On hyperparameter tuning in general clustering problems

Supplementary Materials

This supplement contains detailed proofs of theoretical results in the main paper “On hyperparameter tuning in general
clustering problems”, additional theoretical results, and detailed description of the experimental parameter settings. We
present proofs for MATR and MATR-CV in Sections[A]and Sections [B|respectively. Sections[A.2]and Proposition [S8]also
contain additional theoretical results on the role of the hyperparameter in merging clusters in[SDP-T]and [SDP-2|respectively.
Finally, Section [D| contains detailed parameter settings for the numerical experiments in the main paper and additional
results from the experiments.

A. Additional theoretical results and proofs of results in Section
A.1. Proof of Theorem[Il
Proof. If for tuning parameter ), we have (S, X») > (S, X;) — €, then

(S, Xx) > (S, Xo) = [(S = S, Xa)| — e (SL.1)

First we will prove that this immediately gives an upper bound on || X — X|| 7. We will remove the subscript A for ease

of exposition. Denote wy = <X07XCk,Ck>, Qg = %,

cluster Cf as {(i, j)|¢ € Ck,j ¢ Ci}. Then we have

when wy, < 1 and 0 otherwise, and off-diagonal set for kth
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= Z Ak MEWE + Z mi (1 — wr) Z i Qi (S1.2)
k=1 k=1 (4,5)€CE
= kaUJk Qkk — Z auazg + Z my Z Q54
(1,4)€C, k=1 (1,5)€C,

Since (S, Xo) = 3_ myagk, by GLI), (S, X) > 3, mpagr — |(R, X)| — ¢, we have

kawk - Z ai05) +ka Z a”a”>2mkakk—|RX)|—e

(4,9)€Cy, (i,)eCs

Note that, since S is weakly assortative, axy — Z(i jyece Gijij is always positive because Z(i fece @ij < 1.
’ k » k
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Denote ¢ = |(R, X)| + ¢, i =

€

(ark = D op @ijaij)

/

€
;ﬁk(l — Wk:) S Zk mk,(akk — ZC}? OL”CLU) '
B B ¢
;(1 Wk;) g ? ﬂmin (1 Wk) S Bmin Zk mk(akk - chi aijaij)7

where Smin = miny, Sg. Since trace(X ) = trace(X),
N 2 . .
HX - XOHF — trace((X — X0)T(X — Xo))
= trace(X + Xy — 2X X,)
= 2trace(Xy) — 2 Z(Xo, Xo,.on)
k

2 /
=2 (1—w) < — ‘
- ming my(akk — X cp @ijis)
2¢ 2¢'
< _ =—.
T NTmin ming (g, — maxce aij) T

Now consider the A\, returned by MATR,

<S’X)\*> 2 <S7XA> > <S, X0> — €.

Then, following the above argument and from the condition from the theorem,

105, — Xoll% < (e+ sup [(X,R)).

2¢’ 2
T XeX,,

<
NTmin Ming (agr — maxce a;j)

A.2. Range of ) for merging clusters in[SDP-1]|
Proposition S1. Ler X be the optimal solution of SDP-1|for A ~ SBM (B, Zy) with X satisfying

my

IN

plogn s plogn
A< B, — By¢— By (0]
N T min ) = PR T I (Bee = Brr1) + O( nm? )

B; Q
r]{}i‘? k‘vl + ( max
then X = X* with probability at least 1 — % where X* is the unnormalized clustering matrix which merges the last two
clusters, B* is the corresponding (r — 1) x (r — 1) block probability matrix.

Remark: The proposition implies if the first » — 2 clusters are more connected within each cluster than the last two clusters
and the connection between first  — 2 clusters and last two clusters are weak, we can find a range for A that leads to merging
the last two clusters with high probability. The results can be generalized to merging several clusters at one time. The result
above highlights the importance of selecting A as it affects the performance of significantly.

Proof. We develop sufficient conditions with a contruction of the dual certificate which guarantees X * to be the optimal
solution. The KKT conditions can be written as below:
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First order stationary:
—A— A+ AE, —diag()—T'=0

Primal feasibility:
X>0,X>0,X;=1 Vi=1---,n

Dual feasibility:
r>0A>0

Complementary slackness
(A, X)=0,ToX =0.
Consider the following construction: denote Ty, = Cy,ng, = my, fork <r —1,T,—1 = Co_1 JCry N1 = mp—1 + my.

