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Abstract
Generative adversarial networks (GANs) repre-
sent a zero-sum game between two machine play-
ers, a generator and a discriminator, designed to
learn the distribution of data. While GANs have
achieved state-of-the-art performance in several
benchmark learning tasks, GAN minimax opti-
mization still poses great theoretical and empir-
ical challenges. GANs trained using first-order
optimization methods commonly fail to converge
to a stable solution where the players cannot im-
prove their objective, i.e., the Nash equilibrium of
the underlying game. Such issues raise the ques-
tion of the existence of Nash equilibria in GAN
zero-sum games. In this work, we show through
theoretical and numerical results that indeed GAN
zero-sum games may have no Nash equilibria. To
characterize an equilibrium notion applicable to
GANs, we consider the equilibrium of a new zero-
sum game with an objective function given by a
proximal operator applied to the original objec-
tive, a solution we call the proximal equilibrium.
Unlike the Nash equilibrium, the proximal equi-
librium captures the sequential nature of GANs,
in which the generator moves first followed by
the discriminator. We prove that the optimal gen-
erative model in Wasserstein GAN problems pro-
vides a proximal equilibrium. Inspired by these
results, we propose a new approach, which we call
proximal training, for solving GAN problems. We
perform several numerical experiments indicating
the existence of proximal equilibria in GANs.

1. Introduction
Since their introduction in (Goodfellow et al., 2014), genera-
tive adversarial networks (GANs) have gained great success
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in many tasks of learning the distribution of observed sam-
ples. Unlike the traditional approaches to distribution learn-
ing, GANs view the learning problem as a zero-sum game
between the following two players: 1) generator G aiming
to generate real-like samples from a random noise input, 2)
discriminator D trying to distinguish G’s generated samples
from real training data. This game is commonly formulated
through a minimax optimization problem as follows:

min
G∈G

max
D∈D

V (G,D). (1)

Here, G and D are respectively the generator and discrimi-
nator function spaces, commonly chosen as two deep neural
nets, and V (G,D) denotes the minimax objective for gen-
erator G and discriminator D capturing how dissimilar G’s
produced samples and real training data are.

GAN optimization problems are commonly solved by alter-
nating gradient methods, which under proper regularization
have resulted in state-of-the-art generative models for var-
ious benchmark datasets (Goodfellow, 2016). However,
GAN minimax optimization has introduced several theoreti-
cal and empirical challenges to the machine learning com-
munity. Training GANs is widely known as a challenging
optimization task requiring an exhaustive hyper-parameter
and architecture search and demonstrating an unstable be-
havior. While a few regularization schemes have led to
empirical success in training GANs (Salimans et al., 2016;
Arjovsky et al., 2017; Gulrajani et al., 2017; Miyato et al.,
2018), still little is known about the conditions under which
GAN minimax optimization can be successfully solved by
first-order optimization methods.

To better understand the minimax optimization in GANs,
one needs to first answer the following question: What is
the proper notion of equilibrium in GAN zero-sum games?
In other words, what should be the optimality criteria in
the GAN’s minimax optimization problem? A classical
notion of equilibrium in the game theory literature is the
Nash equilibrium, a state in which no player can improve its
individual gain by choosing a different strategy. According
to this definition, a Nash equilibrium (G∗, D∗) for the GAN
minimax problem (1) must satisfy the following for every
G ∈ G and D ∈ D:

V (G∗, D) ≤ V (G∗, D∗) ≤ V (G,D∗). (2)
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As a well-established result, for a generator G expressive
enough to reproduce the distribution of observed samples,
Nash equilibrium exists for that generator function produc-
ing the data distribution (Goodfellow, 2016). However,
state-of-the-art GAN architectures (Gulrajani et al., 2017;
Miyato et al., 2018; Zhang et al., 2018; Brock et al., 2018)
commonly regularize the generator function through vari-
ous means of regularization such as batch normalization or
spectral regularization. Such regularization mechanisms do
not allow the generator to match the empirical distribution
of training data. Since the realizability assumption does
not hold in such regularized GANs, Nash equilibria are not
guaranteed to exist in their minimax optimization problem.

The above discussion motivates studying the equilibrium
of GAN zero-sum games in non-realizable settings where
the data distribution cannot be expressed by the regularized
generator. Here, a natural question is whether a Nash equi-
librium still exists in the non-realizable GAN problem. In
this paper, we address this question and demonstrate through
several theoretical and numerical results that:

Nash equilibrium may not always exist in GAN games.

We provide theoretical examples of well-known GAN for-
mulations including the vanilla GAN (Goodfellow et al.,
2014), Wasserstein GAN (WGAN) (Arjovsky et al., 2017),
f -GAN (Nowozin et al., 2016), and 2-Wasserstein GAN
(W2GAN) (Feizi et al., 2017) for which no local Nash equi-
libria exist. We further perform numerical experiments on
widely-used GAN architectures which suggest that an empir-
ically successful GAN training may converge to non-Nash
equilibrium solutions.

