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Supplementary Materials

This supplement contains detailed proofs of theoretical results in the main paper “On hyperparameter tuning in general
clustering problems”, additional theoretical results, and detailed description of the experimental parameter settings. We
present proofs for MATR and MATR-CV in Sections A and Sections B respectively. Sections A.2 and Proposition S8 also
contain additional theoretical results on the role of the hyperparameter in merging clusters in SDP-1 and SDP-2 respectively.
Finally, Section D contains detailed parameter settings for the numerical experiments in the main paper and additional
results from the experiments.

A. Additional theoretical results and proofs of results in Section 3
A.1. Proof of Theorem 1

Proof. If for tuning parameter λ, we have 〈Ŝ, X̂λ〉 ≥ 〈S,X0〉 − ε, then

〈S, X̂λ〉 ≥ 〈S,X0〉 − |〈Ŝ − S, X̂λ〉| − ε. (S1.1)

First we will prove that this immediately gives an upper bound on ‖X̂λ −X0‖F . We will remove the subscript λ for ease

of exposition. Denote ωk = 〈X0, X̂Ck,Ck
〉, αij =

〈Ei,j ,X̂〉
mk(1−ωk) , when ωk < 1 and 0 otherwise, and off-diagonal set for kth

cluster Cck as {(i, j)|i ∈ Ck, j /∈ Ck}. Then we have

〈S, X̂〉 =

r0∑
k=1

akk〈ECk,Ck
, X̂〉+

r0∑
k=1

∑
(i,j)∈Cc

k

aij〈Ei,j , X̂〉

=

r0∑
k=1

akkmkωk +

r0∑
k=1

mk(1− ωk)
∑

(i,j)∈Cc
k

aijαij

=

r0∑
k=1

mkωk(akk −
∑

(i,j)∈Cc
k

aijαij) +

r0∑
k=1

mk

∑
(i,j)∈Cc

k

aijαij

(S1.2)

Since 〈S,X0〉 =
∑
kmkakk, by (S1.1), 〈S, X̂〉 ≥

∑
kmkakk − |〈R, X̂〉| − ε, we have

∑
k

mkωk(akk −
∑

(i,j)∈Cc
k

aijαij) +
∑
k

mk

∑
(i,j)∈Cc

k

aijαij ≥
∑
k

mkakk − |〈R, X̂〉| − ε.

Note that, since S is weakly assortative, akk −
∑

(i,j)∈Cc
k
aijαij is always positive because

∑
(i,j)∈Cc

k
αij ≤ 1.
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Denote ε′ = |〈R, X̂〉|+ ε, βk =
mk(akk−

∑
Cc
k
αijaij)∑

kmk(akk−
∑

Cc
k
αijaij) ,

∑
k

mkωk(akk −
∑

(i,j)∈Cc
k

aijαij) ≥
∑
k

mk(akk −
∑

(i,j)∈Cc
k

αijaij)− ε′

∑
k

βkωk ≥ 1− ε′∑
kmk(akk −

∑
Cc

k
αijaij)∑

k

βk(1− ωk) ≤ ε′∑
kmk(akk −

∑
Cc

k
αijaij)

.

∑
k

(1− ωk) ≤
∑
k

βk
βmin

(1− ωk) ≤ ε′

βmin

∑
kmk(akk −

∑
Cc

k
αijaij)

,

where βmin = mink βk. Since trace(X̂) = trace(X0),∥∥∥X̂ −X0

∥∥∥2

F
= trace((X̂ −X0)T (X̂ −X0))

= trace(X̂ +X0 − 2X̂X0)

= 2trace(X0)− 2
∑
k

〈X0, X̂Ck,Ck
〉

= 2
∑
k

(1− ωk) ≤ 2ε′

minkmk(akk −
∑
Cc

k
αijaij)

≤ 2ε′

nπmin mink(akk −maxCc
k
aij)

=
2ε′

τ
.

Now consider the λ∗ returned by MATR,

〈Ŝ, X̂λ∗〉 ≥ 〈Ŝ, X̂λ〉 ≥ 〈S,X0〉 − ε.

Then, following the above argument and from the condition from the theorem,

‖Xλ∗ −X0‖2F ≤
2ε′

nπmin mink(akk −maxCc
k
aij)

≤ 2

τ
(ε+ sup

X∈Xr0

|〈X,R〉|).

A.2. Range of λ for merging clusters in SDP-1

Proposition S1. Let X̃ be the optimal solution of SDP-1 for A ∼ SBM(B,Z0) with λ satisfying

max
k 6=`

B∗k,` + Ω(

√
ρ log n

nπmin
) ≤ λ ≤ min

k
B∗kk − max

k,`=r−1,r

m`

nk
(B`,` −Br,r−1) +O(

√
ρ log n

nπ2
max

),

then X̃ = X∗ with probability at least 1− 1
n , where X∗ is the unnormalized clustering matrix which merges the last two

clusters, B∗ is the corresponding (r − 1)× (r − 1) block probability matrix.

