
Online mirror descent and dual averaging:
keeping pace in the dynamic case

Huang Fang 1 Nicholas J. A. Harvey 1 Victor S. Portella 1 Michael P. Friedlander 1

Abstract
Online mirror descent (OMD) and dual averag-
ing (DA)—two fundamental algorithms for online
convex optimization—are known to have very
similar (and sometimes identical) performance
guarantees when used with a fixed learning rate.
Under dynamic learning rates, however, OMD is
provably inferior to DA and suffers a linear regret,
even in common settings such as prediction with
expert advice. We modify the OMD algorithm
through a simple technique that we call stabiliza-
tion. We give essentially the same abstract regret
bound for OMD with stabilization and for DA by
modifying the classical OMD convergence anal-
ysis in a careful and modular way that allows
for straightforward and flexible proofs. Simple
corollaries of these bounds show that OMD with
stabilization and DA enjoy the same performance
guarantees in many applications—even under dy-
namic learning rates. We also shed light on the
similarities between OMD and DA and show sim-
ple conditions under which stabilized-OMD and
DA generate the same iterates.

1. Introduction
Online convex optimization (OCO) lies at the intersection
of machine learning, convex optimization, and game theory.
In OCO, a player is required to make a sequence of online
decisions over discrete time steps. Each decision incurs
a cost given by a convex function that is only revealed to
the player after they make that decision. The goal of the
player is to minimize what is known as regret: the difference
between the total cost and the cost of a competitor with
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the benefit of hindsight. Letting T denote the number of
decisions, the goal is for the player’s algorithm to ensure its
regret is sublinear in T .

Online mirror descent (OMD) and dual averaging (DA) are
two important algorithm templates for OCO from which
many classical online learning algorithms can be derived
as special cases; see Shalev-Shwartz (2012) and McMahan
(2017) for examples. When the number T of decisions to
be made is known in advance, the performance of OMD
and DA (with properly chosen constant learning rates) can
be shown to be very similar (Hazan, 2016). That is, they
achieve essentially the same regret bound when using the
same learning rate. However, when the number of decisions
is not known a priori, there is a fundamental difference in
the regret guarantees for OMD and DA with a similar dy-
namic (time-varying) learning rate: while DA can guarantee
sublinear regret bound O(

√
T ) for any T > 0 (Nesterov,

2009), there are instances for which OMD suffers asymp-
totically linear Ω(T ) regret (Orabona & Pál, 2018). We
summarize this discussion as follows.

Previously known fact. With a dynamic learning rate,
OMD does not match the performance of DA.

The purpose of this paper is to introduce a stabilization
technique that bridges the gap between OMD and DA with
dynamic learning rates.

Main result (informal). With a dynamic learning rate,
stabilized-OMD matches the performance of DA.

For a formal statement, see the abstract regret bounds in
Theorems 4.1, 4.3, and 4.6. In Section 5 we give some
applications: regret bounds with strongly convex mirror
maps; for prediction with expert advice, anytime regret
bounds with the best known constant, and a first-order re-
gret bound. Also, in Section 6 we formally compare the
iterates of DA and stabilized-OMD. This sheds light on the
drawbacks of OMD with dynamic learning rate and why sta-
bilization helps. To conclude, we derive simple conditions
under which stabilized-OMD and DA generate exactly the
same iterates. This is analogous to the relationship between
OMD and DA with a fixed learning rate, and is evidence
that stabilization may be a natural way to extend OMD to
dynamic learning rates. Additionally, in Appendix I we
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adapt stabilized-OMD for the composite objective setting,
generalizing a result of Duchi et al. (2010).

2. Related work
Mirror descent (MD) originated with Nemirovski & Yudin
(1983). Beck & Teboulle (2003) give a modern treatment.
Recent interest in first-order methods for large-scale prob-
lems have boosted the popularity of OMD. See, e.g., Duchi
et al. (2010); Allen-Zhu & Orecchia (2016); Beck (2017).
DA is due to Nesterov (2009) and was later extended to reg-
ularized problems by Xiao (2010). DA is closely related to
the follow-the-regularized-leader (FTRL) algorithm. Stan-
dard references for these algorithms include Shalev-Shwartz
(2012); Bubeck (2015); Hazan (2016); McMahan (2017).
OMD and DA have seen an increase in popularity due to
applications in online learning problems (Kakade et al.,
2012; Audibert et al., 2014) and since they generalize a
wide range of online learning algorithms (Shalev-Shwartz,
2012; McMahan, 2017).

Unifying views of online learning algorithms have been
shown to be useful for applications and have drawn recent
attention. McMahan (2017) uses FTRL with adaptive regu-
larizers to derive many online learning algorithms. Joulani
et al. (2017) propose a unified framework to analyze on-
line learning algorithms, even for non-convex problems.
Recently, Juditsky et al. (2019) proposed a unified frame-
work called unified mirror descent (UMD) that encompasses
OMD and DA as special cases.

Despite these unifying frameworks, the differences between
OMD and DA seem to have been overlooked. Only recently,
Orabona & Pál (2018), who looked more closely at the dif-
ference between OMD and DA, presented counter examples
to demonstrate that OMD with dynamic learning rate could
suffer from linear regret even under the well-studied settings
as in the experts’ problem.

For the problem of prediction with expert advice, Cesa-
Bianchi et al. (1997) use the doubling trick to give an al-
gorithm with a sublinear anytime regret bound, meaning
a bound parameterized by T and that holds for all T . Im-
proved anytime regret bounds were developed by Auer et al.
(2002b); a simplified description of this result appears in
by Cesa-Bianchi & Lugosi (2006, §2.3). Sublinear anytime
regret bounds for DA follow directly from the analysis of
Nesterov (2009). Other expositions include (Bubeck, 2011,
Theorem 2.4) and (Gerchinovitz, 2011, Proposition 2.1).