Next, we focus on characterizing a new notion of equilib-
rium for GAN problems. To achieve this goal, we consider
the Nash equilibrium of a new zero-sum game where the ob-
jective function is given by the following proximal operator
applied to the minimax objective V (G,D) with respect to a
norm on discriminator functions:

V prox(G,D) := max
D̃∈D

V (G, D̃)−
∥∥D̃ −D∥∥2

. (3)

We refer to the Nash equilibrium of the new zero-sum game
as the proximal equilibrium. Given the inherent sequential
nature of GAN problems where the generator moves first
followed by the discriminator, we consider a Stackelberg
game for its representation and focus on the subgame per-
fect equilibrium (SPE) of the game as the right notion of
equilibrium for such problems (Jin et al., 2019). We prove
that the proximal equilibrium exists for Wasserstein GANs
and provides an SPE for the GAN problem.

Inspired by these theoretical results, we propose a proximal
approach for training GANs, which we call proximal train-
ing. In proximal training, we change the original minimax
objective to the proximal objective in (3) and solve the fol-

lowing minimax problem via alternating gradient methods:

min
G∈G

max
D∈D

V prox(G,D). (4)

In addition to preserving the SPE solution to the original
GAN minimax problem, proximal training further enjoys
the existence of Nash equilibrium solutions in its minimax
objective. We discuss several numerical results supporting
the proximal training approach and the role of proximal
equilibrium solutions in Wasserstein and Lipschitz GAN
problems. We can summarize the main contributions of this
work as follows:

• Providing theoretical examples of standard GAN prob-
lems with no Nash equilibrium solutions,

• Introducing proximal equilibrium as a solution concept
for GAN zero-sum games,

• Proving the existence of proximal equilibrium solutions
for Wasserstein GANs,

• Proposing proximal training as a new training approach
for GANs.

1.1. Related Work

Understanding minimax optimization in modern machine
learning applications including GANs has been a subject
of great interest in the machine learning literature. A large
body of recent works (Daskalakis et al., 2017; Nouiehed
et al., 2019; Mokhtari et al., 2019; Thekumparampil et al.,
2019; Zhang et al., 2019; Mazumdar et al., 2019; Fiez et al.,
2019; Wang et al., 2019; Lin et al., 2019) have analyzed the
convergence properties of different optimization methods in
solving various classes of minimax problems. The related
references (Mertikopoulos et al., 2018; Bailey & Piliouras,
2018; Cheung & Piliouras, 2019; Flokas et al., 2019) study
the complexities of reaching equilibrium solutions via first-
order optimization methods in general minimax problems.

In a related work, Jin et al. (2019) propose a new notion of
local optimality, called local minimax, designed for general
sequential machine learning games. Compared to the no-
tion of local minimax, the proximal equilibrium proposed
in our work gives a notion of global optimality, which as
we show directly applies to Wasserstein GANs. Jin et al.
(2019) also provide examples of minimax problems with
no Nash equilibrium solutions; however, the examples do
not represent GAN minimax problems. The recent papers
(Lin et al., 2019; Lei et al., 2019; Wang et al., 2020) have
analyzed the convergence of different optimization methods
to local minimax solutions. Also, Daskalakis & Panageas
(2018) analyze the stable points of the gradient descent as-
cent (GDA) and optimistic GDA (Daskalakis et al., 2017)
algorithms, proving that they can give strict supersets of
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Figure 1. Optimizing the generator objective without changing the
trained discriminator on the MNIST data. Both the SN-GAN objec-
tive and samples’ quality were decreasing during the optimization.

local saddle points. Regarding the stability of GANs, Na-
garajan & Kolter (2017) prove that the GDA algorithm will
be locally stable in GAN minimax problems with linear
generator and discriminator functions. Feizi et al. (2017)
show the GDA algorithm is globally stable for W2GANs
with linear generator and quadratic discriminator functions.

Concerning the equilibrium properties of GANs, Berard
et al. (2019) numerically demonstrate that state-of-the-art
GAN architectures typically converge to stationary non-
Nash equilibrium minimax points. Our numerical experi-
ments in Section 2 provide additional numerical support for
this paper’s empirical results, and we further theoretically
study the existence of Nash equilibrium solutions in GANs.
References (Arjovsky & Bottou, 2017; Schäfer et al., 2019)
perform complementary numerical experiments to study
GANs’ equilibrium solutions by fixing the trained generator
and optimizing the discriminator. Fedus et al. (2017) empir-
ically study the equilibrium of GAN problems regularized
via the gradient penalty, reporting positive results on the
stability of regularized GANs. However, our focus is on the
existence of pure Nash equilibrium solutions.

