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Abstract

Tuning hyperparameters for unsupervised learn-
ing problems is difficult in general due to the lack
of ground truth for validation. However, the suc-
cess of most clustering methods depends heavily
on the correct choice of the involved hyperparame-
ters. Take for example the Lagrange multipliers of
penalty terms in semidefinite programming (SDP)
relaxations of community detection in networks,
or the bandwidth parameter needed in the Gaus-
sian kernel used to construct similarity matrices
for spectral clustering. Despite the popularity of
these clustering algorithms, there are not many
provable methods for tuning these hyperparam-
eters. In this paper, we provide an overarching
framework with provable guarantees for tuning
hyperparameters in the above class of problems
under two different models. Our framework can
be augmented with a cross validation procedure to
do model selection as well. In a variety of simula-
tion and real data experiments, we show that our
framework outperforms other widely used tuning
procedures in a broad range of parameter settings.

1. Introduction

A standard statistical model has parameters, which character-
ize the underlying data distribution; an inference algorithm
to learn these parameters typically involve hyperparame-
ters (or tuning parameters). Popular examples include the
penalty parameter in regularized regression models, the
number of clusters in clustering analysis, the bandwidth
parameter in kernel based clustering, nonparameteric den-
sity estimation or regression methods (Wasserman), [2006;
Tibshirani et al., 2015}, to name but a few. It is well-known
that selecting these hyperparameters may require repeated
training to search through different combinations of plau-
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sible hyperparameter values and often has to rely on good
heuristics and domain knowledge from the user.

A classical method to do automated hyperparameter tun-
ing is the nonparametric procedure Cross Validation (CV)
(Stonel, [1974; |[Zhang, |1993) which has been used exten-
sively in machine learning and statistics (Hastie et al., 2005)).
CV has been studied extensively in supervised learning set-
tings, particularly in low dimensional linear models (Shaol
1993} Yang et al., 2007) and penalized regression in high
dimension (Wasserman & Roeder, 2009). Other notable
stability based methods for model selection in similar su-
pervised settings include (Breiman et al., |1996} Bach| [2008};
Meinshausen & Biihlmann, 2010; [Lim & Yul 2016). Fi-
nally, a large number of empirical methods exist in the
machine learning literature for tuning hyperparameters in
various training algorithms (Bergstra & Bengiol [2012; |Ben
gi0, 20005 |Snoek et al., 2012} Bergstra et al.| [201 1)), most of
which do not provide theoretical guarantees.

In contrast to the supervised setting with i.i.d. data used
in many of the above methods, in this paper, we consider
unsupervised clustering problems with possible dependence
structure in the datapoints. We propose an overarching
framework for hyperparameter tuning and model selection
for different probabilistic clustering models. Here the chal-
lenge is two-fold. Since labels are not available, choosing a
criterion for evaluation and in general a method for selecting
hyperparameters is not easy. One may consider splitting the
data in different folds and selecting the model or hyperpa-
rameter with the most stable solution. However, for multiple
splits of the data, the inference algorithm may get stuck at
the same local optima, and thus stability alone can lead to
a suboptimal solution (Von Luxburg et al., 2010). InWang
(2010) and [Fang & Wang| (2012), the authors overcome
this by redefining the number of clusters as one that gives
the most stable clustering for a given algorithm. In (Meila,
2018)), a semi-definite program (SDP) maximizing an inner
product criterion is performed for each clustering solution,
and the value of the objective function is used to evaluate
the stability of the clustering. The analysis is done without
model assumptions. The second difficulty arises if there is
dependence structure in the datapoints, which necessitates
careful splitting procedures for CV.

To illustrate the generality of our framework, we focus on
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subgaussian mixtures and the statistical network models
like the Stochastic Blockmodel (SBM) as two representative
models for i.i.d. data and non i.i.d. data, where cluster-
ing is a natural problem. We show that our framework can
provably tune hyperparameters, including the Lagrange
multiplier of the penalty term in a type of semidefinite relax-
ation (SDP) for community detection problems in SBM, and
the bandwidth parameter in kernel spectral clustering for
subgaussian mixtures. In addition, the same framework can
be used to do consistent model selection for both models.

1.1. Related Work

Hyperparameters and model selection in network mod-
els: While a number of methods exist for selecting the true
number of communities (denoted by 7) with consistency
guarantees for SBM including |Lei et al.| (2016)); [Wang &
Bickel| (2017);\Le & Levina (2015); Bickel & Sarkar| (2016j),
these methods have not been generalized to other hyperpa-
rameter selection problems. For CV-based methods, existing
strategies involve node splitting (Chen & Lei,[2018)), or edge
splitting (L1 et al., 2016)). In the former, it is established
that CV prevents underfitting for model selection in SBM.
In the latter, a similar one-sided consistency result for Ran-
dom Dot Product Models (Young & Scheinerman)| (2007,
includes SBM as a special case) is shown. This method has
also been empirically applied to tune other hyperparameters,
though no provable guarantee was provided.