Remark: The proposition implies if the first r − 2 clusters are more connected within each cluster than the last two clusters
and the connection between first r− 2 clusters and last two clusters are weak, we can find a range for λ that leads to merging
the last two clusters with high probability. The results can be generalized to merging several clusters at one time. The result
above highlights the importance of selecting λ as it affects the performance of SDP-1 significantly.

Proof. We develop sufficient conditions with a contruction of the dual certificate which guarantees X∗ to be the optimal
solution. The KKT conditions can be written as below:
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First order stationary:
−A− Λ + λEn − diag(β)− Γ = 0

Primal feasibility:
X � 0, X ≥ 0, Xii = 1 ∀i = 1 · · · , n

Dual feasibility:
Γ ≥ 0,Λ � 0

Complementary slackness
〈Λ, X〉 = 0,Γ ◦X = 0.

Consider the following construction: denote Tk = Ck, nk = mk, for k < r − 1, Tr−1 = Cr−1

⋃
Cr, nr−1 = mr−1 +mr.

XTk
= Enk

XTkTl
= 0, for k 6= l ≤ r − 1

ΛTk
= −ATk

+ λEnk
− λnkInk

+ diag(ATk
1nk

)

ΛTkTl
= −ATk,Tl

+
1

nl
ATk,Tl

Enl
+

1

nk
Enk

ATkTl
− 1

nlnk
Enk

ATk,Tl
Enl

ΓTk
= 0

ΓTk,Tl
= λEnk,nl

− 1

nl
ATk,Tl

Enl
− 1

nk
Enk

ATkTl
+

1

nlnk
Enk

ATk,Tl
Enl

β = diag(−A− Λ + λEn − Γ)

All the KKT conditions are satisfied by construction except for positive semidefiniteness of Λ and positiveness of Γ. Now,
we show it one by one.

Positive semidefiniteness of Λ Since span(1Tk
) ⊂ ker(Λ), it suffices to show that for any u ∈ span(1Tk

)⊥, uTΛu ≥ 0.
Consider u =

∑
k uTk

, where uTk
:= u ◦ 1Tk

, then uTk
⊥ 1Tk

.

uTΛu =−
∑
k

uTTk
ATk

uTk
− λ

∑
k

nku
T
Tk
uTk

+
∑
k

uTTk
diag(ATk

1nk
)uTk

−
∑
k 6=l

uTTk
ATkTl

uTl

= −uT (A− P )u− uTPu− λ
∑
k

nku
T
Tk
uTk

+
∑
k

uTTk
diag(ATk

1nk
)uTk

= −uT (A− P )u− uTTk−1
PTk−1Tk−1

uTk−1
− λ

∑
k

nku
T
Tk
uTk

+
∑
k

uTTk
diag(ATk

1nk
)uTk

(S1.3)

For the first term, we know
uT (A− P )u ≤ ‖A− P‖2 ‖u‖

2
2 ≤ O(

√
nρ) ‖u‖22

with high probability.

For the second term, and note that Tr−1 = Cr−1

⋃
Cr, and

PTr−1Tr−1
=

[
Br−1,r−1Emr−1mr−1

, Br−1,rEmr−1mr

Br,r−1Emrmr−1
, Br,rEmrmr

]
Since uTr−1

⊥ 1nr−1
,

uTTr−1

[
Br−1,rEmr−1mr−1

, Br−1,rEmr−1mr

Br,r−1Emrmr−1
, Br,r−1Emrmr

]
uTr−1 = 0,
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therefore

uTTr−1
PTr−1Tr−1

uTr−1
= uTTr−1

[
(Br−1,r−1 −Br−1,r)Emr−1mr−1

, 0
0, (Br,r −Br−1,r)Emrmr

]
uTr−1

≤ max{mr−1(Br−1,r−1 −Br−1,r),mr(Br,r −Br,r−1)} ‖u‖22

(S1.4)

Consider the last term
∑
k u

T
Tk

diag(ATk
1nk

)uTk
. Using Chernoff, we know

||diag(ATk
1nk

)||2 ≥ B∗k,knk −
√

6ρnk log nk

with high probability, where for k, l < r − 1,
B∗kl = Bkl,

B∗k,r−1 =
mr−1Bk,r−1 +mrBk,r

mr−1 +mr
,

B∗r−1,r−1 =
(m2

r−1Br−1,r−1 + 2 ∗mrmr−1Br−1,r +m2
rBr,r)

(mr−1 +mr)2
.