Regarding the theoretical studies of equilibrium in GANs,
Arora et al. (2017) study the equilibrium of GAN minimax
games in realizable settings and also give an example of a
simplified minimax GAN problem with no stable minimax
solutions. Our work shows more realistic GAN problems
with no Nash equilibrium solutions. The related papers
(Arora et al., 2017; Hsieh et al., 2018) develop methods for
finding mixed strategy Nash equilibria. On the other hand,
our results focus on the pure strategies in non-realizable set-
tings. Finally, developing GAN architectures with improved
equilibrium and stability properties has been studied in sev-
eral recent works (Metz et al., 2016; Mroueh et al., 2017;
Berthelot et al., 2017; Heusel et al., 2017; Mescheder et al.,

Figure 2. Repeating the experiment of Figure 1 on the CelebA
dataset.

2017; Roth et al., 2017; Kodali et al., 2017; Daskalakis et al.,
2017; Mescheder et al., 2018; Farnia & Tse, 2018; Sanjabi
et al., 2018; Zhou et al., 2019; Taghvaei & Jalali, 2019).

2. Do GANs Empirically Converge to Nash
Equilibria?

We empirically examined whether standard GAN architec-
tures converge to Nash equilibrium solutions. In our numer-
ical experiments, we applied three standard GAN architec-
tures including the Wasserstein GAN with weight-clipping
(WGAN-WC) (Arjovsky et al., 2017), the improved Wasser-
stein GAN with gradient penalty (WGAN-GP) (Gulrajani
et al., 2017), and the spectrally-normalized vanilla GAN
(SN-GAN) (Miyato et al., 2018) to standard MNIST (Le-
Cun, 1998) and CelebA (Liu et al., 2015) datasets. We used
the 4-layer convolutional neural network (CNN) architec-
ture of the DC-GAN (Radford et al., 2015) and optimized
the neural networks with the Adam (Kingma & Ba, 2014) or
the RMSprop (Hinton et al., 2012) (only for WGAN-WC)
algorithms. We followed all experimental details from the
mentioned references.

We ran each of the GAN experiments for 200,000 generator
iterations to reach (Gθfinal

, Dwfinal
) with θfinal and wfinal

denoting the trained generator and discriminator parameters
at the 200,000th iteration. We sought to examine whether
(Gθfinal

, Dwfinal
) represents a Nash equilibrium. To do this,

we fixed the trained discriminator Dwfinal
and kept opti-

mizing the generator Gθ. Here we solved the following
optimization problem initialized at θ(0) = θfinal using the
default first-order optimizer for 10,000 iterations:

min
θ

V (Gθ, Dwfinal
). (5)

If the pair (Gθfinal
, Dwfinal

) was in fact a Nash equilibrium,
it would provide a local saddle point for the minimax opti-
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mization problem and the above optimization would not be
able to find smaller objective values. Also, the image sam-
ples generated by Gθ would improve or at least preserve
their quality over this optimization, since Dwfinal

would
achieve the same or better performance scores against other
feasible generators.

However, we observed that none of the predicted outcomes
hold for each of the six GAN experiments with three stan-
dard GAN architectures and two benchmark datasets. The
optimization objective decreased rapidly from the beginning
of the optimization, and the images sampled from the gen-
erator lost their quality over this optimization. Figures 1,
2 show the objective values for the SN-GAN experiments
over the 10,000 steps of the described optimization. These
figures also demonstrate the generated samples before and
during the optimization, which shows the significant de-
crease in the quality of generated pictures. We defer the
similar numerical results of the WGAN-WC and WGAN-
GP experiments to the Appendix.

The above numerical results suggest that training GANs may
not lead to local Nash equilibrium solutions in practice. Af-
ter fixing the trained discriminator, the trained generator can
be further optimized via a first-order optimization method
to reach smaller values of the minimax objective. More
importantly, this optimization not only does not improve
the quality of the generated samples, but also completely
disturbs the trained generator. As demonstrated in these
experiments, simultaneous optimization of the two players
is indeed necessary for proper convergence and stability in
GAN optimization problems. The above experiments sug-
gest that successfully-trained GANs need not converge to
local Nash equilibria. In the upcoming sections, we review
some standard GAN formulations and then show that there
exist examples of GAN minimax problems with no Nash
equilibrium solutions. Those theoretical results will further
support the observations in the above experiments.