In the area of community detection, SDP-based methods
have recently gained much attention. These can be divided
into two broad categories. The first involves optimizing
a penalized trace criterion (Amini et al., [2018; |Ca1 et al.}
2015;|Chen & Lei, 2018} |Guédon & Vershynin, |[2016) over
an unnormalized clustering matrix (see Section [2). The
optimization problem itself does not need to know 7. How-
ever, it is implicitly required in the final step which obtains
the memberships from the clustering matrix. The second
category uses a trace criterion with a normalized clustering
matrix (see Section@ (Peng & Wei, 2007; |Yan & Sarkar,
2019; Mixon et al.l [2017). Here the constraints involve
r./Yan et al.| (2017) uses a penalized alternative of this SDP
to do provable model selection for SBMs.

However, most of these methods require appropriate tuning
of the Lagrange multipliers, which are themselves hyperpa-
rameters. Consistency is typically achieved when the param-
eters lie within some range which is governed by unknown
model parameters. The proposed method in/Abbe & Sandon
(2015) is agnostic of model parameters, but it involves a
highly-tuned and hard to implement spectral clustering step
(also noted by |Perry & Wein| (2017))

In this paper, we use a SDP from the first class (SDP-1)
to demonstrate our provable tuning procedure, and another
SDP from the second class (SDP-2) to establish consistency

guarantee for our model selection method.

Hyperparameter tuning and model selection for mix-
ture models: Most of the existing tuning procedures for
the bandwidth parameter of the Gaussian kernel are heuris-
tic and do not have provable guarantees. Notable methods
include jvon Luxburg (2007), who choose an analogous pa-
rameter, namely the radius € in an e-neighborhood graph
“as the length of the longest edge in a minimal spanning
tree of the fully connected graph on the data points.” Other
discussions on selecting the bandwidth can be found in Hein
et al.[(2005); |Coifman et al.| (2008)) and |Schiebinger et al.
(2015). |Shi et al.[(2008) propose a data dependent way to set
the bandwidth parameter by suitably normalizing the 95%
quantile of a vector containing 5% quantiles of distances
from each point.

For model selection, there is an extensive repertoire of
empirical and provable methods including the gap statis-
tic (Tibshirani et al.| [2001)), silhouette index (Rousseeuw,
1987a), the slope criterion (Birgé & Massart, |2001), eigen-
gap (Von Luxburg} 2007), to name a few. We compare our
method to a subset of these.

We now present our problem setup in Section 2] Section 3|
proposes and analyzes our hyperparameter tuning method
MATR for SBM and subgaussian mixtures. In Section[d we
present MATR-CV and the related consistency guarantees
for model selection for SBM and subgaussian mixtures.
Finally, Section E]contains detailed simulated and real data
experiments and Section [6|concludes the paper.

2. Preliminaries and Notations
2.1. Notations

Let (C1,...,Cy) denote a partition of n data points into
r clusters; m; = |C;| denote the size of C;. Denote
Tmin = Min; m; /N, Tmax = max; m;/n. The cluster mem-
bership of each node is represented by a n X r matrix Z,
with Z;; = 1 if data point ¢ belongs to cluster j, and 0
otherwise. Since 7 is the true number of clusters, Z7 Z
is full rank. Given Z, the corresponding unnormalized
clustering matrix is Z Z7T . and the normalized clustering
matrix is Z(Z1Z)71ZT. X can be either a normalized or
unnormalized clustering matrix, and will be made clear.
We use X to denote the matrix returned by SDP algo-
rithms, which may not be a clustering matrix. Denote X
as the set of all possible normalized clustering matrices
with cluster number r. Let Zy and X, be the membership
and normalized clustering matrix from the ground truth. A
is a general hyperparameter; although with a slight abuse
of notation, we also use A to denote the Lagrange multi-
plier in SDP methods. For any matrix X € R"*", let
Xc,,c, be a matrix such that X¢, ¢,(i,7) = X(4,7) if
i € Ck,j € Cy, and 0 otherwise. FE,, is the n x n all
ones matrix. We write (A, B) = trace(AT B). Standard
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notations of 0, O, 0p, Op, ©, ) will be used. By “with high
probability”, we mean with probability tending to one as
n — oo.

2.2. Problem setup and motivation

We consider a general clustering setting where the data D
gives rise to a n X n observed similarity matrix S, where
S is symmetric. Denote .2 as a clustering algorithm which
operates on the data D with a hyperparameter A and outputs
a clustering result in the form of Z or X. Here note that o7
may or may not perform clustering on S,and o7, Z and X
could all depend on A. In this paper we assume that S has
the form S = S + R, where R is a matrix of arbitrary noise,
and S is the “population similarity matrix”. As we consider
different clustering models for network-structured data and
iid mixture data, it will be made clear what S and S are in
each context.