X7, =By,

Xror, =0, fork#1<r—1

ATk = _ATk + )‘Enk — )\nkInk + dlag(ATk 17lk)

1 1

1
ATsz = _ATk,Tz + KATk,TzEm + EnkATle - nn EnkATk,TzE’ﬂz
l 1Tk

N

I'r, =0

3
1 1 1
FTk,Tl = )\Enk’nl - TTZATAHTZ Enz - aEnk AT}«TL + mEnkATk,Tl E’ﬂz
B =diag(—A— A+ AE, -T)
All the KKT conditions are satisfied by construction except for positive semidefiniteness of A and positiveness of I'. Now,

we show it one by one.

Positive semidefiniteness of A Since span(1l7, ) C ker(A), it suffices to show that for any u € span(17,)*, u” Au > 0.
Consider u = ), ur,, where ug, := uo lg,, then ur, L 17,.

ul Au = — Z uj, Arun, — A Z ngut, ur, + Z uj, diag(Ap, 1, )ur, — Z uy, Ar,mur,
k k k k£l
= —uT(A - P)u—u" Pu— AZ nyuy, ur, + Zu%ﬂdiag_;(AT,c 1,, )urn, (S1.3)
k k

= —ul(A—-P)u— unwkilPkalkalukal - A Z nkugkuTk + Z u%cdiag(ATk 1, )ur,
k k

For the first term, we know
2 2
u" (A= P)u < ||A =Pl |lull; < O(/np) [[ull;

with high probability.
For the second term, and note that 7,._; = C,.—1 |J -, and

PT T _ Br—l,r—lEm,«,lmr,laBr—l,TEmT,lmr
—1dr—1 T
" " Br,r—lEmMnr,laBr,rEmrm,‘

Sinceur,_, L 1, ,,

'LLT B'rfl,rEmT,lmr,l ) Brfl,rEm,.,lm,. g =0
T, _ r—1 Y
! B’I‘,T—lEmeT,laBT,T—IEmeT !
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therefore

'LLT PT T ur _ UT (BT—17’I‘—1 - Br—l,r)Em,,,,lmT,l 5 0 ug
Th— r—11r— r—1 — YT._ .
! ! ! ! ! 07 (Br,r - Br—l,'r)Em,\mr ! (S14)

S max{mr—l(Br—l,r—l - Br—l,r)a mr(Br,r - Br,r—l)} ||'U/H;

Consider the last term ), u7, diag(Aq, 1, )ur, . Using Chernoff, we know

||diag(Az, 15, )[|2 > By e — v/ 6pny log ng

with high probability, where for k,1 < r — 1,
By = Br,

mrlek,rfl + mer,r

* p—
Bk,rfl -

)

Myp_1 + My
2 2
(mrlerfl,rfl + 2 mrmrlerfl,T + mrBr,r)

(’ITLT,1 + mr)Z

* p—
BT—17’I‘—1 -

Therefore, :

- Z nku%uTk + Z u%k_diag(ATk 1, )ur, > mkin(B,:vknk — Q(v/pnglogn) — Any,) ||u||§ .
k k

So with equation[ST.3] a sufficient condition for positive semidefiniteness of A is

mkin(B;knk — Q(v/pnglogn) — Ang) > O(y/np) + max{m,_1(Br—1,,-1 — Br—1,),my(Br, — By r_1)}

which implies,

me—1 my

ni(Br,r - Br,rfl)} + O(\/M)
k

A< mkin B} — mkaxmax{ (Br—1,-1— Br_1.),

Positiveness of I" For ¢ € T}, j € T}, we have

Ai m Am 1 1
quj _ A _ ZmETl s _ ZmeTk ] + Z Amo.

ng ng nEny

meTy,0€T;

Therefore, block-wise mean of I" will be
E[FTIC,TJ = (>‘ - B;,l)Enk,nw

and the variance for each entry belonging to cluster k and [ will be in order of O(p/(ngn;)).