3. Existence of Nash Equilibria in GANs
3.1. Review of GAN formulations

Consider samples x1, . . . ,xn observed independently from
underlying distribution PX. To find a generator function
G ∈ G mapping a random noise input Z to the data dis-
tribution, Goodfellow et al. (2014) propose the following
minimax problem called the vanilla GAN:

min
G∈G

max
D∈D

E
[
log(D(X))

]
+ E

[
log(1−D(G(Z)))

]
. (6)

Here G and D represent the set of generator and discrimi-
nator functions, respectively. It can be seen that the above
minimax problem with an unconstrained D containing all
real-valued functions reduces to minimizing the Jensen-
Shannon (JS) divergence between the data and generator’s

distributions. Nowozin et al. (2016) introduce f -GANs
by extending the vanilla GAN to a general f -divergence.
For a convex function f : R → R, the f -divergence
df is defined as df (P,Q) :=

∫
p(x)f

( q(x)
p(x)

)
dx. Note

that the JS-divergence is an f -divergence corresponding
to fJSD(t) = t log t− (t+1) log t+1

2 . The f -GAN problem
is formulated as:

min
G∈G

max
D∈D

E
[
D(X)]− E

[
f∗
(
D(G(Z))

)]
, (7)

where f∗ denotes f ’s Fenchel-conjugate defined as f∗(u) =
supt ut− f(t).

To resolve stability issues in training GANs, Arjovsky
et al. (2017) formulate a GAN problem minimizing an
optimal transport cost. Given a transportation cost func-
tion c(x,x′), the optimal transport cost Wc is defined as
Wc(P,Q) = infM∈Π(P,Q) EM

[
c(X,X′)

]
. Here Π(P,Q)

denotes the set of all joint distributions on (X,X′) with
X, X′ marginally distributed as P, Q, respectively. An
important special case is the 1-Wasserstein (W1) distance
corresponding to c(x,x′) = ‖x − x′‖2. Formulating a
minimax problem minimizing W1-distance, Arjovsky et al.
(2017) propose the following Wasserstein GAN (WGAN)
problem where D is called 1-Lipschitz if for every x,x′ we
have D(x)−D(x′) ≤ ‖x− x′‖2:

min
G∈G

max
D 1-Lipschitz

E
[
D(X)]− E

[
D(G(Z))

]
. (8)

The WGAN minimax problem can be generalized to other
optimal transport costs with different cost functions. The
generalization is as follows:

min
G∈G

max
D c-concave

E
[
D(X)]− E

[
Dc(G(Z))

]
, (9)

where the c-transform is defined as Dc(x) =
supx′ D(x′) − c(x,x′) and a function D is called
c-concave if it is the c-transform of a valid function. In
particular, the 2-Wasserstein GAN (W2GAN) problem
(Feizi et al., 2017) considers a quadratic transportation cost
c(x,x′) = 1

2‖x− x′‖22.

3.2. Examples of GAN problems with no Nash
equilibria

Consider a general GAN minimax problem (1) with a mini-
max objective V (G,D). As discussed in the previous sec-
tion, the optimal generator G∗ ∈ G is defined to minimize
the GAN’s target divergence to the data distribution. The
following proposition is a well-known result regarding the
Nash equilibrium of the GAN game in realizable settings
where there exists a generator G ∈ G producing the data
distribution.

Proposition 1. Assume that generator G∗ ∈ G results in
the distribution of data, i.e., we have PG∗(Z) = PX. Then,
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for each of the GAN problems discussed in Section 3.1 there
exists a constant discriminator function Dconstant which
together with G∗ results in a Nash equilibrium for the GAN
game, and hence satisfies the following for every G ∈ G
and D ∈ D:

V (G∗, D) ≤ V (G∗, Dconstant) ≤ V (G,Dconstant).

Proof. This proposition is well-known for the vanilla GAN
(Goodfellow, 2016). In the Appendix, we provide a proof
for general f -GANs and Wasserstein GANs.

The above proposition shows that in a realizable setting
with a generator function generating the distribution of ob-
served samples, a Nash equilibrium exists for that optimal
generator. However, the realizability assumption in this
proposition does not always hold in real GAN experiments.
For example, in the GAN experiments discussed in Section
2, we observed that the divergence estimate never reached
the zero value because of regularizing the generator function.
Therefore, the Nash equilibrium described in Proposition 1
does not apply to the trained generator and discriminator in
such GAN experiments.

Here, we address the question of the existence of Nash
equilibrium solutions for non-realizable settings, where no
generator G ∈ G can produce the data distribution. Do
Nash equilibria always exist in non-realizable GAN zero-
sum games? The following theorem shows that the answer
is in general no. Note that σmax(·) in this theorem denotes
the maximum singular value, i.e., the spectral norm.