First-order regret bounds are bounds that depend on the cost
of the best expert instead of on the number of decisions T .
Such bounds can be proven using the doubling trick, as
shown by Cesa-Bianchi et al. (1997). First-order regret
bounds without using the doubling trick were proven by
Auer et al. (2002b). Improved constants are known; see,

e.g., de Rooij et al. (2014, Theorem 8). The best known first-
order regret bound, in some settings, is from a sophisticated
algorithm designed by Yaroshinsky et al. (2004).

3. Formal definitions
We consider the online convex optimization problem with
unknown time horizon. For each time step t ∈ {1, 2, . . .}
the algorithm proposes a point xt from a closed convex set
X ⊆ Rn, and an adversary simultaneously picks a con-
vex cost function ft to which the algorithm has access
via a first order oracle, that is, for any x ∈ X the algo-
rithm can compute ft(x) and a subgradient g ∈ ∂ft(x) :=
{ g ∈ Rn : f(z) ≥ f(x) + 〈g, z − x〉 ∀z ∈ X}. This func-
tion penalizes the proposal xt by the amount ft(xt). The
cost of the iteration at time t is defined as ft(xt). The goal is
to produce a sequence of proposals {xt}t≥1 that minimizes
the regret against a unknown comparison point z ∈ X that
has accrued up until time T :

Regret(T, z) :=

T∑
t=1

ft(xt)−
T∑
t=1

ft(z).

We consider the case where the algorithm does not know
the time horizon T in advance. Hence any parameters of the
algorithms, including learning rate, cannot depend on T .

We assume that each function in the sequence {ft}t≥1 is
L-Lipschitz (continuous) over X with respect to a norm ‖·‖,
and we denote the dual norm of ‖·‖ by ‖·‖∗.

Both OMD and DA are parameterized by a mirror map (for
X ), that is, a closed convex function of Legendre type (Rock-
afellar, 1970, Chapter 26) Φ: D̄ → R whose conjugate is
differentiable on Rn and with D̄ ⊆ Rn a convex set such
thatD∩riX 6= ∅, whereD := int D̄ and riX is the relative
interior ofX . The gradient of the mirror map∇Φ: D → Rn
and the gradient of its conjugate ∇Φ∗ : Rn → D are mu-
tually inverse bijections between the primal space D and
the dual space Rn (Rockafellar, 1970, Theorem 26.5). We
will adopt the following notational convention. Any vector
in the primal space will be written without a hat, such as
x ∈ D. The same letter with a hat, namely x̂, will denote
the corresponding dual vector:

x̂ := ∇Φ(x) and x := ∇Φ∗(x̂) for all letters x.

Given a mirror map Φ, the Bregman divergence of x ∈ D̄
and y ∈ D w.r.t. Φ is defined by DΦ(x, y) := Φ(x) −
Φ(y)− 〈∇Φ(y), x− y 〉. Throughout this paper it will be
convenient to use the notation

DΦ(ab ; c) := DΦ(a, c)−DΦ(b, c).

The projection operator induced by the Bregman divergence
is ΠΦ

X (y) := arg min{DΦ(x, y) : x ∈ X}.

A general template for optimization in the mirror descent
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framework is shown in Algorithm 1. OMD and DA are
incarnations of this framework, differing only in how the
dual variable ŷt is updated.

Algorithm 1 Pseudocode for OMD and DA.

Input: x1 ∈ X ∩ D, η : N→ R>0.
for t = 1, 2, . . . do

Incur cost ft(xt) and receive ĝt ∈ ∂ft(xt)
x̂t = ∇Φ(xt)
[OMD update] ŷt+1 = x̂t − ηtĝt
[DA update] ŷt+1 = x̂1 − ηt+1

∑
i≤t ĝi

yt+1 = ∇Φ∗(ŷt+1)
xt+1 = ΠΦ

X (yt+1)
end for

4. Stabilized-OMD
Orabona & Pál (2018) showed that OMD with the standard
dynamic learning rate (ηt ∝ 1/

√
t) can incur regret linear

in T when the feasible set X is unbounded Bregman diver-
gence, that is, supx,z∈X DΦ(z, x) = ∞. We introduce a
stabilization technique that resolves this problem, allowing
OMD to support a dynamic learning rate and perform sim-
ilarly to DA even when the Bregman divergence on X is
unbounded.

The intuition for the idea is as follows. Suppose Z ⊆ X
is a set of comparison points with respect to which we
wish our algorithm to have low regret. Usually, we assume
supz∈Z DΦ(z, x1) is bounded, that is, the initial point is
not too far (with respect to the Bregman divergence) from
any comparison point. Since supz∈Z DΦ(z, x1) is bounded
(but not necessarily supz∈Z,x∈X DΦ(z, x)), the point x1 is
the only point in X that is known to be somewhat close
(w.r.t. the Bregman divergence) to all the other points in
X . Thus, iterates computed by the algorithm should remain
reasonably close to x1 so that no other point z ∈ Z is
too far from the iterates. If there were such a point z, an
adversary could later chose functions so that picking z every
round would incur low loss. At the same time, OMD would
take many iterations to converge to z since consecutive
OMD iterates tend to be close w.r.t. the Bregman divergence.
That is, the algorithm would have high regret against z.
To prevent this, the stabilization technique modifies each
iterate xt to mix in a small fraction of x1. This idea is
not entirely new: it appears, for example, in the original
Exp3 algorithm (Auer et al., 2002a), although for different
reasons.

There are two ways to realize the stabilization idea.

Primal Stabilization. Replace xt with a convex combina-
tion of xt and x1.