Using Chernoff bound, we have

* * nEny *
p(I0i; — (A= By )| > A= Bp;) < 2exp [_2/)()\ - Bk,l)2:|'

Therefore, as long as A > maxy. By, | + Q(\/plogn/nmmn), we have

7nin1
p(I; <0) < 2exp {— W]

2
We then applying the union bound and conclude that I'r, 7, > 0 with a high probability when A > maxj By, +

Q(+/plogn/nmmmn)-

O
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Proposition S2. As long as maxyz; By + Q(+/plogn/nmyy,) < A < ming By + O(\/p logn/nm? ). ISDP-I|exactly

recovers X with high probability.

Proof. We follow the same primal-dual construction as Proposition [ST| without merging the last two clusters. Consider the
following construction: denote T, = Cy, ny = my, for k = 1, ..., 7. We show the positive semidefiniteness and Positiveness

of A and T respectively.

Positve semidefiniteness of A Since span(17,) C ker(A), it suffices to show that for any u € span(17, ), u”TAu > 0.

Consider v = ), ur, , where ug, :=uo lg,, and up, L 17,, we have

T T T T 4 T
u Au=— g up, At ur, — A E Ny, Uy, + g up, diag(A7, 1, Jur, — E ur, A, T,UT,
k k k kAl

= —uT (A= Pu—ulPu—\ Z nku%uTk + Z u%kdiag(ATk 1,,)ur,
k k

= —uT(A—Pu—\ Z ngut, ur, + Z uj, diag(Ap, 1, )ur,
k i

For the first term, we know
2 2
u" (A= P)u < ||A =Pl |lull; < O(/np) |[ull;

with high probability, and using Chernoff, we have

||diag(Ap, 1n,)ll2 > Brrnk — v/ 6pny logny

with high probability. Therefore,

- Z nku%uTk + Z u%cdiag(ATk 1, )ur, > mkin(BkT;m;C — Q(v/png logn) — Any) ||u||§ ,
k k

which implies a sufficient condition for positive semidefiniteness of A is

A < min By + O(v/plog n/n?,..),

(S1.5)

and the lower bound can be obtained exactly the same way as Proposition [ST} Using Chernoff bound, I'7; 7, > 0 with high

probability as long as A > maxj; Bi; + Q(/plog n/nmyi).

A.3. Proof of Corollary 2]
Proof. This result comes directly from Theorem We have S = P, R= (A — P) + (P — P). For A,

<X>\05A> > <X07ﬁ> - O(?‘p) -6
where 7p = o(7) since r\/np = o(7), and for any X € X,
(A~ P, X)| < [|A - Pl|optrace(X) + O(rp) = Op(ry/p).
The last inequality follows by (Lei & Rinaldo| [2015) and np > clogn.

A.4. Proof of Corollary {4

O

Proof. Using the proof of Theorem 1 in|Yan & Sarkar|(2016), we have sup |S;; — S;;| < O(y/logn/d) with probability
at least 1 — 1/n. Therefore, |(R, X)| = |(S — S, X)| < O(ny/logn/d) w.h.p. The result comes directly from Theorem

il

O
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B. Additional theoretical results and proofs of results in Section 4]
B.1. Proof of Theorem
Proof. With probability greater than 1 — gt — dover — Sunder» the following three inequalities hold.

Forrp >ry > 1r:

(S22, X22) > (S22, X3?) — € > max (5%, X?%) — e — €over
r>Te>T
>  max <.§'22,X3t2>—A

rY2TE>T

Forr, <r:

<*§22a X32> Z <S22a X32> — €est Z max<5'22, X3?> — €est T Eunder

Te<T

> max($?2, Xf,t2> +A

T T

Therefore, with probability at least 1 — deg — over — Sunders (922, X22) > max,; (522, Xff) —A.LetR = {ry: (522, X?f) >
max; (5?2, X22) — A}. It follows then r € R.

Furthermore, with probabiltiy at least 1 — dest — Sunder, fOr 74 < 7 :

<;§22,X72.t2> < <'§227X§2> — €under < <*§227X72-2> + €est — €under
< max (5%, X2%) — A.
i t

Therefore, for any r; < r, 7, ¢ R, and min{r; : r, € R} = r. O

B.2. Proof of Theorem

We first prove a concentration lemma that holds for any normalized clustering matrix X independent of A.

