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1. Numerical Results for Section 2
Here, we provide the complete numerical results for the ex-
periments discussed in Section 2 of the main text. Regarding
the plots shown in Section 2 for the SN-GAN implemen-
tation, here we present the same plots for the Wasserstein
GAN with weight clipping (WGAN-WC) and with gradient
penalty (WGAN-GP) problems. Figures 1-4 repeat the ex-
periments of Figures 1,2 in the main text for the WGAN-WC
and WGAN-GP problems. These plots suggest that a sim-
ilar result also holds for the WGAN-WC and WGAN-GP
problems, where the objective and the generated samples’
quality were decreasing during the generator optimization.
For a larger set of generated samples in the main text’s Fig-
ures 1,2 and Figures 1-4, we refer the readers to Figures
5-10.

Figure 1. Optimizing the trained generator of WGAN-WC with
a fixed discriminator on MNIST data. The GAN’s objective and
samples’ quality were decreasing over the optimization.
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Figure 2. Repeating the experiment of Figure 1 for WGAN-GP.

2. Numerical Results for Section 6
Here, we present the complete numerical results for the
experiments of Section 6 in the main text. Figures 11-14
demonstrate the results of the main text’s Figures 4,5 for the
WGAN-WC and WGAN-GP problems. Here, except the
WGAN-GP experiment on the CelebA dataset, we observed
that the objective and the generated samples’ quality did
not significantly decrease over the generator optimization.
Even for the WGAN-GP experiment on the CelebA data,
we observed that the objective value decreased three times
less than in minimizing the original objective rather than
the proximal objective. These experiments suggest that
the Wasserstein and Lipschitz GAN problems can converge
to local proximal equilibrium solutions. We also show a
larger group of generated samples at the beginning and final
iterations of Figures 4,5 in the main text and Figures 11-14
in Figures 15-20.

For the proximal training experiments, Figures 21-25 show
the samples generated by the SN-GAN and WGAN-WC
proximally trained on CIFAR-10 and CelebA data with the
results for the baseline regular training on the top of the fig-
ure and the results for proximal training on the bottom. We
observed a somewhat improved quality achieved by proxi-
mal training, which was further supported by the inception
scores for the CIFAR-10 experiments reported in the main
text.
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Figure 3. Repeating the experiment of Figure 1 for the CelebA
data.

Figure 4. Repeating the experiment of Figure 3 for WGAN-GP.

3. Proofs
3.1. Proof of Proposition 1

Proposition 1. Assume generator function G∗ ∈ G results
in the distribution of data X, i.e. we have PG∗(Z) = PX.
Then, for each of the GAN problems discussed in the main
text there exists a constant discriminator function Dconstant

which together with G∗ results in a Nash equilibrium and
satisfies the following for every G ∈ G and D ∈ D:

V (G∗, D) ≤ V (G∗, Dconstant) ≤ V (G,Dconstant).

Proof. Proof for f -GANs:

Consider the following f -GAN minimax problem corre-
sponding to the convex function f :

min
G∈G

max
D

E
[
D(X)

]
− E

[
f∗(D(G(Z)))

]
. (1)

Due to the realizability assumption, given G∗ ∈ G we as-
sume that the data distribution and the generative model are

Figure 5. SN-GAN’s generated samples at the iterations marked in
the main text’s Figure 1.

identical, i.e., PX = PG∗(Z). Then, the minimax objective
for G∗ reduces to

EPX

[
D(X)− f∗(D(X))

]
. (2)

The above objective decouples across X outcomes. As a
result, the maximizing discriminatorD∗(x) = f ′(1) will be
a constant function where the constant value f ′(1) follows
from the optimization problem:

f ′(1) = argmax
u∈R

u− f∗(u). (3)

Note that the objective u− f∗(u) is a concave function of u
whose derivative is zero at f∗′−1

(1) = f ′(1), because the
Fenchel-conjugate of a convex f satisfies f∗′−1

= f ′.

So far we have proved that the constant function
Dconstant(x) = f ′(1) provides the optimal discriminator
for generator G∗. Therefore, for every discriminator D we



Supplementary: Do GANs always have Nash equilibria?

Figure 6. WGAN-WC’s generated samples at the iterations marked
in Figure 1.

have
V (G∗, D) ≤ V (G∗, Dconstant), (4)

where V (G,D) denotes the f -GAN’s minimax objective.
Moreover, note that for a constant D the value of the min-
imax objective does not change with generator G. As a
result, for every G

V (G,Dconstant) = V (G∗, Dconstant). (5)

Then, (4) and (5) collectively prove that for every G and D
we have

V (G∗, D) ≤ V (G∗, Dconstant) ≤ V (G,Dconstant),

which completes the proof for f -GANs.

Proof for Wasserstein GANs:

Consider a general Wasserstein GAN problem with a cost
function c satisfying c(x,x) = 0 for every x. Notice that
this property holds for all Wasserstein distance measures

Figure 7. WGAN-GP’s generated samples at the iterations marked
in Figure 2.

corresponding to cost function ‖x−x′‖q for q ≥ 1. The gen-
eralized Wasserstein GAN minimax problem is as follows:

min
G∈G

max
D c-concave

E[D(X)]− E
[
Dc(G(Z))

]
. (6)

Due to the realizability assumption, a generator function
G∗ ∈ G results in the data distribution such that PG∗(Z) =
PX. Then, the above minimax objective for G∗ reduces to

EPX

[
D(X)−Dc(X)

]
. (7)

Since the cost is assumed to take a zero value given identical
inputs, we have:

Dc(x) : = max
x′

D(x′)− c(x,x′)

≥ D(x)− c(x,x)

= D(x).

As a result,D(x)−Dc(x) ≤ 0 holds for every x. Hence, the
objective in (7) will be non-positive and takes its maximum
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Figure 8. SN-GAN’s generated samples at the iterations marked in
the main text’s Figure 2.

zero value for any constant function Dconstant, which by
definition satisfies c-concavity. Therefore, letting V (G,D)
denote the GAN minimax objective, for every D we have

V (G∗, D) ≤ V (G∗, Dconstant). (8)

We also know that for a constant discriminator Dconstant

the value of the minimax objective is independent from the
generator function. Therefore, for every G we have

V (G∗, Dconstant) = V (G,Dconstant). (9)

As a result, (8) and (9) together show that for every G and
D

V (G∗, D) ≤ V (G∗, Dconstant) ≤ V (G,Dconstant),
(10)

which makes the proof complete for Wasserstein GANs.