Theorem 1. Consider a GAN minimax problem for learning
a normally distributed X ∼ N (0, σ2I) with zero mean
and scalar covariance matrix where σ > 1. In the GAN
formulation, we use a linear generator function G(z) =
Wz + u where the weight matrix W and vector u are
regularized to satisfy σmax(W) ≤ 1 and ‖u‖2 ≤ t for a
constant t > 0. Suppose that the latent vector Z ∼ N (0, I)
has an isotropic Gaussian distribution. Then,

• For the f -GAN problem (7) corresponding to an f with
non-decreasing t2f ′′(t) over t ∈ (0,+∞) and an un-
constrained discriminator D where the dimensions of
X,Z are equal, the f-GAN minimax problem has no Nash
equilibrium solutions.

• For the W2GAN problem (9) with discriminatorD trained
over c-concave functions, where c is the quadratic cost,
the W2GAN minimax problem has no Nash equilibrium
solutions. Also, given a quadratic discriminator D(x) =
xTAx + bTx parameterized by A,b, the W2GAN prob-
lem has no local Nash equilibria.

• For the WGAN problem (8) with 1-dimensional X,Z and
a discriminator D trained over 1-Lipschitz functions, the
WGAN minimax problem has no Nash equilibria.

Proof. We defer the proof to the Appendix. Note that the
condition on the f -GAN holds for all f -GAN examples in
(Nowozin et al., 2016) including the vanilla GAN.

The above theorem shows that under the stated assumptions
the GAN zero-sum game does not have Nash equilibrium
solutions. Consequently, the optimal generator minimiz-
ing the distance to the data distribution does not provide
a Nash equilibrium. While Theorem 1 provides examples
of non-realizable GAN problems with no Nash equilibrium
solutions, the following remark shows that non-reliability
does not always imply the non-existence of Nash equilibria.

Remark 1. Consider the same setting as in Theorem 1.
However, unlike Theorem 1 suppose that σ < 1 and
σmin(W) ≥ 1 where σmin stands for the minimum sin-
gular value. Then, for the WGAN and W2GAN problems de-
scribed in Theorem 1, the Wasserstein distance-minimizing
generator results in a Nash equilibrium.

Proof. We defer the proof to the Appendix.

The above remark explains that the phenomenon shown in
Theorem 1 does not always hold in non-realizable GAN
settings. As a result, we need other notions of equilibrium
which consistently explain optimality in GAN games.

4. Proximal Equilibria in GANs
4.1. Proximal equilibrium: A relaxation of Nash

equilibrium

Since Theorem 1 shows that Nash equilibria are not guaran-
teed to exist for GANs, we consider a sequential Stackelberg
competition to model the GAN zero-sum game in which the
generator moves first followed by the discriminator. Note
that the subgame perfect equilibrium (SPE) (G∗, D∗) of this
Stackelberg game will satisfy:

G∗ ∈ argmin
G∈G

{
max
D∈D

V (G,D)
}
,

D∗ ∈ argmax
D∈D

V (G∗, D). (10)

Such an SPE solution, which we call Stackelberg equilib-
rium, will exist in the sequential GAN game under mild
continuity assumptions (Jin et al., 2019). However, finding
the above solution requires considering the maximized dis-
criminator objective as the generator’s cost function which
will be computationally complex in general.

Here, we propose a new notion of equilibrium called prox-
imal equilibrium which allows us to explore the spectrum
between Nash and Stackelberg equilibria. In a proximal
equilibrium, we allow the discriminator to further locally op-
timize itself in a norm-ball around the original discriminator.
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This property is in fact consistent with the stability behav-
ior observed for GANs trained by first-order optimization
methods where the alternating first-order method stabilizes
around a certain solution. To define proximal equilibria, we
first define the following proximal objective for the original
minimax objective V (G,D):

V prox
λ (G,D) := max

D̃∈D
V (G, D̃)− λ

∥∥D̃ −D∥∥2
. (11)

The above definition represents the application of a proximal
operator to V (G,D), which further optimizes the original
objective in the proximity of discriminator D. To keep the
D̃ function variable close to D, we penalize the distance be-
tween the two functions in the proximal optimization. Here
the distance is measured according to norm function ‖ · ‖ on
the discriminator space. We propose considering the Nash
equilibria of the defined proximal objective V prox

λ (G,D)
and define them as the proximal equilibria of V (G,D).

Definition 1. We call (G∗, D∗) a λ-proximal equilib-
rium for V (G,D) if it represents a Nash equilibrium for
V prox
λ (G,D) , i.e. for every G ∈ G and D ∈ D

V prox
λ (G∗, D) ≤ V prox

λ (G∗, D∗) ≤ V prox
λ (G,D∗). (12)

The next proposition provides necessary and sufficient con-
ditions in terms of the original objective V (G,D) for the
proximal equilibrium solutions.