Lemma S3. Consider a an adjacency matrix A and its population version P. Let X be a normalized clustering matrix
independent of A. Then with probability at least 1 — O(n™1),

[{A— P, X)| < (1+ Buax)V/trace(X)logn
with Bax = max;, ; Blj

Proof. The result follows from Hoeffding’s inequality and the fact that X is a projection matrix.

By independence between A and X,

22
P Z(AU — P’L])X’L] >t < exp(f 3 3 )
oy (L4 Bmax)? > X3
4¢2
< exp(—
= B X
exp( 4¢2 )
= eX —
P (1 + Bpax)?trace(X)

Let t = 2(1 4+ Buax)/trace(X) log n, then by symmetry in A and X, P((A — P, X) > (1 + Byax)y/trace(X)logn) =
O(1/n). The other direction is the same.

O
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In order to prove Theorem [§] we need to derive the three error bounds in Theorem E] in this setting. For notational
convenience, we first derive the bounds for A and a general normalized clustering matrix X, with the understanding that the
same asymptotic bounds apply to estimates obtained from the training graph provided the split is random and the number of
training nodes is ©(n).

Lemma S4. For a sequence of underfitting normalized clustering matrix {)A(Tt}nq, all independent of A, provided

np/v/logn — oo, we have
max(4, X,,) < (4, Xo) — Qp(npma;,/1?),

T T

for fixed r and Tppiy.

Proof. Let {Cy} be the clusters associated with X . Denote 7, ; = =|Cy| = D i Vhis Tt = rank(X) < r
First note that for each ¢ € [r], 3k € [ry], s.t. y,; > |Cy|/re. Since r > r4, by the Pigeonhole principle, we see that
HiOa j07 kOs Z'Ci 7é j09 such that:

Vo, io = ‘éko ‘ > | ‘/Tt > 7Tmmn/7’f
Veorjo = |Cho N Cio| = |Cjq|/7¢ > Taminn/ 7 (S2.6)

For each k # kg,

) 171@,1’-

Z”Bzg%ﬂkg ZBzzZ Vi,iVk,j ZB

n my
For k = ko,
2oig Big itk 2oij Biivkivk, N iz (Big — Bii)Vk,iVh.j

my, My, my

> iz (Bij — Bii)Vk,iVk,j
:ZBii'Yki+ i !

< ZBZ‘ s (2Big,5o — Big,io = Bio.jo) Vhyio Ve

mg
(S2.7)
_ ZB o ((Bioﬂ'o — Bimjo) + (Bjmjo — Bio,jo))7k,107k,jo
= i, Vki — ~
Ty
2T Yk i Vk
< B o 0 7]0
Z i, Vk,i nﬂmlnmk
2T T min™
< Z Bz ’L’Yk} [ ﬁa
where 7 = NTminDeaps Peap := Min; (B, ; — max;; B; ;). (a) is true by definition of 7 and Eq (S2.6).
Therefore, since 1y, < n,
. Y Biive,ivej - 7-77 n
<P7X>zzwm—k— (pre) <ZZB“'W”— T::; )
k=1 k=1 i=1 t
— (P, X)) — Q (”:;) : (52.8)
t

Next by Lemma|S3] for each X with trace(X) < r,

[{A— P, X)| < (14 Bmax)V7logn
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with probabiltiy at least 1 — O(1/n). By a union bound and using the same argument, w.h.p.

max (A — P, X,,)| < (1 + Buax)/rlogn (52.9)

T T

Egs (S2.8) and (S2.9) imply w.h.p.
(A, Xo) — max(4, X,.,)

re<r

2 2
0 (Wn) — O(y/rTogn) = O (M) (52.10)

r2 r2
using the condition in the Lemma.
O

Lemma S5. For a sequence of overfitting normalized clustering matrix { X,, Yr<r,<re, all independent of A, rp = O(r),
we have w.h.p. R
max (A4, X,,) < (A, Xo) + (1 + Bmax) V71 l0gn + Baxr.