Assortativity (weak and strong): We require weak assorta-
tivity on the similarity matrix .S defined as follows. Suppose
for i,j € C}, Sij = agk. Define the minimal difference
between diagonal term and off-diagonal terms in the same
row cluster as

Pgap = mkin ik — iEéEi‘éCg Sii |- (1)
Fk
Weak assortativity requires py,, > 0. This condition
is similar to weak assortativity defined for blockmodels
(e.g. (Amini et al.| |2018))). It is mild compared to strong
assortativity requiring miny arr — maxiec,,jec, Sij > 0.
(#k

Stochastic Blockmodel (SBM): The SBM is a generative
model of networks with community structure on n nodes.
By first partitioning the nodes into r classes which leads to a
membership matrix Z, the n X n binary adjacency matrix A
is sampled from probability matrix P = ZZ-BZjTl(i # 7).
where Z; and Z; are the i'" and j" row of matrix Z, B is
the r x r block probability matrix. The aim is to estimate
node memberships given A. We assume the elements of B
have order ©(p) with p — 0 at some rate. Here we take S
as A, and S as P (up to diagonal entries for self-loops).

Mixture of sub-gaussian random variables: Let Y =
[Y1,...,Y,]T bean x d data matrix. We consider a setting
for high-dimensional mixture model with d growing with n
(see e.g. [El Karoui et al.|(2010); |/ Amini & Razaee|(2019)),
where Y; are generated from a mixture model with r clusters,

Wi

et E WZ = 07
va M
where a = 1,...,r, W;’s are independent subgaussian vec-
tors, and this model can be thought of as low dimensional
signal embedded in high dimensional noise. Here we take

Y; = g + Cov(W;) = oI (2)

S as the negative pairwise distances; the exact forms of S
and S will be made clear in Section[38.21

Trace criterion: Our framework is centered around the
trace (S, X)), where X is the normalized clustering matrix
associated with hyperparameter A. This criterion is often
used in relaxations of the k-means objective (Mixon et al.,
2017; |Peng & Wei, 2007; Yan et al.l 2017) in the context
of SDP methods. The idea is that the criterion is large
when datapoints within the same cluster are more similar.
This criterion is also used by Meilal (2018) for evaluating
stability of a clustering solution, where the author uses SDP
to maximize this criterion for each clustering solution. The
criterion makes the implicit assumption that S (and S) is
assortative, i.e. datapoints within the same cluster have
high similarity based on S. This is a reasonable assumption
for subgaussian mixtures; for SBM, assortativity is already
required by SDP methods for estimation consistency.

3. Hyperparameter tuning with known r

In this section, we consider tuning hyperparameters when
the true number of clusters 7 is known. First, we provide
two simulation studies to motivate this section. The detailed
parameter settings for generating the data can be found in
the Supplement Section [I0]

We first consider a SDP formulation (Li et al., 2018)) for
community detection under SBM, which has been widely
used with slight variations in the literature (Amini et al.,
2018; |Perry & Wein, 2017 |Guédon & Vershynin, 2016} |Cai
et al., 2015;|Chen & Lei, 2018)),

trace(AX) — Mrace(X E,,)
st. X>-0,X>0,X;;,=1forl <i<n,

max

(SDP-1)

where A is a hyperparameter. Typically, one then performs
spectral clustering (k-means on the top r eigenvectors) on
the output of the SDP to get the clustering result. In Figure[]]
(b), we generate an adjacency matrix from the probability
matrix shown in Figure|l| (a) and use [SDP-1| with tuning
parameter A from O to 1. The accuracy of the clustering
result is measured by the normalized mutual information
(NMI) and shown in Figure[I](b). We can see that different
A values lead to widely varying clustering performance.

As a second example, we consider a four-component Gaus-
sian mixture model generated data shown in Figure |1 (c).
We perform spectral clustering (k-means on the top 7 eigen-
vectors) on the widely used Gaussian kernel matrix (denoted
K) with bandwidth parameter 6. Figure[I[(d) shows the clus-
tering performance using NMI as 6 varies, and the flat region
of suboptimal 6 corresponds to cases when the two adjacent
clusters cannot be separated well.

We show that in the case where the true cluster number 7 is
known, an ideal hyperparameter A can be chosen by simply
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Figure 1: Tuning parameters in SDP and spectral clustering; accuracy measured by normalized mutual information.

maximizing the trace criterion introduced in Section [2.2]
The tuning algorithm (MATR) is presented in Algorithmm
It takes a general clustering algorithm <7, data D and simi-
larity matrix S as inputs, and outputs a clustering result A
with A* chosen by maximizing the trace criterion.

Algorithm 1 MAx-TRace (MATR) for known 7.
Input: clustering algorithm o7, data D, similarity matrix
S, a set of candidates {A1,- -+, Ar}, number of clusters r
Procedure:
fort =1:Tdo
run clustering on D: Z, =
normalized clustering matrix: X; =
compute inner product: I; = (5, Xt)
end
t* = argmax(ly, ...
Output: T

(D, M) compute
Z(Z{ Zy) 'z

7ZT)

We have the following theoretical guarantee for Algorithm(T]

Theorem 1. Consider a clustering algorithm < with inputs
D, \,r and_output Zx. The similarity matrix S used for
Algorithm |1 MATR) can be written as S = S + R. We
further assume S is weakly assortative with pg,, defined
in Eq (1), and X is the normalized clustering matrix for
the true binary membership matrix Zy. Let Ty be the
smallest cluster proportion, and T := NTyipPDeqp. As long
as there exists Ao € {\1, ..., \r}, such that (Xy,,5) >
(Xo,S) — € Algorithm|l|will output a Z-, such that

HXA* XOH e—l— sup |(X, R))),

XEX,
where X\~ is the normalized clustering matrix for Zy«.