Proposition 2. (G∗, D∗) is a λ-proximal equilibrium if and
only if for every G ∈ G and D ∈ D we have

V (G∗, D) ≤ V (G∗, D∗) ≤ max
D̃∈D

V (G, D̃)− λ
∥∥D̃ −D∗∥∥2

.

Proof. We defer the proof to the Appendix.

Corollary 1. Suppose that (G∗, D∗) is a λ-proximal equi-
librium of V (G,D) for λ > 0. Then, (G∗, D∗) provides a
Stackelberg equilibrium for the minimax objective V (G,D)
and satisfies the equations in (10).

The above corollary shows that every proximal equilibrium
solution will provide a Stackelberg equilibrium for the GAN
minimax problem, and therefore the generator G∗ at a prox-
imal equilibrium will minimize the maximum discriminator
objective, i.e., the distance to the data distribution. The fol-
lowing result further shows that proximal equilibria satisfy
a nested property and provide a hierarchy of equilibrium
solutions for different λ values.

Proposition 3. Define PEλ(V ) to be the set of the λ-
proximal equilibria for V (G,D). Then, if λ1 ≤ λ2,

PEλ2(V ) ⊆ PEλ1(V ). (13)

Proof. We defer the proof to the Appendix.

λ-proximal equilibria

λ = 0:	Stackelberg equilibria

λ = ∞:	Nash equilibria

Figure 3. Proximal equilibria for different λ values with Nash (λ =
∞) and Stackelberg (λ = 0) equilibria as the two extremes.

Note that as λ approaches infinity, V prox
λ (G,D) tends to

the original V (G,D), implying that PEλ=∞(V ) is the set
of V (G,D)’s Nash equilibria. In contrast, for λ = 0
the proximal objective becomes the worst-case objective
maxD∈D V (G,D). As a result, PEλ=0(V ) reduces to the
set of Stackelberg equilibria. Figure 3 illustrates the men-
tioned nested property of proximal equilibria for different λ
values with the discussed extreme cases, i.e. Nash equilibria
for λ =∞ and Stackelberg equilibria for λ = 0.

Concerning the proximal optimization problem in (11), the
following proposition shows that if the original minimax
objective is a smooth function of the discriminator param-
eters, the proximal optimization can be solved efficiently
and therefore one can compute the gradient of the proximal
objective.

Proposition 4. Consider the maximization problem in the
definition of proximal objective (11) where generator Gθ

and discriminator Dw are parameterized by vectors θ, w,
respectively. Suppose that

• For the considered discriminator norm ‖ · ‖, ‖Dw −D‖2
is η1-strongly convex in w for any function D, i.e. for
any w,w′, D:∥∥∇w‖Dw−D‖2−∇w‖Dw′−D‖2

∥∥
2
≥ η1

∥∥w−w′∥∥
2
,

• For every Gθ, The GAN minimax objective V (Gθ, Dw)
is η2-smooth in w, i.e.∥∥∇wV (Gθ, Dw)−∇wV (Gθ, Dw)

∥∥
2
≤ η2‖w−w′‖2.

Under the above assumptions, if η2 < λη1, the maximiza-
tion objective in (11) is

(
λη1 − η2

)
-strongly concave. Then,

the maximization problem has a unique solution w∗ and if
V (Gθ, Dw) is differentiable with respect to θ we have

∇θV prox
λ (Gθ, Dw) = ∇θV (Gθ, Dw∗). (14)

Proof. We defer the proof to the Appendix.
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The above proposition suggests that under the mentioned as-
sumptions one can efficiently compute the optimal solution
to the proximal maximization through a first-order optimiza-
tion method. The assumptions require the smoothness of the
GAN minimax objective with respect to the discriminator
parameters, which can be imposed by applying norm-based
regularization tools to neural network discriminators. There-
fore, Proposition 4 shows that the complexity of solving the
proximal optimization problem will decrease for a larger λ;
however, for a sufficiently large λ the proximal objective
may have no Nash equilibria, as shown in Theorem 1.

4.2. Proximal equilibria exist for Wasserstein GANs

As shown earlier, GAN minimax problems may not have
any Nash equilibria in non-realizable cases. As a result,
we should consider a different notion of equilibrium which
is guaranteed to exist for GAN problems. As already dis-
cussed, Stackelberg equilibria defined in (10) will always
exist for GANs and are special cases of λ-proximal equi-
libria for λ = 0. However, as implied by Proposition 4
a smaller λ means a greater optimization complexity for
finding the equilibrium solution. Does there exist a positive
λ > 0 for which the distance-minimizing generator pro-
vides a λ-proximal equilibrium? In this section, we show
that such a positive λ in fact exists for Wasserstein GANs.