Dual Stabilization. Replace ŷt with a convex combination
of ŷt and x̂1 (Recall from Algorithm 1 that ŷt is the dual

PrimalDual

}

Figure 1: Illustration of the t-th iteration of DS-OMD.

iterate computed by taking a gradient step). An illustration
for dual stabilization is shown in Figure 1.

After a draft of this paper was made publicly available, we
were informed that an idea similar to primal stabilization
had appeared in the Robust Optimistic Mirror Descent algo-
rithm (Kangarshahi et al., 2018). Their setting is somewhat
different since they perform optimistic steps. Furthermore,
their results are somewhat weaker in terms of constant fac-
tors and since they cannot handle Bregman projections.

In this section we use many results regarding Bregman
divergences (see Appendix A.2), and for ease of reference
we will state the main results. Let a, b, c ∈ D. A classic
result is the three-point identity (Bubeck, 2015, §4)

DΦ(a, c)−DΦ(b, c)+DΦ(b, a) = 〈 â− ĉ, a−b 〉. (4.1)

If γâ+ (1−γ)b̂ = ĉ for some γ ∈ R, then, for all u, v ∈ D̄,

γDΦ(uv ; a) + (1− γ)DΦ(uv ; b) = DΦ(uv ; c). (4.2)

Finally, if p ∈ D and π := ΠX (p), then

DΦ( zπ ; p) ≥ DΦ( zπ ;π) = DΦ(z, π) ∀z ∈ X . (4.3)

4.1. Dual-stabilized OMD

Algorithm 2 gives pseudocode showing our modification
of OMD to incorporate dual stabilization. Theorem 4.1
analyzes it without assuming strong convexity of Φ.

Theorem 4.1 (Regret bound for dual-stabilized OMD). Let
η : N → R>0 be such that ηt ≥ ηt+1 for all t ≥ 1. Define
γt = ηt+1/ηt ∈ (0, 1] for all t ≥ 1. Let {ft}t≥1 be a
sequence of convex functions with ft : X → R for each
t ≥ 1. Let {xt}t≥1 and {ŵt}t≥2 be as in Algorithm 2.
Then, for all T > 0 and z ∈ X ,

Regret(T, z) ≤
T∑
t=1

DΦ( xt

xt+1
;wt+1)

ηt
+
DΦ(z, x1)

ηT+1
.

(4.7)
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Algorithm 2 Dual-stabilized OMD (DS-OMD). The param-
eters γt control the amount of stabilization.

Input: x1 ∈ X , η : N→ R+, γ : N→ (0, 1]
for t = 1, 2, . . . do

Incur cost ft(xt) and receive ĝt ∈ ∂ft(xt)
x̂t = ∇Φ(xt)
ŵt+1 = x̂t − ηtĝt (4.4)
ŷt+1 = γtŵt+1 + (1− γt)x̂1 (4.5)
yt+1 = ∇Φ∗(ŷt+1)

xt+1 = ΠΦ
X (yt+1) (4.6)

end for

Note that strong convexity of Φ is not assumed. As we
will see in Section 5.1, the term DΦ( xt

xt+1
;wt+1) can be

easily bounded when the mirror map is strongly convex.
This yields sublinear regret for ηt ∝ 1/

√
t, which is not the

case for OMD when supz∈Z,x∈X DΦ(z, x) = +∞, where
Z ⊆ X is a fixed set of comparison points.

Proof (of Theorem 4.1).

The first step is the same as in the standard OMD proof. For
all z ∈ X , use the subgradient inequality to deduce

ft(xt)− ft(z) ≤ 〈 ĝt, xt − z 〉
(i)
=

1

ηt
〈 x̂t − ŵt+1, xt − z 〉

(ii)
=

1

ηt

(
DΦ(xt

z ;wt+1) +DΦ(z, xt)
)
,

(4.8)

where (i) follows from (4.4), and (ii) from (4.1).

The next step exhibits the main point of stabilization. With-
out stabilization we would have xt+1 = ΠΦ

X (wt+1) and
DΦ(z, wt+1) ≥ DΦ(z, xt+1) + DΦ(xt+1, wt+1) by (4.3),
so (4.8) would lead to a telescoping sum involving DΦ(z, ·)
if the learning rate were fixed. With a dynamic learning rate
the analysis is trickier: we must obtain telescoping terms by
relating DΦ(z, wt+1) to DΦ(z, xt+1). This the purpose of
the next claim.

Claim 4.2. Assume that γt = ηt+1/ηt ∈ (0, 1]. Then

(4.8) ≤
DΦ( xt

xt+1
;wt+1)

ηt
+
( 1

ηt+1
− 1

ηt

)
︸ ︷︷ ︸

telescopes

DΦ(z, x1)

+
DΦ(z, xt)

ηt
− DΦ(z, xt+1)

ηt+1︸ ︷︷ ︸
telescopes

.

Proof. First we derive the inequality

γtDΦ( z
xt+1

;wt+1) + (1− γt)DΦ(z, x1)

(i)

≥ γtDΦ( z
xt+1

;wt+1) + (1− γt)DΦ( z
xt+1

;x1)

Algorithm 3 OMD with primal stabilization.

Input: x1 ∈ Rn, η : N→ R, γ : N→ R.
for t = 1, 2, . . . do

Incur cost ft(xt) and receive ĝt∈∂ft(xt)
x̂t = ∇Φ(xt)
ŵt+1 = x̂t − ηtĝt
wt+1 = ∇Φ∗(ŵt+1)

yt+1 = ΠΦ
X (wt+1) (4.10)

xt+1 = γtyt+1 + (1− γt)x1 (4.11)
end for

= DΦ( z
xt+1

; yt+1) (by (4.2) and (4.5))

≥ DΦ(z, xt+1) (by (4.3) and (4.6)),

where (i) uses the fact that DΦ(xt+1, x1) ≥ 0 and γt ≤ 1.
Rearranging and using γt > 0 yields

DΦ(z, wt+1) ≥ DΦ(xt+1, wt+1) (4.9)

− 1− γt
γt

DΦ(z, x1) +
1

γt
DΦ(z, xt+1).