Figure 9. WGAN-WC’s generated samples at the iterations marked
in Figure 3.

3.2. Proof of Theorem 1 & Remark 1

Theorem 1. Consider a GAN minimax problem for learning
a normally distributed X ∼ N (0, σ2I) with zero mean and
scalar covariance matrix where σ > 1. In the GAN formu-
lation, we use a linear generator function G(z) = Wz + u
where the weight matrix W is spectrally-regularized to sat-
isfy σmax(W) ≤ 1 and ‖u‖2 ≤ t for constant t > 0. Sup-
pose that the Gaussian latent vector is normally distributed
as Z ∼ N (0, I) with zero mean and identity covariance
matrix. Then,

• For the f -GAN problem corresponding to an f with non-
decreasing t2f ′′(t) over t ∈ (0,+∞) and an uncon-
strained discriminator D where the dimensions of data
X,Z are equal, the f-GAN minimax problem has no Nash
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Figure 10. WGAN-GP’s generated samples at the iterations
marked in Figure 4.

equilibrium solutions.

• For the W2GAN problem with discriminator D trained
over c-concave functions, where c is the quadratic cost,
the W2GAN minimax problem has no Nash equilibrium
solutions. Also, given a quadratic discriminator D(x) =
xTAx + bTx parameterized by A,b, the W2GAN prob-
lem has no local Nash equilibria.

• For the WGAN problem with 1-dimensional X,Z and a
discriminator D trained over 1-Lipschitz functions, the
WGAN minimax problem has no Nash equilibria.

Proof. Proof for f -GANs:

Lemma 1. Consider two random vectors X, X̃ with proba-
bility density functions p, q, respectively. Suppose that p, q

Figure 11. Optimizing the proximal objective for the trained gen-
erator in WGAN-WC with a fixed discriminator on MNIST data.
The GAN’s objective and samples’ quality were preserved over
the optimization.

Figure 12. Repeating the experiment of Figure 11 for the WGAN-
GP problem.

are non-zero everywhere. Then, considering the following
variational representation of df (P,Q),

df (P,Q) = max
D

E[D(X)]− E[f∗(D(X̃))], (11)

the optimal solution D∗ will satisfy

D∗(x) = f ′
(p(x)

q(x)

)
. (12)

Proof. Let us rewrite the f -divergence’s variational repre-
sentation as

df (P,Q) = max
D

E[D(X)]− E[f∗(D(X̃))]

= max
D

∫ [
p(x)D(x)− q(x)f∗(D(x))

]
dx

=

∫
max
D(x)

[
p(x)D(x)− q(x)f∗(D(x))

]
dx
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Figure 13. Optimizing the proximal objective for the trained gen-
erator in WGAN-WC with a fixed discriminator on CelebA data.
The GAN’s objective and samples’ quality were preserved over
the optimization.

Figure 14. Repeating the experiment of Figure 13 for WGAN-
GP. The samples quality and objective value were decreasing for
WGAN-GP on CelebA.

where the last equality holds, since the maximization ob-
jective decouples across x values. It can be seen that the
inside optimization problem for each D(x) is maximizing a
concave objective in which by setting the derivative to zero
we obtain

f∗′(D∗(x)) =
p(x)

q(x)
. (13)

As a property of the Fenchel-conjugate of a convex f , we
know f∗′

−1
= f ′ which combined with the above equation

implies that

D∗(x) = f ′
(p(x)

q(x)

)
. (14)

The above result completes Lemma 1’s proof.

Consider the f -GAN problem with the generator function

Figure 15. SN-GAN’s generated samples at the first and last itera-
tions of the main text’s Figure 5.

specified in the theorem:

min
W,u: ‖W‖2≤1

max
D

E
[
D(X)

]
− E

[
f∗
(
D(WZ + u)

)]
.

(15)
Note that X ∼ N (0, σ2I) and WZ + u ∼ N (u,WWT ).
Notice that if W was not full-rank, the maximized discrim-
inator objective would be +∞ achieved by a D assigning
an infinity value to the points not included in the rank-
constrained support set of generator Wz + u. This will
not result in a solution to the f -GAN problem, because we
assume that the dimensions of X and Z match each other
and hence there exists a full-rank W with a finite maxi-
mized objective, i.e. f -divergence value. Therefore, in a
Nash equilibrium of the f -GAN problem, the solution W
must be full-rank and invertible.

Lemma 1 results in the following equation for the optimal
discriminator D∗W,u given generator parameters W,u:

D∗W,u(x) = f ′
(

1√
(2πσ2)k

exp
{
− 1

2σ2

∥∥x∥∥2

2

}
1√

(2π)k det(WWT )
exp

{
− 1

2

∥∥(WWT )−1/2(x− u)
∥∥2

2

})

= f ′
(√

det(WWT )

σ2k
exp

{
1

2
xT ((WWT )−1 − σ−2I)x

− uT (WWT )−1x + uT (WWT )−1u

})
.
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Figure 16. WGAN-WC’s generated samples at the first and last
iterations of Figure 11.

As a result, the function f∗(D∗W,u(·)) appearing in the f -
GAN’s minimax objective will be

f∗
(
D∗W,u(x)

)
= f∗

(
f ′
(√

det(WWT )

σ2k
exp

{
1

2
xT ((WTW)−1

−σ−2I)x− uT (WWT )−1x + uT (WWT )−1u

}))
.

Claim: f∗(D∗W,u(x)) is a strictly convex function of x.

To show this claim, note that the following expression
is a strongly-convex quadratic function of x, since we
have assumed that the spectral norm of W is bounded as
σmax(W) ≤ 1 < σ:{

1

2
xT ((WTW)−1 − σ−2I)x− uT (WTW)−1x

+ uT (WTW)−1u

}
.

For simplicity, we denote the above strongly-convex func-
tion with g(x) and define the function h : R→ R as

h(y) := f∗
(
f ′
(√det(WWT )

σ2k
× ey

))
.

According to the above definitions, f∗(D∗W,u(x)) =
h(g(x)) is the composition of h and strongly-convex g.

Figure 17. WGAN-GP’s generated samples at the first and last
iterations of Figure 12.