In other words, as long as the range of A\ considered cov-
ers some optimal A value that leads to a sufficiently large
trace criterion (compared with the true underlying X, and
the population similarity matrix S), the theorem guarantees
Algorithm|[T|will lead to a normalized clustering matrix with
small error. The deviation e depends both on the noise R and
how close the estimated X ) 18 to the ground truth X, i.e.
the algorithm performance. If both € and sup x ¢ »_[(X, R)|

are op(7), then MATR will yield a weakly consistent clus-
tering matrix. The proof is in the Supplement Section [7]
Next we apply MATR to select the Lagrange multiplier pa-
rameter in[SDP-T|for SBM and the bandwidth parameter in
spectral clustering for subgaussian mixtures.

3.1. Hyperparameter tuning for SBM

We consider the problem of choosing A in for com-
munity detection in SBM. Here, the input to Algorithm [I]-
the data D and similarity matrix S — are both the adjacency
matrix A. A natural choice of a weakly assortative S is
the conditional expectation of A, i.e. P up to diagonal en-
tries: let P = ZBZT. Note that P is blockwise constant,
and assortativity condition on P translates naturally to the
usual assortativity condition on B. As the output matrix X
from [SDP-T| may not necessarily be a clustering matrix, we
use spectral clustering on X to get the membership matrix
Z required in Algorithm |1 I ﬁ 1| together with spectral
clustering is used as .<7.

In Proposition[I2]of the Supplement, we show that [SDP-T]
is strongly consistent, when applied to a general strongly
assortative SBM with known r, as long as ) satisfies:

max Bri+Q(y/ plogn/nmmin) < A <

mkiank +O(\//M) (3)

An empirical way of choosing A was provided in (Cai et al.,
[2013)), which we will compare with in Section[5} We show
a result complementary to Eq[3]under a SBM model with
weakly assortative B, that for a specific region of ), the
normalized clustering matrix from [SDP-T| will merge two
clusters with high probability. This highlights the impor-
tance of selecting an appropriate A since different values can
lead to drastically different clustering result. The detailed
statement and proof can be found in Proposition[TT]of the
Supplement Section [7.2]

When we use Algorithm [Ifto tune A for 7, we have the
following theoretical guarantee.
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Corollary 2. Consider A ~ SBM (B, Zy) with weakly
assortative B and r number of communities. Denote
T = Ny Ming (Brr — maxey Bre). If we have € =
op(1), ry/np = o), np > clogn, for some constant
¢ > 0, then as long as there exists \g € {A1,...,\r}, such
that (X, A) > (Xo, P) — €, with ;zfAlgorzthm I{MATR)
will output a Z~, such that || X - — Xo||% = op(1), where
Xy, Xo are the normalized clustering matrices for e,
Z respectively.

Remark 3. (i) Since A\ € [0,1], to ensure the range of
X considered overlaps with the optimal range in Eq (3),
it suffices to consider \ choices from [0,1]. Then for A
satisfying Eq (), |S mproduces X =X, w.h.p. if B is
strongly assortative. Since (Xo, R) = Op(r\/np), we can
take ¢ = O(ry/np), and the conditions in this corollary
— 0. Suppose all the communities are of

mply
comparable sizes, i.e. Ty, = O(1/1), then the conditions
only require r = O(+/n) since np — oo.

(ii) Since the proofs of Theorem[I|and Corollary2|are gen-
eral, the conclusion is not limited to and applies
to more general community detection algorithms for SBM
when r is known. It is easy to see that a sufficient condition
for the consistency of X+ to hold is that there exists Ao in
the range considered, such that |( X, — Xo, P)| = op(7).

iii) We note that the specific application of Corollary[2|to
leads to weak consistency of X« instead of strong
consistency as originally proved for[SDP-1| This is partly
due to the generality of theorem (including the relaxation of
strong assortativity on B to weak assortativity) as discussed
above, and the fact that we are estimating .

3.2. Hyperparameter tuning for mixtures of
subgaussians

In this case, the data D is Y defined in Eq (IZ]), the clus-
tering algorithm &7 is spectral clustering (k-means on the

top r eigenvectors) on the Gaussian kernel K (i,j) =

s — . 2 . . -
exp (—%) and outputs a membership matrix Z.