Plugging this into (4.8) yields

(4.8) =
1

ηt

[
DΦ(xt, wt+1)−DΦ(z, wt+1) +DΦ(z, xt)

]
(4.9)
≤ 1

ηt

[
DΦ(xt, wt+1)−DΦ(xt+1, wt+1)

+
( 1

γt
− 1
)
DΦ(z, x1)− 1

γt
DΦ(z, xt+1) +DΦ(z, xt)

]
.

The claim then follows by the definition of γt.

Summing the inequality from Claim 4.2 over t ∈ [T ] proves
Theorem 4.1. For completeness we show these calculations
in Appendix B.

4.2. Primal-stabilized OMD

Algorithm 3 gives pseudocode for the primal-stabilized
OMD method, which has the following regret bound.

Theorem 4.3 (Regret bound for primal-stabilized OMD).
For all t ≥ 1, let η : N → R>0 be such that ηt ≥ ηt+1;
define γt = ηt+1/ηt ∈ (0, 1]; and let {ft}t≥1 be a sequence
of convex functions with ft : X → R. Let {xt}t≥1, {yt}t≥2

and {ŵt}t≥2 be as in Algorithm 3. Furthermore, assume

for all z ∈ X , the map DΦ(z, ·) is convex on X . (4.12)

Then, for all T > 0 and z ∈ X ,

Regret(T, z) ≤
T∑
t=1

DΦ( xt

yt+1
;wt+1)

ηt
+
DΦ(z, x1)

ηT+1
.

(4.13)

The proof is identical to the proof of Theorem 4.1, replac-
ing DΦ( xt

xt+1
;wt+1) with DΦ( xt

yt+1
;wt+1) and replacing
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Claim 4.2 with the following claim. (The complete proof
of Theorem 4.3 can be found in Appendix C.)

Claim 4.4. Assume that γt = ηt+1/ηt ∈ (0, 1]. Then

(4.8) ≤
DΦ( xt

yt+1
;wt+1)

ηt
+
( 1

ηt+1
− 1

ηt

)
︸ ︷︷ ︸

telescopes

DΦ(z, x1)

+
DΦ(z, xt)

ηt
− DΦ(z, xt+1)

ηt+1︸ ︷︷ ︸
telescopes

.

Proof. First, we derive the inequality

γtDΦ( z
yt+1

;wt+1) + (1− γt)DΦ(z, x1)

(i)

≥ γtDΦ(z, yt+1) + (1− γt)DΦ(z, x1)

(ii)

≥ DΦ(z, xt+1).

where (i) follows from (4.3) and (4.10), and (ii) is by (4.11),
(4.12) and γt ∈ (0, 1]. Rearranging and using γt > 0 yields

DΦ(z, wt+1) ≥ DΦ(yt+1, wt+1)− 1− γt
γt

DΦ(z, x1)

+
1

γt
DΦ(z, xt+1). (4.14)

Plugging this into (4.8) yields

(4.8) =
1

ηt

(
DΦ(xt

z ;wt+1) +DΦ(z, xt)
)

(4.14)
≤ 1

ηt

(
DΦ(xt, wt+1)−DΦ(yt+1, wt+1)

+
( 1

γt
− 1
)
DΦ(z, x1)− 1

γt
DΦ(z, xt+1) +DΦ(z, xt)

)
.

The claim follows by the definition of γt.

4.3. Dual averaging

In this section, we show that the DA algorithm can be ob-
tained by a small modification of dual-stabilized online
mirror descent. Furthermore our proof of Theorem 4.1 can
be adapted to analyze this algorithm.

The main difference between DS-OMD and DA is in the
gradient step. In iteration t + 1 of DS-OMD the gradient
step is taken from x̂t (the dual counterpart of xt):

DS-OMD gradient step: ŵt+1 := x̂t − ηtĝt.

Suppose that the algorithm is modified so that the gradient
step is taken from ŷt, the dual point from iteration t before
projection onto the feasible region (here define ŷ1 := x̂1).
The resulting gradient step is

Lazy gradient step: ŵt+1 := ŷt − ηtĝt. (4.15)

As before, we set

ŷt+1 := γtŵt+1 + (1− γt)x̂1,

where γt = ηt+1/ηt. Then a simple inductive proof yields
the following claim.

Claim 4.5. ŵt = x̂1 − ηt−1

∑
i<t ĝi and ŷt = x̂1 −

ηt
∑
i<t ĝi for all t > 1.

Thus, DS-OMD with the lazy gradient step can be written
as in Algorithm 1 with the DA update.

Theorem 4.6 (Regret bound for dual averaging). Let
η : N → R>0 be such that ηt ≥ ηt+1 for all t ≥ 1. De-
fine γt = ηt+1/ηt ∈ (0, 1] for all t ≥ 1. Let {ft}t≥1 be
a sequence of convex functions with ft : X → R for each
t ≥ 1. Let {xt}t≥1 and {ĝt}t≥1 be as in as in Algorithm 1
with DA updates. Then, for all T > 0 and z ∈ X ,

Regret(T, z) (4.16)

≤
T∑
t=1

DΦ( xt

xt+1
;∇Φ∗(x̂t − ηtĝt))

ηt
+
DΦ(z, x1)

ηT+1
.

The proof parallels the proof of Theorem 4.1 and can be
found in Appendix D.

4.4. Remarks

Interestingly, the doubling trick (Shalev-Shwartz, 2012) for
OMD can be viewed as an incarnation of stabilization. To
see this, set ηt := 1/

√
2blg tc and γt := 1{t is a power of 2}.