Note that h is a monotonically increasing function, since

defining c =
√

det(WWT )
σ2k > 0 we have

h′(y) = (c ey)2 f ′′(c ey) ≥ 0, (16)

which follows from the equality

f∗(f ′(z)) := sup
u
{uf ′(z)− f(u)} = zf ′(z)− f(z)

that is a consequence of the definition of Fenchel-conjugate,
implying that df∗(f ′(z))

dz = zf ′′(z) for the convex f . Note
that h′(y) > 0 holds everywhere, because f is assumed
to be strictly convex. This proves that h is strictly increas-
ing. Furthermore, h is a convex function, because h′(y) is
non-decreasing due to the assumption that t2f ′′(t) is non-
decreasing over t ∈ (0,+∞). As a result, h is an increasing
convex function.

Therefore, f∗(D∗W,u(x)) = h(g(x)) is a composition of
a strongly-convex g and an increasing convex h : R → R.
Therefore, as a well-known result in convex optimiza-
tion (Boyd & Vandenberghe, 2004), the claim is true and
f∗(D∗W,u(x)) is a strictly convex function of x.

We showed that the claim is true for every feasible W,u.
Now, we prove that the pair (GW,u, D

∗
W,u) will not be a

local Nash equilibrium for any feasible W,u. If the pair
(GW,u, D

∗
W,u) was a local Nash equilibrium, W,u would

be a local minimum for the following minimax objective
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Figure 18. SN-GAN’s generated samples the first and last itera-
tions of the main text’s Figure 5.

where D∗ is fixed to be D∗W,u:

E
[
D∗(X)

]
− E

[
f∗
(
D∗(WZ + u)

)]
. (17)

However, as shown earlier, for any feasible W,u,
f∗
(
D∗(x)) is a strictly-convex function of x, which in turn

shows that (17) is a strictly-concave function of variables
W,u. This result shows that the objective can only take a
local minimum on the boundary of the constrained set of
‖u‖2 ≤ t and σmax(W) ≤ 1, where the local minimum
cannot be a convex combination of any two feasible points.
Therefore, ‖u∗‖2 = t and all singular values of W should
be equal to 1 implying that WWT = I . However, note that
∇uE[f∗(D∗(WZ+u))] = E[h′(g(WZ+u))∇ug(WZ+
u)]. This implies that

uT∇uE[f∗(D∗(WZ + u))]

=uTE[h′(g(WZ + u))∇ug(WZ + u)]

=uTE[h′(− 1

2σ2
‖WZ + u‖22 +

1

2
‖Z‖22)

× ((WTW)−1 − σ−2I)WZ]

− σ−2‖u‖22E[h′(− 1

2σ2
‖WZ + u‖22 +

1

2
‖Z‖22)]

< 0.

In the above equation, the last equality holds since we have

g(WZ + u) = − 1

2σ2
‖WZ + u‖22 +

1

2
‖Z‖22.

Also, the last inequality holds because we showed h is a

Figure 19. WGAN-WC’s generated samples at the first and last
iterations of Figure 13.

strictly increasing function and therefore

E[h′(− 1

2σ2
‖WZ + u‖22 +

1

2
‖Z‖22)] > 0.

Furthermore,

− 1

2σ2
‖WZ + u‖22 +

1

2
‖Z‖22

=
1

2
ZT (I − σ−2(WWT ))Z− 1

σ2
uTWZ

=
1− σ−2

2
‖Z‖22 −

1

σ2
uTWZ

Here I − σ−2(WWT ) is a positive definite matrix which
on the boundary local solution would be equal to (1 −
σ−2)I . Note that the jointly Gaussian variables uTWZ and
uT ((WTW)−1−σ−2I)WZ = (1−σ−2)uTWZ are zero-
mean and positively-correlated with correlation coefficient
+1. Therefore, defining Z ′ := (1− σ−2)uTWZ we have

uTE[h′(− 1

2σ2
‖WZ + u‖22 +

1

2
‖Z‖22)

× ((WTW)−1 − σ−2I)WZ]

= E[Z ′h′(α0Z
′2 − α1Z

′ + g0(Z̃))]

where α0, α1 > 0 and g0(Z) is a quadratic function of the Z̃
components which are orthogonal to and independent from
Z ′. However, for any observation of Z̃ = z̃ we have

E[Z ′h′(α0Z
′2 − α1Z

′ + g0(Z̃))|Z̃ = z̃] ≤ 0.
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Figure 20. WGAN-GP’s generated samples at the first and last
iterations of Figure 14.

The above holds because h′(α0Z
′2 − α1Z

′ + g0(z̃)) is a
non-negative function of Z ′ that is symmetric around the
positive α1

2α0
and is decreasing for Z ′ < α1

2α0
and increasing

for Z ′ > α1

2α0
. As a result, we have

uT∇uE[f∗(D∗(WZ + u))] < 0

which implies that −E[f∗(D∗(WZ + u))] and hence the
minimax objective will further decrease as we move from u∗

toward 0. This result contradicts u being a local minimum
of the minimax objective over ‖u‖2 ≤ t. Due to the shown
contradiction, a pair with the form (GW,u, D

∗
W,u) cannot

be a local Nash equilibrium in parameters W,u. Conse-
quently, the minimax problem has no pure Nash equilibrium
solutions, since in a pure Nash equilibrium the discriminator
will be by definition optimal against the choice of generator.

Proof for W2GANs:

Consider the W2GAN problem with the assumed generator
function:

min
W,u: ‖W‖2≤1

max
D c-concave

E
[
D(X)

]
− E

[
Dc(WZ + u)

]
,

(18)
where the c-transform is defined for the quadratic cost func-
tion c(x,x′) = 1

2‖x−x′‖22. Similar to the f -GAN case, de-
fine D∗W,u to be the optimal discriminator for the generator
function parameterized by W,u. Note that X ∼ N (0, σ2I)
and WZ + u ∼ N (u,WWT ).

According to the Brenier’s theorem (Villani, 2008), the op-
timal transport from the Gaussian data distribution to the

Figure 21. The images generated by the SN-GAN (DIM=128)
trained on CIFAR-10 data with (top) ordinary and (bottom) proxi-
mal training.