To define an appropriate proximal operator for Wasserstein
GAN problems, we use a Sobolev semi-norm averaged over
the underlying distribution of data PX. Here, we consider
the following Sobolev norm function:

∥∥D∥∥
Ḣ1 :=

√
EPX

[∥∥∇xD(X)
∥∥2

2

]
. (15)

The above semi-norm is induced by the following semi-
inner product and therefore leads to a semi-Hilbert space of
functions:

〈D1, D2〉Ḣ1 := EPX

[
∇D1(X)T∇D2(X)

]
. (16)

Throughout our discussion, we consider a parameterized
set of generators G = {Gθ : θ ∈ Θ}. For a GAN min-
imax objective V (G,D), we define Dθ to be the optimal
discriminator function for the parameterized generator Gθ:

Dθ := argmax
D∈D

V (Gθ, D). (17)

The following theorem shows that the Wasserstein distance-
minimizing generator in the 2-Wasserstein GAN (W2GAN)
problem satisfies the conditions of a proximal equilibrium
based on the Sobolev semi-norm in (15).

Theorem 2. Consider the 2-Wasserstein GAN problem (9)
with a quadratic cost c(x,x′) = η‖x− x′‖22. Suppose that
the set of optimal discriminators {Dθ : θ ∈ Θ} is convex.

Algorithm 1 GAN Proximal Training

Input: data xi, size n

Initialize the parameters w(0),θ(0)

for k = 0 to MAX_ITER do

Initialize w(k+1) = w(k)

for t = 0 to T do

» w(k+1) = w(k+1) + γk,t∇w

{
V (Gθ(k) , Dw) −

λ
2n

∑n
i=1 ‖∇xDw(xi)−∇xDw(k)(xi)‖22

}
end for

» θ(k+1) = θ(k) − γk∇θV (Gθ(k) , Dw(k+1)).

end for

Then, (Gθ∗ , D
θ∗) for the Wasserstein distance-minimizing

generator Gθ∗ ∈ G will provide a 1
4η -proximal equilibrium

with respect to the Sobolev norm in (15).

Proof. We defer the proof to the Appendix.

The above theorem shows that while, as demonstrated in
Theorem 1, the W2GAN problem may have no local Nash
equilibrium solutions, the proximal equilibrium exists for
the W2GAN problem and holds at the Wasserstein-distance
minimizing generator Gθ∗ . The next theorem extends this
result to the Wasserstein GAN (WGAN) problem minimiz-
ing the 1-Wasserstein distance.

Theorem 3. Consider the WGAN problem (8) minimizing
the first-order Wasserstein distance. For each Gθ, define
αθ : Rd → R≥0 to be the magnitude of the resulted optimal
transport map from X to Gθ(Z), i.e. X− α2

θ(X)∇Dθ(X)
shares the same distribution with Gθ(Z).1 Given these
definitions, assume that

• {αθ(·)∇Dθ(·) : θ ∈ Θ} is a convex set,

• for every x and θ, η ≤ α2
θ(x) holds for constant η.

Then, (Gθ∗ , D
θ∗) for the Wasserstein distance-minimizing

generator function Gθ∗ gives an η-proximal equilibrium
with respect to the Sobolev norm in (15).

Proof. We defer the proof to the Appendix.

The above theorem shows that if the magnitude of optimal
transport map is everywhere lower-bounded by λ, then the
Wasserstein distance-minimizing generator in the WGAN
problem yields a λ-proximal equilibrium.

1Note that as shown in the proof such a mapping αθ exists
under mild regularity assumptions.
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Figure 4. Optimizing the proximal objective over the generator
with a fixed discriminator on MNIST data. The SN-GAN’s objec-
tive and samples’ quality were preserved during the optimization.

5. Proximal Training
As shown for Wasserstein GAN problems, given the defined
Sobolev norm and a small enough λ the proximal objective
V prox
λ (G,D) will possess a Nash equilibrium solution. This

result motivates performing the minimax optimization for
the proximal objective V prox

λ (G,D) instead of the original
objective V (G,D). Therefore, we propose proximal train-
ing in which we solve the following minimax optimization
problem:

min
Gθ∈G

max
Dw∈D

V prox
λ (Gθ, Dw), (18)

with the proximal operator defined according to the Sobolev
norm in (15).

In order to take the gradient of V prox
λ (Gθ, Dw) with respect

to θ, Proposition 4 suggests solving the proximal optimiza-
tion followed by computing the gradient of the original
objective V (Gθ, Dw∗) where the discriminator is parame-
terized with the optimal w∗ to the proximal optimization.