Then, for each dyadic interval of length 2`, the first iterate
is x1 and a fixed learning rate 1/

√
2` is used. Thus, with

these parameters, Algorithm 2 reduces to the doubling trick.

Note that in Theorem 4.1 the stabilization parameter γt used
in round t ≥ 1 depends on the learning rates for rounds
t and t + 1. Thus, to use stabilization as in Theorem 4.1
the learning rate for round t can depend on information
available only up to round t − 1. This will be important
when we derive first-order regret bounds in Section 5.2.2
where the learning rate depends on the past functions and
iterates. Reindexing the learning rates could fix the problem,
but then the proof of Theorem 4.1 would look syntactically
odd. Although this “dependence on the future” may seem
unnatural, in Section 6 we shall see that, under mild con-
ditions, stabilized-OMD coincides with DA with dynamic
learning rates. This extends the same behavior observed
between OMD and DA when the learning rates are fixed.
This may be seen as evidence that stabilization is a natural
way to fix OMD for dynamic learning rates. Furthermore,
McMahan (2017) shows this off-by-one difference among
other algorithms for OCO and discusses the implications of
this phenomenon.
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5. Applications
In this section we show that stabilized-OMD and DA enjoy
the same regret bounds in several applications that involve a
dynamic learning rate.

5.1. Strongly-convex mirror maps

We now analyze the algorithms of the previous section in
the scenario that the mirror maps are strongly convex. Let
ηt, γt, ft be as in the previous section. The next result is a
corollary of Theorems 4.1, 4.3, and 4.6.

Corollary 5.1 (Regret bound for dual-stabilized OMD).
Suppose that Φ is ρ-strongly convex on X with respect
to a norm ‖ · ‖. Let {xt}t≥1 be the iterates produced by
Algorithms 1 with the DA update, or the update rules in Al-
gorithms 2 or 3 (for Algorithm 3, the additional assumption
(4.12) is required). Then, for all T > 0 and z ∈ X ,

Regret(T, z) ≤
T∑
t=1

ηt‖ĝt‖2∗
2ρ

+
DΦ(z, x1)

ηT+1
.

This is identical to the bound for dual averaging in Nesterov
(2009, Eq. 2.15) (taking his λi := 1 and his βi := 1/ηi).

The proof is based on the following simple proposition,
which bounds the Bregman divergence when Φ is strongly
convex (Bubeck, 2015, pp. 300). The proof is given in Ap-
pendix E.

Proposition 5.2. Suppose Φ is ρ-strongly convex on X
with respect to ‖·‖. For any x, x′ ∈ X and q̂ ∈ Rn,

DΦ( xx′ ;∇Φ∗(x̂− q̂)) ≤ ‖q̂‖2∗/2ρ.
Proof (of Corollary 5.1). The regret bounds proven by
Theorems 4.1, 4.3 and 4.6 all involve a summation with
terms of the form

4.1 : DΦ( xt

xt+1
;wt+1) 4.3 : DΦ( xt

yt+1
;wt+1)

4.6 : DΦ( xt

xt+1
;∇Φ∗(x̂t − ηtĝt)).

For Theorems 4.1 and 4.6, we have xt+1 ∈ X , whereas
for Theorem 4.3 we have yt+1 ∈ X by (4.10). For Theo-
rems 4.1 and 4.3 we have wt+1 = ∇Φ∗(x̂t − ηtĝt) by (4.4)
and (4.12). Therefore all of these terms may be bounded
using Proposition 5.2 with x = xt and q̂ = ηtĝt. This yields
the claimed bound.

5.2. Prediction with expert advice

Next consider the setting of “prediction with expert advice”.
In this setting, D̄ is Rn≥0, X is the simplex ∆n ⊂ Rn, and
the mirror map is Φ(x) :=

∑n
i=1 xi log xi. (On X , Φ is the

negative of the entropy function.) The gradient of the mirror
map and its conjugate are

∇Φ(x)i = ln(xi) + 1 and ∇Φ∗(x̂)i = ex̂i−1. (5.1)

For any two points a ∈ D̄ and b ∈ D, an easy calculation
shows that DΦ(a, b) is the generalized KL-divergence

DKL(a, b) =

n∑
i=1

ai ln(ai/bi)− ‖a‖1 + ‖b‖1.

Note that the KL-divergence is convex in its second argu-
ment for any b ∈ D = Rn>0 since the functions − ln(·) and
absolute value are both convex. This means that all the
abstract regret bounds from Section 4 hold in this setting.
Using them we will derive regret bounds for this setting
with a little extra-work. As an intermediate step, we will
derive bounds that use the following function:

Λ(a, b) := DKL(a, b) + ‖a‖1 − ‖b‖1 + ln‖b‖1

=

n∑
i=1

ai ln(ai/bi) + ln‖b‖1,

which is a standard tool in the analysis of algorithms for the
experts’ problem. For examples, see de Rooij et al. (2014,
§2.1) and Cesa-Bianchi et al. (2007, Lemma 4).

The next result is a corollary of Theorems 4.1, 4.3, and 4.6.

Corollary 5.3. For all t ≥ 1, let η : N→ R>0 be such that
ηt ≥ ηt+1; define γt = ηt+1/ηt ∈ (0, 1]; and let {ft}t≥1

be a sequence of convex functions with ft : X → R. Let x1

be the uniform distribution~1/n and let {xt}t≥2 and {ĝt}t≥1

be as in one of Algorithms 1 with the DA update, or the DA
update in Algorithms 2 or 3. Then, for all T > 0 and z ∈ X ,

Regret(T, z) ≤
T∑
t=1

Λ(xt,∇Φ∗(x̂t − ηtĝt))
ηt

+
lnn

ηT+1
.