Note that one could use the similarity matrix as the ker-
nel itself. However, this makes the trace criterion a function
of the hyperparameter we are trying to tune, which com-
pounds the difficulty of the problem. We use the negative
squared distance matrix as S, ie. S;; = —|Y; — ;3.
Its population version S is blockwise constant with values
ae = —(d3, + i 4 03), for dye = ||pr — frel|2- Again we
apply MATR to select 6 and have the following theoretical
guarantee, the proof of which is in Supplement Section[7.4}

Corollary 4. Consider Sand S defined above. Assuming
S is weakly assortative, denote T = N, ming(agr —
maxyxy axe). If the following conditions hold,

logn/d = o(7),

e=op(T),n

then, as long as there exists \g € {\1,...,Ar}, such that
(X, S) > (X0, S) — e, with o, AlgomhmMATR) will
output a Zy, such that || X, — Xo||% (1), where Xy is
the normalized clustering matrix for Zs.

Remark 5. The conditions in the corollary are satisfied as
long as the spectral clustering algorithm is supplied with an
appropriate bandwidth parameter that leads to small error
in estimating Xy, and d/logn — oo for fixed mmin and ayy.
The existence of such a bandwidth is guaranteed using the
results in (Yan & Sarkar, |2016). Also, since we consider low
dimensional signal obscured by high dimensional model, it
is reasonable to assume that dyy (and thus ayy) is fixed.

4. Hyperparameter tuning with unknown r

In this section, we adapt MATR to situations where the
number of clusters is unknown to perform model selection.
Similar to Section 3] we first explain the general algorithm
and state a general theorem to guarantee its performance,
then apply it to SBM and subgaussian mixture.

Algorithm 2 MATR-CV.

Input: clustering algorithm o7, similarity matrix S, candi-
dates {ry,- - ,r7}, number of repetitions J, training ratio
Yirain, trace gap A
forj=1:Jdo
fort=1:7do
5:11, St sz < NodeSplitting(S, 1, Virain)
ZA11 = (S, 1) -
Z%2 = ClusterTest(S?!, Z11);
X22 222(2227 222)—1222T
7"1,] - <S22 X22>
end
i = min{ry :

lrt,j Z maxy lrt,j — A}
end

7 = median{r} }

Output: 7

Algorithm 3 Splitting

Input: S » T, Yirain

Randomly split [n] into @1, Q2 of size Ny and n(l —
’Ztrain) . . . . .

SH SQth’ e SQZle’ 522 SQz,Qz

Output: S 521 §22

Algorithm 4 ClusterTest
Input: 52! € {0,1}"*™, Z11 ¢ {0, 1}k
M SQIZAH(Z“TZA”)A
fori=1:ndo

| Z22(i,argmax M (i,:)) = 1
end
Output: 222
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We present MATR-CV in Algorithm [2] which augments
MATR with a cross-validation (CV) procedure. MATR-CV
takes clustering algorithm .o/ and similarity matrix S as
inputs. 7 directly operates on a similarity matrix.

Algorithm splits S into submatrices S, 522, §21 and
its transpose. MATR-CV makes use of all the submatrices:
S1 for training, S22 for testing, S11 and S2! for estimat-
ing the clustering result for datapoints in 522 35 shown in
Algorithm (4] For each test datapoint, using the estimated
membership Z'! and 52!, we compute average similarities
to different clusters of nodes in the training set. Because of
our assortativity assumption, Z22 can be determined by a
majority vote.

For the training ratio 7, as long as ©(1), our asymp-
totic results remain unaffected. Repetitions of splits are
used empirically to enhance stability; theoretically we show
asymptotic consistency for any random split. The general
theoretical guarantee and the role of the trace gap A are
given in the next theorem, with proof deferred to the Sup-
plement Section [§]

Theorem 6. Given a candidate set of cluster numbers
{r1,...,r7} containing the true cluster number r, let Xff
be the normalized clustering matrix obtained from r; clus-
ters according to MATR-CV. Assume the following:

(i)  with_ probability at  least 1 — Ounders
maXTt<T<5227 X3t2> S <822a X32> — €unders
(ii) with  probability at least 1 — Ioper

maxy<pr, <rr <$227 X?,2> < <$227 X022> + €over;

(iii) for the true r, with probability at least 1 — Oesty
(922, X7%) > (5%, X§?) — €es;

(iv) there exists A > 0 with €. + €over < A < €under — €est-

Here €,ndery €ests €over > 0. Then with probability at least
1 — Sunder — Ocst, MATR-CV will recover the true
r with trace gap A.

601)67‘ -

Remark 7. (i) MATR-CV is also compatible with tuning
multiple hyperparameters. For example, for[SDP-1| if the
number of clusters is unknown, then for each v, we can run
MATR to find the best \ for the given 7, followed by running
a second level MATR-CYV to find the best 7. As long as the
conditions in Theorems|I|and|[6|are met, 7 and the clustering
matrix returned will be consistent.

(ii) The derivations of €,,4er and €., are general and only
depend on the properties of S. On the other hand, €.y
measures the estimation error associated with the algorithm
of interest and depends on its performance.