Algorithm 1 summarizes the main steps of proximal train-
ing. At every iteration, the discriminator is optimized for
T gradient steps with an additive Sobolev norm penalty
forcing the discriminator to remain in the proximity of the
current discriminator. Next, the generator is optimized us-
ing a gradient descent method with the gradient evaluated
at the optimal discriminator solving the proximal optimiza-
tion. The stepsize parameter γk can be adaptively selected
at every iteration k. In practice, we can solve the proximal
maximization problem via a first-order optimization method
for a certain number of iterations. Assuming the conditions
of Proposition 4 hold, the proximal optimization leads to
the maximization of a strongly-concave objective which
can be solved linearly fast through first-order optimization
methods.

Figure 5. Repeating the experiment of Figure 4 for the CelebA
dataset.

6. Numerical Experiments
To experiment the theoretical results of this work, we per-
formed several experiments using the (Gulrajani et al.,
2017)’s implementation of Wasserstein GANs with the code
available at the paper’s Github repository. In addition, we
used the implementations of (Miyato et al., 2018; Farnia
et al., 2019) for applying spectral regularization to the dis-
criminator network. In the experiments, we used the DC-
GAN 4-layer CNN architecture for both the discriminator
and generator functions (Radford et al., 2015) and ran each
experiment for 200,000 generator iterations with 5 discrimi-
nator updates per generator update. We used the RMSprop
optimzier (Hinton et al., 2012) for WGAN experiments with
weight clipping or spectral normalization and the Adam
optimizer (Kingma & Ba, 2014) for the other experiments.

6.1. Proximal equilibrium in Wasserstein and Lipschitz
GANs

We examined whether the solutions found by Wasserstein
and Lipschitz vanilla GANs represent proximal equilibria.
Toward this goal, we performed similar experiments to Sec-
tion 2’s experiments for the WGAN-WC (Arjovsky et al.,
2017), WGAN-GP (Gulrajani et al., 2017), and SN-GAN
(Miyato et al., 2018) problems over the MNIST and CelebA
datasets. In Section 2, we observed that after fixing the
trained discriminator Dwfinal

the GAN’s minimax objec-
tive V (Gθ, Dwfinal

) kept decreasing when we optimized
only the generator Gθ. In the new experiments, we simi-
larly fixed the trained discriminator Dwfinal

resulted from
the 200,000 training iterations, but instead of optimizing
the GAN minimax objective we optimized the proximal
objective defined by the norm (15) with λ = 0.1. Thus,
we solved the following optimization problem initialized at
θfinal which denotes the parameters of the trained generator:
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Figure 6. CelebA samples generated by SN-GAN trained via (top)
regular training, (bottom) proximal training.

min
θ

V prox
λ=0.1(Gθ, Dwfinal

). (19)

We computed the gradient of the above proximal objective
by applying the Adam optimizer for 50 steps to approximate
the solution to the proximal optimization (11) which at
every iteration was initialized at wfinal. Figures 4 and 5
show that in the SN-GAN experiments the original minimax
objective had only minor changes, compared to the results
in Section 2, and the quality of generated samples did not
change significantly during the optimization. We defer the
similar numerical results of the WGAN-WC and WGAN-
GP experiments to the Appendix. These numerical results
suggest that while Wasserstein and Lipschitz GANs may
not converge to local Nash equilibrium solutions as shown
in Section 2, their found solutions can still represent a local
proximal equilibrium.

6.2. Proximal Training improves Wasserstein and
Lipschitz GANs

We applied the proximal training in Algorithm 1 to the
WGAN-WC and SN-GAN problems. To compute the gradi-
ent of the proximal minimax objective, we solved the maxi-
mization problem in the Algorithm 1’s first step in the for
loop by applying 20 steps of Adam optimization initialized
at the discriminator parameters at that iteration. Applying
the proximal training to MNIST, CIFAR-10, and CelebA
datasets, we qualitatively observed qualitatively better gen-
erated pictures. Figures 6 and 7 show the samples generated
by SN-GAN trained on CelebA and CIFAR-10 data via

Figure 7. CIFAR-10 samples generated by SN-GAN trained via
(top) regular training, (bottom) proximal training.

proximal and regular training schemes, which look visually
better for proximal training. Due to the limited space, we
postpone the generated samples for WGAN experiments to
the Appendix.

To quantitatively compare the proximal and regular GAN
training methods, we measured the Inception scores (Sali-
mans et al., 2016) of the samples generated in the CIFAR-10
experiments. As shown in Table 1, proximal training results
in improved inception scores. In this table, DIM stands for
the dimension parameter of the DC-GAN’s convolutional
networks.

Table 1. Inception scores for regular vs. proximal training

GAN EXPERIMENT REGULAR PROXIMAL

WGAN-WC (DIM=64) 4.16± 0.15 4.56± 0.19

WGAN-WC (DIM=128) 2.52± 0.12 4.23± 0.15

SN-GAN (DIM=64) 5.12± 0.25 5.72± 0.22

SN-GAN (DIM=128) 5.62± 0.23 6.12± 0.22
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