(5.2)

The proof is a direct consequence of the following proposi-
tion, which is proven in Appendix F.

Proposition 5.4. DΦ(ab ; c) ≤ Λ(a, c) for a, b ∈ X , c ∈ D.

Proof (of Corollary 5.3). First, recall that DKL is convex
in its second argument, which allows us to use the bound
from (4.13) for primal-stabilized OMD. As in the proof
of Corollary 5.1, we first observe that the regret bounds
(4.7), (4.13) and (4.16) all have sums with terms of the
form DΦ(xt

ut
;∇Φ∗(x̂t − ηtĝt)) for some ut ∈ X that may

be bounded using Proposition 5.4. Finally, the standard
inequality supz∈X DKL(z, x1) ≤ lnn completes the proof.

5.2.1. Anytime regret

From Corollary 5.3 we now derive an anytime regret bound
in the case of bounded costs. This matches the best known
bound appearing in the literature; see Bubeck (2011, Theo-
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rem 2.4) and Gerchinovitz (2011, Proposition 2.1). More-
over, in Appendix G we show that this is tight for DA.

Corollary 5.5. Define ηt = 2
√

ln(n)/t and γt =
ηt+1/ηt ∈ (0, 1] for all t ≥ 1. Let {ft := 〈ĝt, ·〉}t≥1

be such that ĝt ∈ [0, 1]n for all t ≥ 1. Let x1 be the
uniform distribution ~1/n and let {xt}t≥2 be as in one of
Algorithms 1 with the DA update, or the DA update in
Algorithms 2 or 3. Then,

Regret(T, z) ≤
√
T lnn, ∀T ≥ 1,∀z ∈ X .

The proof follows from Corollary 5.3 and Hoeffding’s
Lemma, as shown below.

Lemma 5.6 (Hoeffding’s Lemma (Cesa-Bianchi & Lugosi,
2006, Lemma 2.2)). Let X be a random variable with
a ≤ X ≤ b. Then for any s ∈ R,

lnE[esX ]− sEX ≤ s2(b− a)2

8
.

Proof (of Corollary 5.5). By (5.1) we have ∇Φ∗(x̂t −
ηtĝt)i = xt(i) exp(−ηtĝt(i)) for each i ∈ [n]. This to-
gether with Lemma 5.6 for s = −ηt yields

Λ(xt,∇Φ∗(x̂t − ηtĝt))

= ηt〈ĝt, xt〉+ ln
( n∑
i=1

xt(i)e
−ηtĝt(i)

)
≤ η2

t

8
.

Plugging this and ηt = 2
√

lnn
t into (5.2), we obtain

Regret(T ) ≤
√

lnn

(
1

4

T∑
t=1

1√
t

+

√
T + 1

2

)

≤
√

lnn

(
2
√
T − 1

4
+

√
T + 0.5

2

)
≤
√
T lnn,

by Fact A.3 and sub-additivity of square root.

5.2.2. First-order regret bound

The regret bound described in Section 5.2.1 depends on
√
T ;

this is known as a “zeroth-order” regret bound. In some
scenarios the cost of the best expert up to time T can be far
less than T . This makes the problem somewhat easier, and
it is possible to improve the regret bound. Formally, let L∗T
denote the total cost of the best expert until time T . Then
L∗T ≤ T due to our assumption that all costs are at most 1. A
“first-order” regret bound depends on

√
L∗T instead of

√
T .

The only modification to the algorithm is to change the
learning rate. If the costs are “smaller than expected”, then
intuitively time is progressing “slower than expected”. We
will adopt an elegant idea of Auer et al. (2002b), which
is to use the algorithm’s cost itself as a measure of the

progression of time, and to incorporate this into the learning
rate. They call this a “self-confident” learning rate.

Corollary 5.7. Let {ft := 〈ĝt, ·〉}t≥1 be such that ĝt ∈
[0, 1]n for all t ≥ 1. Define γt = ηt+1/ηt ∈ (0, 1] and
ηt =

√
ln(n)/(1 +

∑
i<t〈 ĝi, xi 〉) for all t ≥ 1. Let x1 be

the uniform distribution ~1/n and let {xt}t≥2 be as in one
of Algorithms 1 with the DA update, 2, or 3. Denote the
minimum total cost of any expert up to time T as L∗T :=

minj∈[n]

∑T
t=1 ĝt(j). Then,

Regret(T, z) ≤ 2
√

ln(n)L∗T +8lnn, ∀T ≥ 1,∀z ∈ X .

The main ingredient is the following alternative bound on Λ,
which is proven in Appendix F.

Proposition 5.8. Let a ∈ X , q̂ ∈ [0, 1]n and η > 0. Then
Λ(a,∇Φ∗(â− ηq̂)) ≤ η2〈 a, q̂ 〉/2.

Proof (of Corollary 5.7). Let z ∈ X . From Corollary 5.3
and Proposition 5.8, we have

sup
z′∈X

T∑
t=1

〈 ĝt, xt − z′ 〉 ≤
T∑
t=1

ηt〈 ĝt, xt 〉
2

+
lnn

ηT+1
.

(5.3)

Denote the algorithm’s total cost at time t by At =∑
i≤t〈 ĝi, xi 〉. Recall the total cost of the best expert at

time T is L∗T = minz′∈∆n

∑T
t=1〈 ĝt, z′ 〉 and the learning

rate is ηt =
√

ln(n)/(1 +At−1). Substituting into (5.3),

AT − L∗T ≤
√

lnn

(
1

2

T∑
t=1

〈 ĝt, xt 〉√
1 +At−1

+
√

1 +AT

)
≤
√

lnn
(√

AT +
√
AT + 1

)
by Proposition A.5 with ai = 〈 ĝi, xi 〉 and u = 1. Rewrit-
ing the previous inequality, we have shown that

AT − L∗T ≤ 2
√

ln(n)AT +
√

lnn.