r<ry<rr

Proof. First note, for any X, using weak assortativity on B,

(P,X) <> Xi;Beg).c)

L,
<Y Beg.cw Y X
i J
< (Pa X0> + Bax (S2.11)

where C'(7) denotes the cluster node ¢ belongs to. By the same argument as in Eq (S2.9), w.h.p.

max [(A— P, X,.,)| < (14 Bmax)\Vrrlogn (52.12)

r<r{<rp

From the above

max (A,X”> < (A, Xo) + (1 + Bmax) V7T 10gn 4+ Braxr

r<ri<rr

O
Lemma S6. With probabilitiy at least 1 — O(1/n), MATR-CV achieves exact recovery on the testing nodes given the true
cluster number r, i.e. X2 = X322, provided nmyinp/ logn — 00, Yiain = O(1).
Proof. Denote mj.!, m3? as the number of nodes belonging to the cluster Cy, in the training graph and testing graph
respectively.

First, with Theorem 2 in (Yan et al.,[2017) and Lemma[S7} we know can achieve exact recovery on traininng graph

with high probability. Now, consider a node s in testing graph, and assume it belongs to cluster C. The probability that it is
. . S Ajl. > AL

assigned to cluster k is: P(% > max;y, %)

Using the Chernoff bound, for some constant c,

ZjGCk Azlj 11 -3
P(=——7— > Bpx —c\/ Brlogn/m;') > 1 —-n""
my
) A21_
P(ZJLM < Big +¢y/Biglogn/mit) > 1 —n~>. (52.13)
my
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Since the graph split is random, for each k, with probability at least 1 — n=3, mkl — Yirainmk| < ¢1v/my logn for some

constant ¢;. By a union bound, this holds for all k& with probability at least 1 — 7n~3. Then under this event,

Blklogn Blklogn
7# < gy | /2
ml NTmin
for some ¢y since Ny / logn — 0o. Since Nminp/ logn — oo, by Eq (S2.13), with probabitliy at least 1 — O(rn=3),

Bkﬂlf — C\/Bk,k log n/m,lcl > I}fg(Bl’k + C\/Bl’k logn/m}cl,

and node s is assigned correctly to cluster k. Taking a union over all s in the training set, with probability 1 — O(rn=2),
MATR-CV would give exact recovery for the testing graph given r.

O

Lemma S7. If my > wn, then m}cl > TNYirain, and mi2 > 7n(1 — Yuain), with high probability. If maxy, ; ™= < §, then

m
my
1
my

maxy 7*11 < & + o(1) with high probability.

T
n,l

Proof. The result follows from (Skala, [2013]). O
Proof for Theorem

Proof. First we note that by a similar argument as in Lemma Im2? — (1 — Yain) k| < cv/my logn for all k with
probability at least 1 — rn 3. Then the size of the smallest cluster of the test graph A?2 will be of the same order as nmmi,.
Also A?? has size ©(n). A?? is independent of any X?2. Thus in Theorem E applying Lemmaand Lemmato A2
shows

Cunder = QP /7°),

€over = (1 + Bmax) v TT IOg’ﬂ + Bmaxra

and Lemma@] shows €.t = 0, w.h.p. For fixed r, Tin, we have €ynger > €over- By Theorem @ choosing A =
(1 + Bpax)Vrrlogn +ABmaX7' leads to MATR-CV returning the correct 7. We can further refine A by noting that

Tmax = argmax,, (A, X,,) > r w.h.p., then it suffices to consider the candidate range {r1,..., max}. The same
arguments still hold for this range, thus 7 and r in A can be replaced with 7, .. O
Proposition S8. Ler X be the optimal solution of SDP-2|for A ~ SBM (B, Z). Suppose X\ < O(m2,,nming.z; (B, —
Byy)) — Q(+/pnlogn/mun), and for every k < r — 1,
Q(\/ ’flp) + max{mrfl(Brfl,rfl - Brfl,r)y mr(Br,r - Br,rfl)} S )\
(S82.14)