Gaussian generative model will be

ψopt(x) = x−∇xD
∗
W,u(x).1

As a well-known result regarding the second-order opti-
mal transport map between two Gaussian distributions,
the optimal transport will be a linear transformation as
ψopt(x) = 1

σ (WWT )1/2x + u. This result shows that

∇xD
∗
W,u(x) =

(
I − 1

σ
(WWT )1/2

)
x− u. (19)

Note that the c-transform for cost c(x,x′) = 1
2‖x − x′‖22

satisfies Dc(x) = ( 1
2‖x‖

2 − D(x))∗ − 1
2‖x‖

2 where
g∗ denotes g’s Fenchel-conjugate. For general convex
quadratic function g(x) = 1

2x
TAx+bTx we have g∗(x) =

1
2 (x−b)TA†(x−b) whereA† denotesA’s Moore Penrose
pseudoinverse. Therefore, for the c-transform of the optimal
discriminator we will have

∇xD
∗c
W,u(x) =

(
σ((WWT )1/2)† − I

)
x

− σ((WWT )1/2)†u.

Since every feasible W satisfies the bounded spectral norm
condition as σmax(W) ≤ 1 < σ, the optimal D∗

c

W,u will
be a quadratic function whose Hessian has at least one
strictly positive eigenvalue along the principal eigenvec-
tor of WWT . The positive eigenvalue exists in general

1Notice the change of variable D(x) = 1
2
‖x‖2 − ψ(x) com-

pared to the formulation discussed at (Villani, 2008; Feizi et al.,
2017) which are based on the function ψ.
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Figure 22. The images generated by the WGAN-WC (DIM=128)
trained on CIFAR-10 data with (top) ordinary and (bottom) proxi-
mal training.

case where Z’s dimension can be even smaller than X’s
dimension. If we had the stronger assumption that the two
dimensions exactly match, similar to the f-GAN problem
considered, then the pseudo-inverse A† would be the same
as the inverse A−1 resulting in a strongly-convex quadratic
D∗

c

W,u. Nevertheless, as we prove here, the theorem’s re-
sult on W2GAN holds in the general case and does not
necessarily require the same dimension between X and Z.

Consider the W2GAN minimax objective for the pair
(GW,u, D

∗) where D∗ is fixed to be the optimal D∗W,u:

E
[
D(X)

]
− E

[
D∗c(WZ + u)

]
, (20)

If (GW,u, D
∗
W,u) was a local Nash equilibrium, the vari-

ables W,u would provide a local minimum to the above
objective. However, since D∗

c

W,u is shown to be a quadratic
function with a Hessian possessing positive eigenvalues, the
above minimax objective will not have a local minimum
inside the feasible set ‖u‖2 < t. Also, note that

uT∇uE[D∗c(WZ + u)]

= − ‖u‖22 + σE
[
uT ((WWT )1/2)† − I)WZ

]
= − ‖u‖22
< 0.

As a result, the minimax objective cannot have a local min-
imum over the boundary ‖u‖2 = t because the objective
will be strictly decreasing when we move toward the origin.
Due to the shown contradiction, the minimax problem pos-
sesses no local Nash equilibrium solutions with the form

Figure 23. The images generated by the WGAN-WC (DIM=64)
trained on CIFAR-10 data with (top) ordinary and (bottom) proxi-
mal training.

(GW,u, D
∗
W,u) and therefore no pure Nash equilibrium so-

lutions.

For the parameterized case with a quadratic discriminator
DA,b(x) = xTAx + bTx, first of all note that as shown in
the proof the optimal discriminator D∗W,u for any genera-
tor parameter W,u will be a c-concave quadratic function.
Therefore, the optimal solution for the discriminator does
not change because of the new quadratic constraint. Further-
more, the discriminator optimization problem has a concave
objective in parameters A,b. This is because the discrim-
inator DA,b(x) is a linear function in terms of A,b, and
Dc
A,b(x) = supx′ DA,b(x′)−c(x′,x) is a convex function

of A,b as the supremum of some affine functions is convex.

As a result, the discriminator optimization reduces to maxi-
mizing a concave objective of A,b constrained to a convex
set {A : I −A < 0} which is equivalent to the c-concave
constraint on the quadratic DA,b. Hence, any local solution
to this optimization problem will also be a global solution.
This result implies that any local Nash equilibrium for the
new parameterized minimax problem will have the form
(GW,u, D

∗
W,u), which as we have already shown does not

exist under the theorem’s assumptions.

Proof for the 1-dimensional WGAN:

Consider the 1-dimensional Wasserstein GAN problem for
the assumed linear generator function:

min
w,u: |w|≤1

max
‖D‖Lip≤1

E[D(X)]− E[D(wZ + u)]. (21)
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Figure 24. The images generated by the SN-GAN trained on
CelebA data with (top) ordinary and (bottom) proximal training.

The inner maximization problem can be rewritten as

max
‖D‖Lip≤1

∫ (
pX(x)− pwZ+u(x)

)
D(x) dx. (22)

Here we have

pX(x)− pwZ+u(x)

=
1√

2πσ2
exp
{ −1

2σ2
x2
}
− 1√

2πw2
exp
{ −1

2w2
(x− u)2

}
Since |w| ≤ 1 < σ, it can be seen that the above difference
will be positive everywhere except over an interval (a1, a2),
where a1, a2 are the two solutions to the quadratic equation:

( 1

w2
− 1

σ2

)
x2 − 2

u

w2
x+

( u2

w2
− log(

σ

|w|
)
)

= 0. (23)

Note that the above quadratic equation has two distinct
solutions a1 < a2, since |w| < σ and log( σ

|w| ) > 0 leading
to the positive discriminant:

4
u2

w2σ2
+ 4 log(

σ

|w|
)
( 1

w2
− 1

σ2

)
> 0. (24)

Figure 25. The images generated by the WGAN-WC trained on
CelebA data with (top) ordinary and (bottom) proximal training.

As the function D in the maximization problem (22) is only
constrained to be 1-Lipschitz, the optimalD∗w,u’s slope must
be equal to−1 over (−∞, a1] and equal to +1 over [a2,∞),
in order to allow the maximum increase in the maximization
objective. Over the interval (a1, a2), we claim that for the
optimal D is a convex function, because otherwise its dou-
ble Fenchel-conjugate D∗∗, which is by definition convex,
achieves a higher value.