By Proposition A.7 we obtain

AT − L∗T ≤ 2
√

ln(n)L∗T +
√

lnn+ 2 (lnn)
3/4

+ 4lnn.

Since AT − L∗T ≥ Regret(T, z), the result follows.

Comparing our bound with some existing results in the
literature: our constant term of 2 obtained in Corollary 5.7
is better than the constant (

√
2/(
√

2− 1)) obtained by the
doubling trick (Cesa-Bianchi & Lugosi, 2006, Exercise 2.8),
and the constant (2

√
2) in Auer et al. (2002b) but worse

than the constant (
√

2) of the best known first-order regret
bound Yaroshinsky et al. (2004), which is obtained by a
sophisticated algorithm. We also match the constant 2 of
the Hedge algorithm from de Rooij et al. (2014, Theorem 8).
Their result is actually more general; we could similarly
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generalize our analysis, but that would deviate too far from
the main purpose of this paper.

6. Comparing DS-OMD and DA
In this section we shall write the iterates of dual-stabilized
OMD in two equivalent forms. First we shall write it in
a proximal-like formulation similar to the mirror descent
formulation in Beck & Teboulle (2003), shedding some light
into the intuition behind dual-stabilization. We then write
the iterates from DS-OMD in a form very similar to the
original definition of DA in Nesterov (2009). The later will
allow us to intuitively understand why OMD does not play
well with dynamic step-size and to derive simple sufficient
conditions under which DS-OMD and DA generate the same
iterates, mimicking the relation between OMD and DA for
a fixed learning rate.

Beck & Teboulle (2003) show that the iterate xt+1 for
round t+ 1 from OMD is the unique minimizer over X of
ηt〈ĝt, ·〉+DΦ(·, xt), where ĝt ∈ ∂ft(xt). The next propo-
sition extends this formulation to DS-OMD, recovering the
result from Beck and Teboulle when γt = 1. The proof,
which can be found in Appendix H, is a simple application
of the optimality conditions of (6.1).

Proposition 6.1. Let {ft}t≥1 be a sequence of convex
functions with ft : X → R for each t ≥ 1. Let η : N →
R>0 and γ : N→ [0, 1]. Let {xt}t≥1 and {ĝt}t≥1 be as in
Algorithm 2. Then, for any t ≥ 1,

{xt+1} = arg min
x∈X

(
γt
(
ηt〈ĝt, x〉+DΦ(x, xt)

)
+ (1− γt)DΦ(x, x1)

)
.

(6.1)

In spite of their similar descriptions, Orabona & Pál (2018)
showed that OMD and DA may behave in extremely differ-
ent ways even on the well-studied experts’ problem with
similar choices of step-sizes. This extreme difference in be-
havior is not clear from the classical algorithmic description
of these methods as in Algorithm 1. In the case of DA, it
is well-known that DA can be seen as an instance of the
FTRL algorithm; see Bubeck (2015, §4.4) or Hazan (2016,
§5.3.1). More specifically, if {xt}t≥1 and {ĝt}t≥1 are as in
Algorithm 1 with the DA update, then for every t ≥ 0, 1

{xt+1} = arg min
x∈X

(
ηt+1

t∑
i=1

〈ĝi, x〉 − 〈x̂1, x〉+ Φ(x)
)
.

(6.2)
In the next theorem, proven in Appendix H, we write
DS-OMD in a similar form, but with vectors from the
normal cone of X creeping into the formula due to the
back and forth between the primal and dual spaces. Re-
call that the normal cone of X at a point x ∈ X is the

1The 〈∇Φ(x1), x〉 term disappears if x1 minimizes Φ on X .

set NX (x) := { p ∈ Rn : 〈p, z − x〉 ≤ 0 for all z ∈ X}.
The result in McMahan (2017, Theorem 11) is similar but
slightly more intricate due to the use of time-varying mirror
maps. Moreover, this result does not directly apply when
we have stabilization.

Theorem 6.2. Let {ft}t≥1 with ft : X → R be a sequence
of convex functions and let η : N→ R>0 be non-increasing.
Let {xt}t≥1 and {ĝt}t≥1 be as in Algorithm 2. Then, there
are {pt}t≥1 with pt ∈ NX (xt) for all t ≥ 1 such that,
if γi = 1 for all i ≥ 1, then for all t ≥ 0

{xt+1} = arg min
x∈X

( t∑
i=1

〈ηiĝi + pi, x〉 − 〈x̂1, x〉+ Φ(x)
)

(6.3)
and if γi = ηi+1

ηi
for all i ≥ 1, then for all t ≥ 0

{xt+1} = arg min
x∈X

(
ηt+1

t∑
i=1

〈ĝi+p′i, x〉−〈x̂1, x〉+Φ(x)
)
.

(6.4)
where p′t := 1

ηt
pt ∈ NX (xt) for every t ≥ 1.

With the above theorem, we may compare the iterates of DA,
OMD, and DS-OMD by comparing the formulas (6.2), (6.3),
and (6.4). For the simple unconstrained case whereX = Rn
we have NX (xt) = {0} for each t ≥ 1 and DA and DS-
OMD are identical. However, if the learning rate is not
constant, OMD is not equivalent to the latter methods. In
particular, if ηt ∝ 1√

t
, (6.3) shows that the subgradients

of the earlier-seen functions have a bigger weight on the
iterates if compared to the subgradients of functions from
later rounds. In other words, OMD may be sensitive to the
ordering of the functions, and adversarial orderings may
affect its performance.

When X is an arbitrary convex set, DA and DS-OMD are
not necessarily equivalent anymore due to the vectors from
the normal cone of X . If we know that the iterates live in
the relative interior of X , the next lemma (whose proof we
give in Appendix H) shows that these vectors do not affect
the set of minimizers from (6.4).