4.1. Model selection for SBM

For model selection, we use the SDP in[SDP-2-A\l Here X
is a normalized clustering matrix, and in the case of exact

recovery trace(X ) is equal to the number of clusters. Since
r is implicitly chosen through A, most of the existing model
selection methods with consistency guarantees do not apply
directly. [Yan et al.|(2017) proposed to recover the clustering
and r simultaneously, where A still needs to be empirically
selected first. In the Supplement Proposition[I8] we show
suboptimal choices of A can lead to merged clusters, which
motivates us to choose A in a systematic way.

max trace(AX) — Atrace(X)
X (SDP-2-))
st. X>=0,X>0,X1=1

We consider applying MATR-CV to an alternative form of
SDP-2-)|as shown in[SDP-2| where the cluster number 7’
appears explicitly in the constraint and is part of the input.
returns an estimated normalized clustering matrix,
to which we apply spectral clustering to compute the cluster
memberships. We name this algorithm .o%pp_. In this case,
we use A as S, so P is the population similarity matrix.
max trace(AX)

X (SDP-2)

st. X >=0,X >0,trace(X)=7,X1=1

We have the following result ensuring MATR-CV returns a
consistent cluster number.

Theorem 8. Suppose A is generated from a SBM model
with r clusters and a weakly assortative B. We assume
r is fixed, and Ty > 6 > 0 for some constant 9, and
np/logn — oo. Given a candidate set of {r1,...,r7}
containing true cluster number v and rp = O(r), with high
probability for n large, MATR-CV returns the true number

of clusters with A = (1 + Bmax)V/Tmax 108 1 + Bmax"max
where Tmax = argmax,, (4, X;,).

Proof sketch. We provide a sketch of the proof here, the de-
tails can be found in Supplement Section[8.2] We derive the
three errors in Theorem@ In this case, we show that w.h.p.,
€under = Q(npgapﬂgnin/rz), €over — (]- + Bmax) VT logn +
Biaxr, and MATR-CV achieves exact recovery when given
the true 7, that is, €.y = 0. Since €ypger > €over Under the
conditions of the theorem, by Theorem@ taking A = €oyer
MATR-CYV returns the correct  w.h.p. Furthermore, we can
remove the dependence of A on unknown 7 by noting that
Tmax ‘= argmax,, (A, X,,t> > r w.h.p., then it suffices to
consider the candidate range {r1, ..., "max }. Thus rr, r in
A can be replaced with 7. O

Remark 9. (i) Although we have assumed fixed r, it is
easy to see from the order of €,nger and €,yer that the theorem
holds for 5 /n — 0, r42\/Tog n/(np) — 0ifwe let Tyin =
Q(1/r). Many other existing works on SBM model selection
assume fixed r. (Lei et al||2016) considered the regime
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r = o(n'/%). (Hu et al., [2017) allowed r to grow lineary up
to a logarithmic factor, but at the cost of making p fixed.

(ii) Asymptotically, A is equivalent to Aspp, =
V/Tmax log n. We use Agpp. in practice when r is fixed.

4.2. Model selection for mixture models

In this subsection, we show that MATR-CV can also re-
cover the number of mixture components in the subgaussian
mixture model described in Eq (2) with S being the nega-
tive squared distance matrix as in Section[3.2] In this case,
A does spectral clustering on S directly, which does not
contain a bandwidth parameter.

Theorem 10. Suppose Y is generated from the model in
Eq @]} We assume r is fixed, and mynin > 6 > 0 for some
constant 6, and d/logn — oo. Given a candidate set of
{r1,...,r7} containing true cluster number r and rr =
©(r), with probability tending to one as n — 0o, MATR-CV

. n)1l-1
returns the true number of clusters with A = n\/@.

Proof sketch. The proof is analogous to that of Theorem [§]
The only difference is that in this case Sgg and ng are
dependent. However, for the model specified in Eq (2)) we
have elementwise concentration for S around its popula-
tion counterpart, which alleviates this difficulty. We first
show that eynger = 2(n), whereas €oer = O(ny/logn/d).
Surprisingly, even though the spectral clustering algorithm
is in fact weakly consistent, after the majority voting step
in Algorithm (4] we get exact recovery for the test set so
€est = 0. This is similar to the results in (Abbe et al., [2016)).
The additional (logn)*! term is used in the gap so that it is
asymptotically of a larger order than €gyer. O

5. Numerical experiments

Now we present extensive numerical results on simulated
and real data by applying MATR and MATR-CV to different
settings considered in Sections [3|and[d] More experimental
details can be found in Supplement Section[I0]

5.1. MATR on SBM with known r

We apply MATR to tune X in for known r. Since
A € [0,1] for[SDP-1] we choose A € {0,---,20}/20 in
all the examples. For comparison we choose two existing
data driven methods. The first method (CL, (Cai et al.,
2015)) sets A as the mean connectivity density in a subgraph
determined by nodes with “moderate” degrees. The second
is ECV (L1 et al,2016)) which uses CV with edge sampling
to select the A giving the smallest loss on the test edges from
a model estimated on training edges. We use a training ratio
of 0.9 and the L, loss throughout.