First of all, note that the double Fenchel-conjugate D∗∗ will
not be different from D outside the (a1, a2) interval, be-
cause D∗∗ is defined to provide the largest convex function
satisfying D∗∗ ≤ D, and D is supposed to be 1-Lipschitz
taking its minimum derivative on (−∞, a1] and its max-
imum derivative over [a2,∞). Next, since D∗∗ lower-
bounds D, it results in a non-smaller integral value over
the interval (a1, a2) as pX(x) − pwZ+u(x) takes negative
values over (a1, a2). If D is not convex, then D∗∗ pro-
vides a strict lower-bound for D which matches D over
(∞, a1] ∪ [a2,∞). Therefore, the convex 1-Lipschitz D∗∗

results in a greater objective that is a contradiction to D’s
optimality. This contradiction proves that the optimal dis-
criminator D∗w,u is a convex function.
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Also, note that since D∗w,u is constrained to be 1-Lipschitz
where it takes its minimum and maximum derivative values
over (−∞, a1] and [a2,∞) it will be lower-bounded as

D∗w,u(x) ≥ max{D∗w,u(a1)−(x−a1), D∗w,u(a2)+(x−a2)}.

Since the above lower-bound matches D∗w,u(x) over
(−∞, a1] ∪ [a2,∞) and D∗w,u is supposed to maximize the
inner product with pX(x) − pwZ+u(x) which is negative
over (a1, a2), the above lower-bound is in fact tight and
equal to D∗w,u. Hence, not only the optimal D∗w,u is convex,
but also for two real constants a, b we have

D∗w,u(x) = |x− a|+ b.

Since the minimax objective does not change by adding a
constant to the discriminator function, for every feasible
|w| ≤ 1 there exists an optimal solution D∗w,u for (22) that
is a convex function of the form D∗w,u(x) = |x− a|. This
result proves that if a local Nash equilibrium of the form
(Gw,u, D

∗
w,u) existed for the WGAN problem, then the op-

timal u would be on the boundary |u| = t. However, note
that D∗w,u is a convex function with a non-constant increas-
ing derivative. Also, note that for the optimal parameter
a∗ such that D∗w,u(x) = |x− a∗| we must have |a∗| > |u|.
This is because the derivative of the following discriminator
optimization with respect to a is

d

da

∫ (
pX(x)− pwZ+u(x)

)
|x− a|dx

=

∫ (
−pX(x) + pwZ+u(x)

)
sign(x− a) dx

= 2 Pr(wZ + u ≥ a)− 2 Pr(X ≥ a) (25)

which will be greater than 1 − 2 Pr(X ≥ a) > 0 if
0 < a < u or will be less than 2(Pr(Z ≥ a−u

w )− Pr(X ≥
a)) < 2( 1

2 −
1
2 ) = 0 if u < a < 0. Therefore, for the

optimal a∗ we have |a∗| > |u| and fixing the optimal
discriminator the second term of the minimax objective
−E[|wZ + u− a∗|] will take smaller values if we move u
closer to 0. The minimax objective will further decrease
as we move u toward 0 which is in the feasible set and
gives a contradiction. Therefore, the WGAN problem has
no local Nash equilibiria with the form (Gw,u, D

∗
w,u), be-

cause if (Gw,u, D
∗
w,u) was a local Nash equilibrium then

w, u would be a local minimum for the following objective
where D∗ is fixed to be D∗w,u which as we showed cannot
exist. This shows that the WGAN problem does not have a
Nash equilibrium and completes the proof for the WGAN
case.

Remark 1. Consider the same setting as in Theorem 1.
However, unlike Theorem 1 suppose that σ < 1 and
σmin(W) ≥ 1 where σmin stands for the minimum sin-
gular value. Then, for the WGAN and W2GAN problems de-
scribed in Theorem 1, the Wasserstein distance-minimizing
generator results in a Nash equilibrium.

Proof. Proof for the W2GAN:

For the W2GAN case, note that if we repeat the same steps
as in the proof of Theorem 1, we can show

∇xD
∗c
W,u(x) = (σ(WWT )−1/2 − I

)
x (26)

− σ(WWT )−1/2u.

which is a concave quadratic function of x, since the as-
sumptions imply that (WWT )−1 4 σ−2I . Here W is
supposed to be a full-rank square matrix as its minimum
singular value is assumed to be positive and Z has the same
dimension as X.

We claim that for the feasible choice W∗ = I and u∗ = 0,
the pair (GW∗,u∗ , D

∗
W∗,u∗) results in a Nash equilibrium

of the minimax problem. Considering the definition of the
optimal discriminator D∗W∗,u∗ , its optimlaity for GW∗,u∗

directly follows. Moreover, (26) implies that

D∗
c

W∗,u∗(x) =
σ − 1

2
‖x‖22. (27)

As a result, fixing the above discriminator function the min-
imax objective will be

E[D∗(X)]− E
[ σ − 1

2
‖WZ + u‖22

]
= E[D∗(X)] +

1− σ
2

(
‖W‖2F + ‖u‖22

)
which is minimized at W = I and u = 0 over the speci-
fied feasible set, as we know the Frobenius norm-squared,
‖W‖2F , is the sum of the squared of W’s singular values.
Therefore, the claim holds and the choice W∗ = I and
u∗ = 0 results in the optimal solution and a Nash equilib-
rium.

Proof for the 1-dimensional Wasserstein GAN:

Here we select the parameters w∗ = 1, u∗ = 0. We claim
that the optimal discriminator function for this choice is the
negative absolute value function D∗(x) = −|x|. Note that
the optimal 1-Lipschitz D∗ solves the following problem:

max
‖D‖Lip≤1

∫ ( 1√
2πσ2

e−
x2

2σ2 − 1√
2π
e−

x2

2

)
D(x) dx. (28)

In the above objective given η =
√

2σ2 log(1/σ)
1−σ2 , the func-

tion 1√
2πσ2

e−
x2

2σ2 − 1√
2π
e−

x2

2 is positive over (−η, η) and
negative elsewhere. Therefore, the optimal D∗ should get
the maximum +1 derivative over (−∞,−η] and the mini-
mum −1 derivative over [+η,+∞). Because of the even

structure of 1√
2πσ2

e−
x2

2σ2 − 1√
2π
e−

x2

2 , there exists an even

optimal D∗ because D∗(x)+D∗(−x)
2 remains 1-Lipschitz

and optimal for any optimal 1-Lipschitz discriminator D∗.
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The optimal even D∗ should further be continuous as a 1-
Lipschitz function, implying that such a D∗ is decreasing
over (0, η] and increasing over [−η, 0). Enforcing the maxi-
mum derivative over the two interval results in the optimal
D∗(x) = −|x|.