< O(Tminn kr<nin1(Bk,k + B:—l,r—l - QBZ,T—l)) — Q(v/pnlogn/Tmin),

then X = X* with high probability, where X* is the normalized clustering matrix when the last two clusters are
merged, and B* is the (r — 1) x (r — 1) corresponding clustering probability matrix. k,l < r — 1, B}y, = By,
B* _ my_1Bgr—1+mg By » B* o (m?_Br_1, k—1+2%mymy_1Br_y1 »+(m2B,. )

k,r—1 7 my_1+m, > Fr—=1r—=1 7 (my—1+m,)? )

Proof of Proposition We develop sufficient conditions with a construction of the dual certificate which guarantees X *
to be the optimal solution. The KKT conditions can be written as below:

First order stationary:
~A—A+ (1" +alT)y 481 -T

Primal feasibility:
X»0,X>0,X1, =1,,trace(X) =r

Dual feasibility:
r>0A>0
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Complementary slackness
(A, X)=0,ToX =0.

Consider the following construction: denote Ty, = Ck,ng = my, fork <r —1,T—_1 = Cr_1 JCrynp—1 = my—g + mye.
)(j“kZE17“€/7’l]€7 XTle:O,fOI'k#ZST—l

ATk = _ATk + (17%04%c + ar, 13;) + /\Ink

E E
A =—(I-—%4 -
T T, ( nn ) Tsz( ny )
FTk = O7FTk,Tl = _ATkTZ - ATle + (1nka% +ar, 171;;)

1
ar, = Fk(ATk Ln, + ¢k51nk)

T
o = — (g 4 lmuATlne

2 n

)

All the KKT conditions are satisfied by construction except for positive semidefiniteness of A and positiveness of I'. Now,
we show it one by one.

Positive semidefiniteness of A Since span(17,) C ker(A), it suffices to show that for any u € span(17,)*, v Au > 0.
Consider v = ), ur,, where ug, :=uo lg,, thenur, L 1,,.

ul Au = — Z u% Ag ug, + A Z un; ur, — Z u%c Ar, mur,
k k k£l
== uf (A= P)nur, = Y uf, (A= P)nriun +Allul3 —u” Pu (82.15)
k kL
= _UT(A - P)u +A Hqu - ug:r,lpTrflTrfluTrfl

Now consider U%‘,l Pr _.r._,ur,_,,and note that T,y = C,_1 |JC,, and

PT T _ Brfl,rflEm,.,lmr,l ) Brfl,'rEm,,.,lm,.
r—14dr—1 T
Br,r—lEmer,l ) Br,rEm,«mr

Since ur, , L 1, .,

UT Br—l,rEm,r,lmr,l ) Br—l,TEmT,lmr u =0
Tr— -1 %
rl Br,r—lEmrmr,laBr,r—lEmeT "

therefore

u% PT T ur — u% (Br—l,r - B’r'—l,r—l)Emr,lmT,l ) 0 ug
r—1 r—1dLpr—1 %Wl 1 07 (Br—l,r _ BT,T)Emrmr r—1

(S2.16)
S max{mr—l(Br—l,r—l - Br—l,r)a mv‘(Br,r - Br,r—l)} ||UH§
Since ||A — P|| < ¢o/np provided p > ¢ log n/n, Therefore, a sufficient condition is:
A 2 Q(\/n ma:v) + max{mr—l(Br—l,r—l - Br—l,r)7 mr(Br,r - Br,r—l)} (8217)

ZieTl J: (Tk)

ng

Positiveness of I' Define d} (T)) = >
y € T;, we need

ser, Aigs & (Ti) = S5 and d°(T3,Ty) = . Then consider z € T},

ng

_ _ 1 - , . - 1 - _ A A
A3 (T3) = (1) + 5 (0 (1) = d*(TeT) + dy(T) = di (1) + 5 (& (T = & () = 5o = 57 > 0,

\V]
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Using Chernoft bound, for positiveness of I" with high probability we only need

L. « B}, . 1 1 A A
§(Blck + Bj; — 2Bj;) — v/6log n( W \/7 \/183kz IOgn(n*k + ;l) > T + T

where for k,l <r —1,

B]:[ = Bkla
B o mrlek,rfl + mer,r
kor—1 — )
Myp_1 + My
2 2
(mr_lBrfl,rfl + 2% mrmrlerfl,r + (mrBr,'r‘)
(mr—l + mr)2

If k,1 <r —1, then B};, = By;,n; = my, the condition becomes

By 1 A A
(BkHB”—sz, V6logn(y/ = B iy < \/183kllogn(+)_+,
my 2my  2my

which is equivalent to

* —
Brfl,rfl -

A < O(Tminn r]?;érll(Bk:k — Bri)) — Q(+/pnlogn/mmin).