Simulated data. Consider a strongly assortative SBM as
required by [SDP-T]for both equal sized and unequal sized
clusters. Specifically, we consider the following linkage
probability matrix, with two well separated clusters, each of
which again have two clusters, thus leading to a hierarchical
structure as below:

0.8 0.6 0.3 0.3
0.6 0.8 0.3 0.3
0.3 0.3 0.8 0.6
0.3 0.3 0.6 0.8

B=px “4)

For the equal sized case, each cluster has 100 nodes. For
the unequal sized case, the first and third clusters have 100
nodes each, while the second and fourth have 50 nodes each.
The sparsity parameter p ranges from 0.2 to 1. Standard
deviations are calculated based on random runs of each
parameter setting. We present NMI comparisons for equal
sized SBM (n = 400, = 4) in Figure 2[A), and unequal
sized SBM in Figure 2[B). In both, MATR outperforms
others by a large margin as degree grows.

Real data. We compare MATR with ECV and CL on the
football (Girvan & Newmanl, 2002), political books and the
political blogs (Adamic & Glance, 2005) datasets. All of
them are binary networks with 115,105 and 1490 nodes
respectively. The clustering performance of each method
realtive to ground truth is evaluated by NMI and shown in
Table [T} MATR performs the best out of the three methods
on the football dataset, and is tied with ECV on the political
books dataset. MATR is not as good as CL on the poligical
blogs dataset, but still outperforms ECV.

MATR | ECV | CL
Football 0.924 | 0.895 | 0.883
Political blogs | 0.258 | 0.142 | 0.423
Political books | 0.549 | 0.549 | 0.525

Table 1: Hyperparameter tuning on real data

5.2. MATR on subgaussian mixtures with known r

We use MATR to select the bandwidth parameter # in spec-
tral clustering applied to data from a gaussian mixture. In
all the examples, our candidate set of 6 is {ta/20} for
t=1,---,20 and @ = max; ; |Y; — Yj|2. We compare
MATR with three widely used heuristics. In DS |Shi et al.
(2008), first 5% quantiles of each node’s distance to all
other nodes is computed. 6 is estimated as a suitably nor-
malized 95% quantile of the previously computed vector. In
KNN [Von Luxburg| (2007),  is chosen in the order of the
mean distance of a point to its k-th nearest neighbor, where
k ~ log(n) + 1. For MST [Von Luxburg| (2007), 6 is set as
the length of the longest edge in a minimal spanning tree of
the fully connected graph on the data points.

Simulated data.

We generate n = 500 samples from a 3-component 20
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Figure 2: Comparison of NMI for tuning A for[SDP-1|for equal (A) and unequal sized (B) SBMs. Comparison of NMI for
tuning bandwidth in spectral clustering for mixture models with (C) equal and (D) unequal cluster assignment probabilities.

dimensional isotropic Gaussian mixture (each component
having identity covariance matrix, see Eq[2). The means are
generated from a isotropic Gaussian with covariance 0.011.
To impose sparsity on the means, we set all but the first
two dimensions to zero. To change the level of clustering
difficulty, we multiply the means with a separation constant
c (larger ¢ corresponding to larger separation and easier
clustering). We vary ¢ from 0 to 200. For Figure 2] (c),
the probabilities of cluster assignment are equal, while for
Figure 2] (d), each point belongs to one of the three clusters
with probability (0.9,0.05,0.05). 2D projections of the
datapoints for the two settings are shown in Figure 3]

g <0
%L 1
0 §~ ! 2

(a) Equal sized clusters  (b) Unequal sized clusters

Figure 3: 2D projections of the datapoints for Gaussian
mixtures.

We report the mean and standard error of NMI over multiple
random runs. In Figure[2](C) and (D) we plot NMI on the
Y axis against the separation along the X axis for mixture
models with equal and unequal mixture proportions, respec-
tively. For all these settings, MATR performs as well or
better than the best among DS, KNN and MST.

To illustrate the robustness of our method on non-Gaussian
data, we also apply MATR to tune the bandwidth 6 for the
two rings dataset (Fig|§| (a)) by setting the similarity matrix
S to be a RBF kernel to account for nonlinearity. This is
problematic since it makes the trace objective dependent on
0 via S as well as X . To alleviate this, for S we use a rough
guess, e.g., 10tk percentile of pairwise distances, because a

rough guess is enough to pick up the right trend. We then
apply MATR to select 6 in spectral clustering. As seen in
Fig[] (b), MATR outperforms the other methods by a large
margin.

NMI and bandwidth

L .‘.o.h"‘,' o
10 i‘ 0s
o5 Y og | — wem

S 04— mst

-70 -Is -lo -05 00 05 10 15 20 0135 0140 0185 0150 0155 0160 0165 0170
Noise

(a) two rings dataset (b) NMI comparison.

Figure 4: Results on ring dataset.