Lemma 6.3. For any x̊ ∈ riX we have NX (̊x) =
(−NX (̊x)) ∩ NX (̊x). In particular, for any p ∈ NX (̊x)
we have 〈p, x〉 = 〈p, x̊〉 for every x ∈ X .

With this lemma, we can easily derive simple and intuitive
conditions under which DS-OMD and DA are equivalent.

Corollary 6.4. Let D ⊆ Rn be the interior of the domain
of Φ, let {xt}t≥1 be the DS-OMD iterates as in Algorithm 2
and let {x′t}t≥1 be the DA iterates as in Algorithm 1 with
DA updates. If D ∩ X ⊆ riX , then xt = x′t for each t ≥ 1.

Proof. Let t ≥ 1. Since xt = ΠΦ
X (yt), where yt is as in

Algorithm 2, Lemma H.3 implies xt ∈ D ∩ X ⊆ riX . By
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Lemma 6.3 we have that the vectors on the normal cone
in (6.4) do not affect the set of minimizers, which implies
that (6.2) and (6.4) are equivalent.

An important special case of the above corollary is the
prediction with expert advice setting as in Section 5.2,
where D = Rn>0 and X is the simplex ∆n. In this set-
ting, X ∩ D = {x ∈ (0, 1)d :

∑n
i=1 xi = 1} = riX . By

the previous corollary DS-OMD and DA produce the same
iterates in this case even for dynamic learning rates. Classi-
cal OMD and DA were already known to be equivalent in
the experts’ setting for a fixed learning rate (Hazan, 2016,
§5.4.2). In contrast, with a dynamic learning rate, the DA
and OMD iterates are certainly different, since OMD with a
dynamic learning rate may have linear regret (Orabona &
Pál, 2018), whereas DA has sublinear regret.

7. Discussion
In this paper we modified OMD via stabilization in order
to guarantee sublinear regret even when using the method
with a dynamic learning-rate. We showed that (primal and
dual) stabilized-OMD recover the regret bounds enjoyed
by DA in the anytime setting, presented some applications
of our results, and analyzed the similarities and differences
between DS-OMD, OMD, and DA.

Our bounds for the problem of prediction with expert ad-
vice nearly match the current state-of-the-art. A distinctive
feature of our proofs are their relative simplicity if com-
pared to other results from the literature. It is our hope
that the simplicity of our analysis framework allows it to be
extended to other problems. Moreover, the modularity of
our proofs allowed us to extend this analysis for DA, a fact
interesting on its own since drastically different analysis
techniques are usually used to analyze DA in the literature
(such as the Follow the Leader-Be the Leader Lemma and
optimality conditions of (6.2), see (Shalev-Shwartz, 2012,
Section 2.3) for an example). This together with our analy-
sis from Section 6 helps demystify the connections between
DA and OMD, since in spite of having similar descriptions
they had extremely different analyses and behaved wildly
differently in some scenarios. We believe that a better un-
derstanding between the differences between DA and OMD
will be helpful in future applications and in the design of
new algorithms.

8. Acknowledgements
We thank Chris Liaw for pointing out a slight flaw in the
proofs in an earlier draft of this paper. We also thank
Francesco Orabona for suggesting the use of a slightly dif-
ferent definition of regret which allows for more nuanced
statements of our results. We also express our gratitude
for the detailed feedback given by the three anonymous

reviewers from ICML 2020.

References
Allen-Zhu, Z. and Orecchia, L. Linear coupling: An ulti-

mate unification of gradient and mirror descent. Novem-
ber 2016. URL https://arxiv.org/abs/1407.
1537.

Audibert, J.-Y., Bubeck, S., and Lugosi, G. Regret in online
combinatorial optimization. Mathematics of Operations
Research, 39(1):31–45, 2014.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E.
The nonstochastic multiarmed bandit problem. SIAM
Journal on Computing, 32(1), 2002a.

Auer, P., Cesa-Bianchi, N., and Gentile, C. Adaptive and
self-confident on-line learning algorithms. Journal of
Computer and System Sciences, 64(1):48–75, 2002b.

Beck, A. First-order methods in optimization, volume 25
of MOS-SIAM Series on Optimization. Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphia, PA,
2017.

Beck, A. and Teboulle, M. Mirror descent and nonlinear
projected subgradient methods for convex optimization.
Operations Research Letters, 31(3):167–175, 2003.

Bubeck, S. Introduction to online optimization, December
2011. unpublished.

Bubeck, S. Convex optimization: Algorithms and complex-
ity. Foundations and Trends in Machine Learning, 8(3-4):
231–357, 2015.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and
games. Cambridge University Press, 2006.

Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D. P.,
Schapire, R. E., and Warmuth, M. K. How to use expert
advice. Journal of the ACM, 44(3), May 1997.

Cesa-Bianchi, N., Mansour, Y., and Stoltz, G. Improved
second-order bounds for prediction with expert advice.
Machine Learning, 66(2-3):321–352, 2007.

de Rooij, S., van Erven, T., Grünwald, P. D., and Koolen,
W. M. Follow the leader if you can, hedge if you must.
Journal of Machine Learning Research (JMLR), 15:1281–
1316, 2014.

Duchi, J. C., Shalev-shwartz, S., Singer, Y., and Tewari, A.
Composite objective mirror descent. In Proceedings of
COLT, pp. 14–26, 2010.

https://arxiv.org/abs/1407.1537
https://arxiv.org/abs/1407.1537


Online mirror descent and dual averaging: keeping pace in the dynamic case

Gerchinovitz, S. Prediction of individual sequences and
prediction in the statistical framework: some links around
sparse regression and aggregation techniques. PhD thesis,
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