Now, suppose k < r — 1,1 = r — 1, the condition becomes:

1 kk Bl*l
—(Bgr + Bj; — 2B;, 61 \/
2( kk 1 ) ogn p— +m,)

1 1 A A
— +/18B;, 1 — > .
\/ ki ogn(mk + My_1 +mr) = 2my_1 + 2m, + 2my,

(S2.18)

Since /6 log n(y/ ?n—"f + 4/ mrfzmr ) fgr‘jjﬁgz = O(y/pnlogn/mmn), and similarly for other terms, then we have

the sufficient condition for positiveness of I on A:

(mkmr—l + mkmr)(Bk,k’ + B::—l,r—l - 2BZ r 1)

——~ — Q(+/pnlogn/mTmin)-

A<

mg + Myp—_1 + m,

A < O(mminn kminl(Bng + Bl_1 -1 = 2Bg 1)) — Qv pnlogn/Tmin).
<r— ’ ’

C. Proof of Theorem

The proof is similar in spirit to that of Theorem [8] First we have the following concentration result from the proof of
Theorem 1 in|Yan & Sarkar| (2016):

N logn
15 = Sllee = O( i ) (S3.19)
with probability at least 1 — 1/n. This implies
N 1
(S — S, X)| = O(n chi”) (S3.20)

with probability 1 — 1/n.

For notational convenience, we derive the underfitting and overfitting bounds for Sand a general normalized clustering
matrix X, with the understanding that the same asymptotic bounds apply to estimates obtained from the training graph
provided the split is random and the number of training nodes is ©(n).
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Lemma S9. Recall that pg,, = miny (agk — maxgLg, age) >0, 7= NTminPeap- FOT a sequence of underfitting normalized
clustering matrix {Xn }ro<rs Provided T, Trin, Deap are all fixed, and d/logn — oo, we have w.h.p.

max (S, X,.,) < (S, Xo) — Q(77min/172).

relr

Proof. By the same argument as in Eq (S2Z.8), for any underfitting X,

(S, X,,) < (S, Xo) — Q (”Em)

Tt
The above combined with Eq (S3.20) gives the desired result provided d/logn — cc. O

Lemma S10. For a sequence of overfitting normalized clustering matrix {X,, }r<y,<rp, r7 = O(r) and is fixed, we have
w.h.p.

s (5,%,,) < (3, X0) + O(ny | <5,
Proof. By the same argument as in Eq (S2.11)) (without the diagonal effect),
(S, X,,) < (S, Xo)
for any overfitting X,.,. Combined with (S3.20), we have the desired result. O

Lemma S11. With high probability, MATR-CV achieves exact recovery on the testing set given the true cluster number r,
ie X2? = X§2, provided d/logn — oo, minge ||e — || > 1 > 0, maxgre |age| < 00, and Yyain = O(1).

Proof. Denote {m;'} as the cluster sizes and {r}'} as the estimated cluster sizes in the training set; {C}'} as the true
clusters, and {C},} as the estimated clusters from the training set.

For a datapoint ¢ in the testing set, assume it belongs to cluster C'. The probability that it is assigned to cluster £ is:

G21 G21
Ejeék St - Zjeéz St,j)
A lll .

o (82— 52 1
Z]eck(Atl,i t,J) > _C\/m (S3.21)
mk d

for all ¢, k with probability at least 1 — 1/n by Eq (S3.19). By Theorem 4 in[Yan & Sarkar (2016),

P(

‘We first note that

g /mit — 1] = O(log d/d) (S3.22)
for all £ w.h.p., assuming 7 is fixed, and mingg || — pe|| > n > 0. Then in (S3.21),

Sece Sty 1k N Citlark + Yoy, |Gk N CFlage

e e
‘C'k n C,Hakk + |ék N éé1| Ininbgk (7Y
Z mll
k
> agy (1 — O(logd/d)) + O(log d/d) Ilgélil e (S3.23)

by Eq (S3:22), where C}! denotes the complement of C}! in the training set. Using (S3.23) in (S3.21),

diel 5'21 logn
% > apr, — O(logd/d) — ¢ i
k

(S3.24)
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w.h.p. Similarly we can show w.h.p.