Therefore, D∗(x) = −|x| provides an optimal discrimina-
tor for w∗ = 1, u∗ = 0. Also, for this D∗ the minimax
objective of the Wasserstein GAN will be

E[−|X|]− E[−|wZ + u|] = −E[|X|] + E[|wZ + u|]

In the above equation, wZ + u ∼ N (u,w2), showing that
the above objective is minimized at w∗ = 1, u = 0 consid-
ering the assumed feasible set where |w| ≥ 1. As a result,
the pair (Gw∗,u∗ , D

∗) provides a Nash equilibrium to the
WGAN minimax game.

3.3. Proof of Proposition 2

Proposition 2. (G∗, D∗) is a λ-proximal equilibrium if and
only if for every G ∈ G, D ∈ D we have

V (G∗, D) ≤ V (G∗, D∗) (29)

≤ max
D̃∈D

V (G, D̃)− λ
∥∥D̃ −D∗∥∥2

.

Proof. Proof of the⇒ direction:

Assume that (G∗, D∗) is a λ-proximal equilibrium. Ac-
cording to the definition of the proximal equilibrium, the
following holds for every G ∈ G and D ∈ D:

V prox
λ (G∗, D) ≤ V prox

λ (G∗, D∗) ≤ V prox
λ (G,D∗).

(30)
Claim: V prox

λ (G∗, D∗) = V (G∗, D∗).

To show this claim, note that

V prox
λ (G∗, D∗) := max

D̃∈D
V (G∗, D̃)−λ

∥∥D̃−D∗∥∥2
. (31)

In this optimization, the optimal solution D̃ is D∗ itself.
Otherwise, for the optimal D̃ ∈ D we have ‖D̃ −D∗

∥∥ > 0
and as a result

V prox
λ (G∗, D∗) < V (G∗, D̃) ≤ V prox

λ (G∗, D̃), (32)

which is a contradiction given that (G∗, D∗) is a λ-proximal
equilibrium. Therefore, D∗ optimizes the proximal op-
timization, which shows the claim is valid and we have
V prox
λ (G∗, D∗) = V G∗, D∗). Knowing that V (G,D) ≤
V prox
λ (G,D) holds for every G ∈ G, D ∈ D, we have

V (G∗, D) ≤ V prox
λ (G∗, D)

≤ V prox
λ (G∗, D∗)

= V (G∗, D∗).

Furthermore,

V (G∗, D∗) = V prox
λ (G∗, D∗) (33)

≤ V prox
λ (G,D∗) (34)

= max
D̃∈D

V (G, D̃)− λ
∥∥D̃ −D∗∥∥2

.

Therefore, the proof is complete.

Proof of the⇐ direction:

Suppose that for (G∗, D∗) the following holds for every
G ∈ G and D ∈ D:

V (G∗, D) ≤ V (G∗, D∗) (35)

≤ max
D̃∈D

V (G, D̃)− λ
∥∥D̃ −D∗∥∥2

.

We claim that V (G∗, D∗) = V prox
λ (G∗, D∗). To show this

claim, consider the definition of the λ-proximal equilibrium:

V prox
λ (G∗, D∗) := max

D̃∈D
V (G∗, D̃)− λ

∥∥D∗ − D̃∥∥. (36)

Here D∗ maximizes the objective because we have as-
sumed that V (G∗, D) ≤ V (G∗, D∗) holds for every
D ∈ D. Therefore, the claim is valid and V (G∗, D∗) =
V prox
λ (G∗, D∗).

Also, note that for every D the solution D̃ in the proximal
optimization satisfies V prox

λ (G∗, D) ≤ V (G∗, D̃). Com-
bining these results with (35), we obtain the following in-
equalities which hold for every G ∈ G and D ∈ D:

V prox
λ (G∗, D) ≤ V prox

λ (G∗, D∗) ≤ V prox
λ (G,D∗).

(37)
The above equation shows that the pair (G∗, D∗) is a λ-
proximal equilibrium.

3.4. Proof of Proposition 3

Proposition 3. Define PEλ(V ) to be the set containing the
λ-proximal equilibria of V (G,D). Then, if λ1 ≤ λ2 we
have

PEλ2
(V ) ⊆ PEλ1

(V ). (38)

Proof. Consider a λ2-proximal equilibrium (G∗, D∗). As
a result of Proposition 2, for every G ∈ G and D ∈ D we
have

V (G∗, D) ≤ V (G∗, D∗) (39)

≤ max
D̃∈D

V (G, D̃)− λ2

∥∥D̃ −D∗∥∥2
.

Since λ1 ≤ λ2, the following holds

max
D̃∈D

V (G, D̃)− λ2

∥∥D̃ −D∗∥∥2
(40)



Supplementary: Do GANs always have Nash equilibria?

≤ max
D̃∈D

V (G, D̃)− λ1

∥∥D̃ −D∗∥∥2
,

which shows that

V (G∗, D) ≤ V (G∗, D∗) (41)

≤ max
D̃

V (G, D̃)− λ1

∥∥D̃ −D∗∥∥2
.

Due to Proposition 2, (G∗, D∗) will be a λ1-proximal equi-
librium as well. Hence, the proof is complete and we have

PEλ2
(V ) ⊆ PEλ1

(V ). (42)

3.5. Proof of Proposition 4

Proposition 4. Consider the maximization problem in the
definition of proximal operator where generator Gθ and
discriminatorDw have been parameterized by vectors θ, w,
respectively. Suppose that

• For the considered discriminator norm ‖ · ‖, ‖Dw −D‖2
is η1-strongly convex in w for any function D, i.e. for
any w,w′, D:∥∥∥∥∇w‖Dw−D‖2−∇w‖Dw′−D‖2

∥∥∥∥
2

≥ η1

∥∥w−w′∥∥
2
,

• For every Gθ, The GAN minimax objective V (Gθ, Dw)
is η2-smooth in w, i.e.∥∥∇wV (Gθ, Dw)−∇wV (Gθ, Dw)

∥∥
2
≤ η2‖w−w′‖2.

