89) | (+0.49) | (£0.41) | (+045) | (+0.13) | (*£0.11) | (+0.05)
Bounded Losses GCE 63.85 74.11 79.18 83.65 85.23 86.32 87.12 87.64
(£127) | (#238) | (£2.31) | (£0.15) | (£0.25) | (+027) | (£0.20) | (+0.09)
Phuber-CE | 10.24 14.76 26.60 73.43 81.41 83.00 84.69 85.59
(£4.09) | (£2.11) | (£1.58) | (£1.50) | (£0.58) | (£0.42) | (£047) | (+0.52)
Unbounded Loss CCE 56.17 60.89 64.18 66.57 69.14 71.63 74.55 78.22
(£0.64) | (£0.61) | (£0.77) | (£041) | (£0.49) | (£031) | (£0.31) | (+0.22)
GA 70.25 76.50 79.77 82.03 84.05 85.58 86.40 87.49
(£0.24) | (£047) | (£0.32) | (£022) | (£0.64) | (£032) | (£0.24) | (£0.15)
NN 65.33 71.34 75.46 78.67 81.40 84.08 86.56 88.61
(£0.51) | (£0.53) | (£0.31) | (£0.58) | (£0.28) | (£0.16) | (£0.39) | (£0.12)
Decomposition before Shuffi FREE 53.90 60.32 63.98 66.79 69.31 71.65 74.43 76.61
(£1.05) | (£1.14) | (£0.85) | (+0.64) | (£0.73) | (+0.73) | (£0.28) | (+0.33)
PC 56.36 62.37 66.09 69.51 72.46 75.18 78.50 82.40
(£0.56) | (£0.50) | (£0.44) | (£047) | (£0.35) | (£033) | (£0.52) | (+0.38)
Forward 75.40 83.19 85.18 86.63 87.51 88.29 88.96 89.41
(#£2.02) | (£0.61) | (£0.48) | (£038) | (£0.29) | (£0.29) | (£0.26) | (£0.25)
GA 70.25 75.91 78.46 80.60 82.14 83.48 84.01 84.65
(£0.24) | (£137) | (£2.84) | (£335) | (#4.51) | (24.92) | (£535) | (£6.28)
NN 63.73 67.26 69.46 71.25 73.15 74.82 77.09 79.39
(£0.97) | (£0.82) | (£0.74) | (£0.62) | (£0.45) | (£035) | (£0.17) | (+0.21)
Docomposition after Shuffle FREE 55.33 60.81 64.65 67.01 69.60 71.63 7422 77.16
(£0.89) | (£0.97) | (£0.89) | (£0.70) | (+£0.78) | (£0.46) | (£0.40) | (40.50)
PC 56.68 61.07 63.86 65.61 68.03 69.74 72.49 75.17
(£128) | (40.99) | (£0.67) | (+0.44) | (£0.64) | (+0.65) | (£0.37) | (+0.46)
Forward 66.09 73.20 75.76 82.53 86.27 88.05 89.24 90.22
(£0.49) | (£3.05) | (£2.61) | (£2.60) | (£0.65) | (£027) | (£0.22) | (+0.20)

cases, while it is sometimes inferior to other bounded losses due to its optimization issue (Zhang & Sabuncu, 2018). All the
above observations on the training accuracy (Figure 2) are very similar to those observations on the test accuracy (Figure 1
in our paper).

E.3. Experimental Results on Fixed Complementary Label Set

We also conduct additional experiments to investigate the influence of the variable s on Kuzushiji-MNIST using both
linear model and MLP. Specifically, we study the case where the size of each complementary label set s is fixed at j (i.e.,
p(s = j) = 1) while increasing j from 1 to k — 2. The detailed experimental results are shown in Table 6 and Table 7. From
the two tables, we can find that the (test) classification accuracy of our approaches increases as j increases. This observation
is clearly in accordance with our derived estimation error bound (Theorem 4), as the estimation error would decrease if j
increases. In addition, as shown in the two tables, our proposed upper-bound losses outperform other approaches in most
cases. This observation also demonstrates the effectiveness of our proposed upper-bound losses.
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