. 321 1
2400 oy Oflogdfd) + ey 2B"
my, d

Then Eqgs (S3.24) and (S3.23) imply the event

Q21 Q21
Zjeck Stvj > ZJECZ Styj
11 < max 11

my, £k )

. (S3.25)

holds w.h.p. for large n, for d/logn — oo. Since all the bounds are uniform in ¢, we have strong consistency with
MATR-CV. O

€under = UTTmin /%) = (n) since all the other parameters have constant order, €ger = O(n ,and e = 0.

Proof of Theorem Now the proof directly comes from applying Theorem [f]and the results in Lemma We have
logn/d)

(logn)l'l. O

Thus it suffices to choose A = n <

D. Detailed parameter settings in experiments and additional results
D.1. Details on motivating examples in Section 3] (Figure 1)

Figure[I[a): We generate an adjacency matrix from a SBM model with four communities, each having 50 nodes, and

0.8 0.6 04 04
06 0.8 04 04
04 04 08 06
04 04 0.6 0.8

The visualization of the underlying probability matrix is shown in Figure [[[a).

Figure [I(b): We consider a four-component Gaussian mixture model, where the means 1, . . ., pu4 are generated from
Gaussian distributions centered at (0, 0), (0, 0), (5,5), (10, 10) with covariance 61, so that the first two clusters are closer
to each other than the rest. Then we generate 1000 data points centered at these means with covariance 0.5/, each point
assigned to one of the four clusters independently with probability (0.48,0.48,0.02,0.02). Finally, we introduce correlation

between the two dimensions by multiplying each point by E ﬂ . A scatter plot example of the datapoints is shown in

Figure[T[c).

D.2. Additional results on real data in Section

In Figure[ST] we show the 2D projection of the handwritten digits dataset using tSNE and color the points by the clusters
they belong to according to each method. We see that as indicated by the NMI scores reported in the main paper, the
clustering by MATR, MST and KNN correspond more closely to the true clustering than DS.

D.3. Additional settings and results on simulated data in Section [5.3|(Figure

We first consider graphs generated from a SBM with equal sized clusters, where

0.8 0.5 03 0.3
0.5 0.8 0.3 0.3
0.3 0.3 0.8 0.5
0.3 0.3 0.5 0.8

B=px

In Table [ST](a,b), we show the median number of clusters selected by each method as p changes for both the equal sized and
unequal sized cases described above. The ground truth is 4 clusters.
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(a) True clustering (b) Clustering by MATR (c) Clustering by DS

(d) Clustering by KNN (e) Clustering by MST
Figure S1: Visualization of clustering results on handwritten digits dataset.
p MATR-CV | BH | ECV p MATR-CV | BH | ECV
0212 2 2 0212 2 2
03 ]2 2 2 03 ]2 2 2
04 | 4 2 2 0413 2 2
05| 4 2 2 051 4 2 2
06 | 4 4 2 06 | 4 3 2
(a) Median number of clusters selected for equal sized case (b) Median number of clusters selected for unequal sized case

Table S1: Comparison of model selection results along with p for all algorithms.

D.4. Additional results on simulated data in Section 5.4]

In Table [S2] we compare model selection results obtained from different methods on simulated mixture of Gaussian data.
The same setting as in Figure [2c)-(d) is used (described in Section [D.2)) with = 4 and equal probabilities of cluster

assignment. MATR-CV performs similarly as GAP but better than SIL.

separation | 1 | 1.5 | 22 | 3.3 | 5.0
MATR-CV | 1 | 1 1 1 1
GAP 1|1 1 1 1
SIL 00 1 1 1

Table S2: Exact recovery fractions for balanced 4 clusters
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