Under the above assumptions, if η2 < λη1, the proximal ob-
jective is (λη1 − η2)-strongly concave. Then, the maximiza-
tion problem has a unique solution w∗ and if V (Gθ, Dw)
is differentiable with respect to θ then

∇θV prox
λ (Gθ, Dw) = ∇θV (Gθ, Dw∗). (43)

Proof. Consider the definition of a λ-proximal equilibrium
in the parameterized space:

V prox
λ (Gθ, Dw) := max

w̃
V (Gθ, Dw̃)− λ

∥∥Dw̃ −Dw

∥∥2
.

(44)
In the above optimization problem, the first term
V (Gθ, Dw̃) is assumed to be η2-smooth in w̃, while the
second term λ‖Dw̃ −Dw‖2 will be λη1-strongly convex in
w̃. As a result, the sum of the two terms will be (λη1 − η2)-
strongly concave if η2 < λη1 holds. Since the objective
function is strongly-concave in w̃, it will be maximized by
a unique solution w∗. Moreover, applying the generalized
Danskin’s theorem (Bernhard & Rapaport, 1995) implies
that the following holds at the optimal w∗:

∇θV prox
λ (Gθ, Dw) = ∇θV (Gθ, Dw∗). (45)

3.6. Proof of Theorem 2

Theorem 2. Consider the second-order Wasserstein GAN
problem with a quadratic cost c(x,x′) = η‖x− x′‖22. Sup-
pose that the set of optimal discriminators {Dθ : θ ∈ Θ}
is convex. Then, (Gθ∗ , D

θ∗) for the Wasserstein distance-
minimizing generator Gθ∗ ∈ G will provide a 1

4η -proximal
equilibrium with respect to the Sobolev norm ‖ · ‖Ḣ1 .

Proof.

Lemma 2. Suppose that f is a γ-strongly convex function
according to norm ‖ · ‖, i.e. for any x, y ∈ dom(f) and
λ ∈ [0, 1] we have

f(λx+ (1− λ)y) ≤λf(x) + (1− λ)f(y)

− γλ(1− λ)

2
‖x− y‖2. (46)

Consider the following optimization problem where the fea-
sible set X is a convex set and x∗ is the optimal solution,

min
x∈X

f(x). (47)

Then, for every x ∈ X we have

f(x)− f(x∗) ≥ γ

2
‖x− x∗‖2. (48)

Proof. If we apply the strong-convexity definition (46) to
x ∈ X , x∗ we obtain

f(λx+ (1− λ)x∗) ≤λf(x) + (1− λ)f(x∗)

− γλ(1− λ)

2
‖x− x∗‖2. (49)

The above inequality results in

f(λx+ (1− λ)x∗)− f(x∗) ≤λ(f(x)− f(x∗)) (50)

− γλ(1− λ)

2
‖x− x∗‖2.

Note that X is assumed to be a convex set and therefore
λx+(1−λ)x∗ ∈ X implying f(x∗) ≤ f(λx+(1−λ)x∗).
As a result, for every 0 ≤ λ ≤ 1

γλ(1− λ)

2
‖x− x∗‖2 ≤ λ(f(x)− f(x∗)). (51)

Thus for every 0 < λ ≤ 1 we have

γ(1− λ)

2
‖x− x∗‖2 ≤ f(x)− f(x∗), (52)

which proves that γ2 ‖x − x
∗‖2 ≤ f(x) − f(x∗) and com-

pletes Lemma 2’s proof.



Supplementary: Do GANs always have Nash equilibria?

Based on Proposition 2 and the definition of Dθ, we only
need to show that for the W2GAN’s objective, which we
denote by V (G,D), the following holds for every θ:

V (Gθ∗ , D
θ∗) ≤ max

D∈D
V (Gθ, D)− 1

2η

∥∥D −Dθ∗
∥∥2

Ḣ1 .

(53)
To show the above inequality, it suffices to prove the follow-
ing inequality

V (Gθ∗ , D
θ∗) ≤ V (Gθ, D

θ)− 1

4η

∥∥Dθ −Dθ∗
∥∥2

Ḣ1 . (54)

Claim: For the W2GAN problem, we have

V (Gθ, D
θ) =

1

4η
E
[
‖∇Dθ(X)‖22

]
.

To show this claim, note that according to the W2GAN’s for-
mulation we have V (Gθ, D

θ) := Wc(PX, PGθ(Z)) where
c(x,x′) = η‖x − x′‖22 is the second-order cost function
specified in the theorem. We start by proving this result
for η = 1

2 . In this case, the Brenier’s theorem (Ambrosio
& Gigli, 2013) proves that the optimal transport map from
the data variable X to the generative model Gθ(Z) can be
derived from the gradient of the optimal Dθ as follows

ψopt(x) = x−∇Dθ(x). (55)

which plugged into the optimal transport objective
Wc(P,Q) := infΠ(P,Q) E[c(X,X′)] proves that

V (Gθ, D
θ) := Wc(PX, PGθ(Z)) = E

[1
2
‖∇Dθ(X)‖22

]
.

The above equation proves the result holds for η = 1
2 .

For a general η > 0, note that applying a simple change
of variable in the Kantorovich duality representation and
solving the dual problem for D̃(x) = 2ηD(x) shows that
ψopt(x) = x− 1

2η∇D̃
θ(x) transport samples from the data

domain to the generative model. This is due to the fact that
after applying this change of variable the Kantorovich dual-
ity reduces to η multiplied to the dual problem for η = 1

2 .
As a result, applying the transport map to the definition of
the optimal transport cost shows that

V (Gθ, D
θ) := Wc(PX, PGθ(Z)) =

1

4η
E
[
‖∇Dθ(X)‖22

]
,

proving the claim holds for any η > 0.