Real data. We tune 6 for spectral clustering on the test set
provided by (Pedregosa et al.,[2011) of the Optical Recog-
nition of Handwritten Digits Data Set with n = 1797 and
r = 10. The clustering done with tuning using MATR, DS,
KNN and MST achieve NMI values of 0.64, 0.45, 0.64 and
0.62 respectively. Thus, MATR performs similarly to KNN
but outperforms DS and MST. A visual comparison of the
clustering results can be found in Supplement Section[I0]

5.3. Model selection for SBM

We make comparisons among MATR-CYV, Bethe-Hessian es-
timator (BH) (Le & Levina, 2015) and ECV (Li et al., [2016)).
For ECV and MATR-CV, we consider r € {1,---+/n}.

Simulated data. We simulate networks from a 4-cluster
assortative SBM with equal and unequal sized blocks. We
use a B matrix similar to Eq[4](details in the Supplement).
We select 5 sparsity parameters p from 0.2 to 0.6 with even
spacing in Fig[5] In Figure [5] we show NMI on Y axis
vs. average degree on Y axis. In Figure [5(a) and (b) we
respectively consider equal sized (4 clusters of size 100) and
unequal sized networks (two with 120 nodes and two with
80 nodes). In all cases, MATR-CV has the highest NMI.
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Table [3] in Section [I0] of the Supplement shows median
number of clusters selected by each method.

1 NMI of each methods 1

ECV ECV
#BH #BH
—$-MATR-CV 0.9 “FMATR-CV

NMI of each methods

0.9
=038 =038
0.7 v 0.7

0.6 0.6
20 20

40 60 80 100 120
average degree

40 60 80 100 120
average degree

(a) NMI for equal sized case  (b) NMI for unequal sized case

Figure 5: Comparison of NMI with model selection for
equal and unequal sized cases.

Real data. For model selection, we compare MATR-CYV,
ECV and BH on the same three real network datasets as
before. The results are shown in Table [2] where MATR-
CV finds the ground truth for the football dataset. On the
other two datasets, none of the methods can estimate the r
correctly.

Truth | MATR-CV | ECV | BH
Football | 12 12 10 10
Polblogs | 2 6 1
Polbooks | 3 6 2 4

Table 2: Model selection on real networks.

5.4. Model selection for subgaussian mixtures

For model selection experiments on mixture model, we com-
pare MATR-CV, with the Gap statistics (Tibshirani et al.,
2001) (GAP) and Silhouette score (Rousseeuwl |1987b)
(SIL). For all methods, we use spectral clustering directly
on the negative squared distance matrix to do clustering.

Simulated data. We follow the same simulation setting as
in Section 5.2 but with = 4. In Table 3] we report the
fractions of finding the true cluster number for each method
on mixture model with unequal mixing probabilities for
different separation constants. MATR-CV outperforms the
other two methods by a large margin for not well-separated
cases, where GAP and SIL tend to underfit. For mixture
model with equal mixing probabilities, MATR-CV performs
similarly as GAP but better than SIL, and the results can be
found in Supplement Table [6]

separation | 1 151223350
MATR-CV | 0.2 | 1 1 1 1
GAP 0 07 |1 1 1
SIL 0 0 0 0 1

Table 3: Exact recovery fractions for unbalanced 4 clusters

Real data. We apply MATR-CV to the Avila dataset[ﬂwith
10430 data points, 12 clusters and 10 attributes. The dataset

"https://archive.ics.uci.edu/ml/datasets/Avila

is extracted from images of the ‘Avila Bible’ for copyist
identification, which correspond to the different clusters. As
shown in Table[d, MATR-CV picks the number of clusters
closest to the ground truth. For all the methods, we set the
maximal number of clusters to be square root of the dataset
size. Because of the scale of Avila dataset, we apply a
hierarchical searching strategy to reduce running time. More
specifically, we first run a coarse grid search (K oqrse =
10,20, - - - ,100), then pick the Kcoarse with largest trace
and conduct a finer grid search between Kcowse — 10 and
K coarse + 10. MATR-CV takes around 2 hours to complete
while SIL takes around 7 hours and GAP takes around 30
hours to finish on an single node of two Xeon E5-2690 v3
with 24 cores.

Truth | MATR-CV | GAP | SIL
Avila | 12 11 2 2

Table 4: Number of clusters selected by different methods

6. Concluding remarks

In this paper, we present MATR, a provable MAx-TRace
based hyperparameter tuning framework for general cluster-
ing problems. We prove the effectiveness of this framework
for tuning SDP relaxations under SBM and for learning the
bandwidth parameter of the gaussian kernel in spectral clus-
tering on subgaussian mixtures. Our framework can also be
used to do model selection using a cross validation based
extension (MATR-CV) which can be used to consistently es-
timate the number of clusters in both models. Using a variety
of simulation and real experiments we show the advantage
of our method over other existing heuristics. The framework
presented in this paper is general and can be applied to do-
ing model selection or tuning for more general models like
degree corrected blockmodels (Karrer & Newman, |2011)),
since there are many exact recovery based algorithms for
estimation in these settings (Chen et al.| 2018)).
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