
Growing Action Spaces

8. Appendix
8.1. Discretised continuous control

8.1.1. HYPERPARAMETERS

For our experiments in discretised continous control, we
use a standard DQN trainer (Mnih et al., 2015) with the
following parameters.

Parameter Value

batch size 128
replay buffer size 10000
target update interval 200
ε initial 1.0
ε final 0.1
ε decay 25000 env steps
` lead-in 25000 env steps
` growth 25000 env steps
env steps per model udpate 4
Adam learning rate 5e-4
Adam ε 1e-4

For GAS experiments, we keep the mixing coefficient α = 0
for 25000 environment steps, and then increase it linearly by
1 every 25000 steps until reaching the maximum value. We
use γ = 0.998 for our Acrobot experiments, but reduce it to
γ = 0.99 for Mountain Car to prevent diverging Q-values.

Our model consists of fully-connected ReLU layers, with
128 hidden units for the first and 64 hidden units for all sub-
sequent layers. Two layers are applied as an encoder. Then,
for each ` one layer is applied on the current embedding to
produce a new embedding, and an evaluation layer on that
embedding produces the Q-values for that level.

8.2. StarCraft micromanagement scenarios

8.2.1. SCENARIOS AND LEARNED STRATEGIES

We explore five Starcraft micromanagement scenarios: 50
hydralisks vs 50 hydralisks, 80 marines vs 80 marines, 80
marines vs 85 marines, 60 marines vs 65 marines, 95 zer-
glings vs 50 marines. In these scenarios, our model controls
the first set of units, and the opponent controls the second
set.

The opponent is a scripted opponent that holds its location
until an opposing unit is within range to attack. Then, the
opponent will engage in an ”attack-closest” behavior, as
described in Usunier et al. (2016), where each unit indi-
vidually targets the closest unit to it. Having the opponent
remain stationary until engaged makes this a more difficult
problem – the agent must find its opponent, and attack into
a defensive position, which requires good positions prior to
engagement.

As mentioned in section 6.2, all of our scenarios require
control of a much larger number of units than previous
work. The 50 hydralisks and 80v80 marines scenarios are
both imbalanced as a result of attacking into a defensive
position. The optimal strategy for 80 marines vs 85 marines
and 60 vs 65 marines requires slightly more sophisticated
unit positioning, and the 95 zerglings vs 50 marines scenario
requires the most precise positioning. The agent can use
the enemy’s initial stationary positioning to its advantage
by slightly surrounding the opponent in a concave, ensuring
that the outermost units are in its attack range, but far enough
away to be out of range of the center-most enemy units.
Ideally, the timing of the groups in all scenarios should be
coordinated such that all units get in range of the opponent
at roughly the same point in time. Figure 5 shows how our
model is able to exhibit this level of unit control.

8.2.2. FEATURES

We use a standard features for the units and map, given by
TorchcraftAI 1

For each of the units, the following features are extracted:

• Current x, y positions.

• Current x, y velocities.

• Current hitpoints

• Armor and damage values

• Armor and damage types

• Range versus both ground and air units

• Current weapon cooldown

• A few boolean flags on some miscellaneous unit at-
tributes

Approximate normalization for each feature keep its value
approximately between 0-1.

For the map, the following features are extracted for each
tile in the map:

• a one-hot encoding of tile’s the ground height (4 chan-
nels)

• boolean representing or not the given tile is walkable

• boolean representing or not the given tile is buildable

• and boolean representing or not the given tile is covered
by fog of war.

The features form a HxWx7 tensor, where our map has
height H and width W .

1https://github.com/TorchCraft/TorchCraftAI



Growing Action Spaces

Figure 5: Final learned policies of StarCraft micromanagement unit control with growing action spaces. Scenarios shown
from left to right at time 0, 3, 5, 10, 15 seconds. Top to bottom the scenarios are: 60 marines vs 65 marines, 50 hydralisks vs
50 hydralisks, 95 zerglings vs 50 marines. In these examples, the opponent is always on the right, and the agent controlled
by model trained with GAS is on the left.

8.2.3. ENVIRONMENT DETAILS

We use a frame-skip of 25, approximately 1 second of real
time, allowing for reasonably fine-grained control but with-
out making the exploration and credit assignment problems
too challenging.

We calculate at every timestep the difference in total health
points (HP) and number of units for the enemy from the
last step, normalised by the total starting HP and unit count.
As a reward function, we use the normalised damage dealt,
plus 4 times the normalised units killed, plus an additional
reward of 8 for winning the scenario by killing all enemy
units. This reward function is designed such that the agent
gets some reward for doing damage and killing units, but
the reward from doing damage will never be greater than
from winning the scenario. Ties and timeouts are considered
losses.

8.3. Experimental details

8.3.1. MODEL

As described in Section 6.2.2 a custom model architecture
is used for Starcraft micromanagement. Each unit’s feature

vector is embedded to size 128 in step 2 of Figure 3. The
grid where the unit features and map features are scattered
onto is the size of the Starcraft map of the scenario in walk-
tiles downsampled by a factor of 8. After being embedded,
the unit features for ally and enemy units are concatenated
with the downsampled map features and sent into a ResNet
encoder with four residual blocks (stride 7 padding 3). The
output is an embedding of size 64.

The decoder uses a mean pooling over the embedding cells
as described in Section 6.2.2. Each evaluator is a 2-layer
MLP with 64 hidden units and 17 outputs, one for each
action. All layers are separated with ReLU nonlinearities.

8.3.2. TRAINING HYPERPARAMETERS

We use 64 parallel actors to collect data in a short queue
from which batches are removed when they are consumed
by the learner. We use batches of 32 6-step segments for
each update.

For the Q-learning experiments, we used the Adam opti-
mizer with a learning rate of 2.5× 10−4 and ε = 1× 10−4.
For the MM baseline experiments, we use a learning rate



Growing Action Spaces

of 1× 10−4, entropy loss coefficient of 8× 10−3 and value
loss coefficient 0.5. The learning rates and entropy loss
coefficient were tuned by random search, training with A0

from scratch on the 80 marines vs 80 marines scenario with
10 configurations sampled from log uniform(−5,−3)
for the learning rate and log uniform(−3,−1) for the
entropy loss coefficient.

For Q-learning, we use an ε-greedy exploration strategy
, decaying ε linearly from 1.0 to 0.1 over the first 10000
model updates. We also use a target network that copies the
behaviour model’s parameters every 200 model updates.

We also use a linear schedule to grow the action-space.
There is a lead in of 5000 model updates, during which the
action-space is held constant at A0, to prevent the action
space from growing when ε or the policy entropy is too high.
The action-space is then grown linearly at a rate of 10000
model updates per level of restriction, so that after 10000
updates, we act entirely at A1 and after 20000, entirely at
A2.