Substituting the discriminator maximization with the result
in the above claim, the W2GAN problem reduces to the
following problem:

min
θ

1

4η
E
[∥∥∇Dθ(X)

∥∥2

2

]
. (56)

Here we can equivalently optimize forDθ ∈ {Dθ : θ ∈ Θ}
instead of minimizing over the variable θ, obtaining

min
Dθ

1

4η
E
[∥∥∇Dθ(X)

∥∥2

2

]
. (57)

Note that the term 1
2E
[∥∥∇Dθ(X)

∥∥2

2

]
= 1

2

∥∥Dθ
∥∥2

Ḣ1 reduces
to the squared of the defined Sobolev norm in a semi-Hilbert
space, which results in a 1-strongly convex function accord-
ing to ‖ · ‖Ḣ1 with strong convexity defined as in (46). As a
result, the objective in (57) is 1

2η -strongly convex according
to the Sobolev norm ‖ · ‖Ḣ1 . In addition, this objective is
minimized over a convex feasible set {Dθ : θ ∈ Θ}, due to
the theorem’s assumption. Therefore, Lemma 2 shows that
the optimal Dθ∗ satisfies the following inequality for every
θ:

1

4η
E
[∥∥∇Dθ(X)

∥∥2

2

]
− 1

4η
E
[∥∥∇Dθ∗(X)

∥∥2

2

]
≥ 1

4η

∥∥Dθ −Dθ∗
∥∥2

Ḣ1 .

The above result implies that

V (Gθ∗ , D
θ∗) ≤ V (Gθ, D

θ)− 1

4η

∥∥Dθ −Dθ∗
∥∥2

Ḣ1 , (58)

which completes the proof.

3.7. Proof of Theorem 3

Theorem 3. Consider the WGAN problem minimizing
the first-order Wasserstein distance with cost function
c(x,x′) = ‖x − x′‖2. For each Gθ, let αθ : Rd → R≥0

denote the magnitude of the resulted optimal transport map
fromGθ(Z) to X, i.e. X−α2

θ(X)∇Dθ(X) shares the same
distribution with Gθ(Z). Given these definitions, assume
that

• {αθ(·)∇Dθ(·) : θ ∈ Θ} is a convex set,

• for every x and θ we have η ≤ α2
θ(x) for constant η > 0.

Then, (Gθ∗ , D
θ∗) for the Wasserstein distance-minimizing

generator function Gθ∗ gives a η-proximal equilibrium with
respect to the Sobolev norm in the main text.

Proof.

Lemma 3. Consider two vectors x,y with equal Euclidean
norms ‖x‖2 = ‖y‖2. Then for every 0 ≤ a ≤ b, we have

a‖x− y‖2 ≤ ‖ax− by‖2. (59)

Proof. Note that

‖ax− by‖22 − a2‖x− y‖22
= (b2 − a2)‖y‖22 − 2a(b− a)xTy
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= (b− a)((b+ a)‖y‖22 − 2axTy)

≥ 0.

The above holds as we have assumed that 0 ≤ a ≤ b
implying 0 ≤ 2a ≤ b + a and since the two vectors x,y
share the same Euclidean norm

|xTy| ≤ ‖x‖
2
2 + ‖y‖22

2
= ‖y‖22.

Hence, Lemma 3’s proof is complete.

As shown by the Kantorovich duality (Villani, 2008), for the
optimal Dθ and the optimal coupling πθ(PX, PGθ(Z)) the
following holds with probability 1 for every joint sample
(X,X′) drawn from the optimal coupling πθ,

Dθ(X)−Dθ(X′) = ‖X−X′‖2. (60)

Knowing that Dθ is 1-Lipschitz, for every convex combina-
tion βX + (1− β)X′ we must have

∇Dθ
(
βX + (1− β)X′

)
=

X−X′

‖X−X′‖
.

This will imply that there definitely exists αθ such that the
transport map described in the theorem maps the data distri-
bution to the generative model. Plugging this transport map
into the definition of the first-order Wasserstein distance, we
obtain

V (Gθ, D
θ) : = W1(PX, PGθ(Z))

= E
[∥∥α2

θ(X)∇Dθ(X)
∥∥

2

]
= E

[∥∥αθ(X)∇Dθ(X)
∥∥2

2

]
where the last equality holds since the Euclidean norm of
∇Dθ(X) has a unit Euclidean norm with probability 1 over
the data distribution PX as we proved ∇Dθ(βX + (1 −
β)X′) = X−X′

‖X−X′‖ holds for every 0 ≤ β ≤ 1 including
β = 1.

As a result, the Wasserstein GAN problem reduces to the
following optimization problem

min
θ

E
[∥∥αθ(X)∇Dθ(X)

∥∥2

2

]
(61)

Defining hθ(X) := αθ(X)∇Dθ(X), 1
2E
[
‖hθ(X)‖22

]
is

1-strongly convex with respect to the norm function

‖h‖Ḣ0 =
√
E
[
‖h(X)‖22

]
that is induced by the following inner product and results in
a Hilbert space

〈D1, D2〉Ḣ0 := EPX
[D1(X)D2(X)].

Therefore, for the θ∗ minimizing the objective in (61) over
the assumed convex set {hθ : θ ∈ Θ}, Lemma 2 implies
that

E
[∥∥αθ(X)∇Dθ(X)

∥∥2

2

]
− E

[∥∥αθ∗(X)∇Dθ∗(X)
∥∥2

2

]
= E

[∥∥hθ(X)
∥∥2

2

]
− E

[∥∥hθ∗(X)
∥∥2

2

]
≥ ‖hθ − hθ∗‖2Ḣ0

= E
[
‖hθ(X)− hθ∗(X)‖22

]
= E

[
‖αθ(X)∇Dθ(X)− αθ∗(X)∇Dθ∗(X)‖22

]
≥ ηE

[
‖∇Dθ(X)−∇Dθ∗(X)‖22

]
= η‖Dθ −Dθ∗‖2Ḣ1 .

Here the last inequality follows from Lemma 3 since every
Dθ has a unit-norm gradient with probability 1 according
to the data distribution PX. Therefore, we have proved that

V (Gθ, D
θ)− V (Gθ∗ , D

θ∗) ≥ η‖Dθ −Dθ∗‖2Ḣ1 . (62)

The above inequality results in the following for every feasi-
ble θ

V (Gθ∗ , D
θ∗) ≤ max

D∈D
V (Gθ, D)− η‖D−Dθ∗‖2Ḣ1 . (63)

Hence, according to Proposition 2, we have shown that the
pair (Gθ∗ , D

θ∗) is an η-proximal equilibrium with respect
to the Sobolev norm ‖ · ‖Ḣ1 .
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