Therefore, :

−λ
∑
k

nku
T
Tk
uTk

+
∑
k

uTTk
diag(ATk

1nk
)uTk

≥ min
k

(B∗k,knk − Ω(
√
ρnk log n)− λnk) ‖u‖22 .

So with equation S1.3, a sufficient condition for positive semidefiniteness of Λ is

min
k

(B∗k,knk − Ω(
√
ρnk log n)− λnk) ≥ O(

√
nρ) + max{mr−1(Br−1,r−1 −Br−1,r),mr(Br,r −Br,r−1)}

which implies,

λ ≤ min
k
B∗kk −max

k
max{mr−1

nk
(Br−1,r−1 −Br−1,r),

mr

nk
(Br,r −Br,r−1)}+O(

√
ρ log n/nπ2

max)

Positiveness of Γ For i ∈ Tk, j ∈ Tl, we have

Γi,j = λ−
∑
m∈Tl

Ai,m

nl
−
∑
m∈Tk

Am,j

nk
+

1

nknl

∑
m∈Tk,o∈Tl

Amo.

Therefore, block-wise mean of Γ will be

E[ΓTk,Tl
] = (λ−B∗k,l)Enk,nl

,

and the variance for each entry belonging to cluster k and l will be in order of O(ρ/(nknl)).

Using Chernoff bound, we have

p(|Γi,j − (λ−B∗k,l)| > λ−B∗k,l) ≤ 2 exp

[
−nknl

2ρ
(λ−B∗k,l)2

]
.

Therefore, as long as λ ≥ maxk 6=lB
∗
k,l + Ω(

√
ρ log n/nπmin), we have

p(Γi,j < 0) ≤ 2 exp

[
− nπmin log n

2

]
We then applying the union bound and conclude that ΓTkTl

> 0 with a high probability when λ ≥ maxk 6=lB
∗
k,l +

Ω(
√
ρ log n/nπmin).
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Proposition S2. As long as maxk 6=lBk,l + Ω(
√
ρ log n/nπmin) ≤ λ ≤ mink Bkk +O(

√
ρ log n/nπ2

max), SDP-1 exactly
recovers X0 with high probability.

Proof. We follow the same primal-dual construction as Proposition S1 without merging the last two clusters. Consider the
following construction: denote Tk = Ck, nk = mk, for k = 1, ..., r. We show the positive semidefiniteness and Positiveness
of Λ and Γ respectively.

Positve semidefiniteness of Λ Since span(1Tk
) ⊂ ker(Λ), it suffices to show that for any u ∈ span(1Tk

)⊥, uTΛu ≥ 0.
Consider u =

∑
k uTk

, where uTk
:= u ◦ 1Tk

, and uTk
⊥ 1Tk

, we have

uTΛu =−
∑
k

uTTk
ATk

uTk
− λ

∑
k

nku
T
Tk
uTk

+
∑
k

uTTk
diag(ATk

1nk
)uTk

−
∑
k 6=l

uTTk
ATkTl

uTl

= −uT (A− P )u− uTPu− λ
∑
k

nku
T
Tk
uTk

+
∑
k

uTTk
diag(ATk

1nk
)uTk

= −uT (A− P )u− λ
∑
k

nku
T
Tk
uTk

+
∑
k

uTTk
diag(ATk

1nk
)uTk

(S1.5)

For the first term, we know
uT (A− P )u ≤ ‖A− P‖2 ‖u‖

2
2 ≤ O(

√
nρ) ‖u‖22

with high probability, and using Chernoff, we have

||diag(ATk
1nk

)||2 ≥ Bk,knk −
√

6ρnk log nk

with high probability. Therefore,

−λ
∑
k

nku
T
Tk
uTk

+
∑
k

uTTk
diag(ATk

1nk
)uTk

≥ min
k

(Bk,knk − Ω(
√
ρnk log n)− λnk) ‖u‖22 ,

which implies a sufficient condition for positive semidefiniteness of Λ is

λ ≤ min
k
Bkk +O(

√
ρ log n/nπ2

max),

and the lower bound can be obtained exactly the same way as Proposition S1. Using Chernoff bound, ΓTkTl
> 0 with high

probability as long as λ ≥ maxk 6=lBk,l + Ω(
√
ρ log n/nπmin).

A.3. Proof of Corollary 2

Proof. This result comes directly from Theorem 1. We have S = P̃ , R = (A− P ) + (P − P̃ ). For λ0,

〈X̂λ0
, A〉 ≥ 〈X0, P̃ 〉 −O(rρ)− ε,

where rρ = o(τ) since r
√
nρ = o(τ), and for any X̂ ∈ Xr,

|〈A− P̃ , X̂〉| ≤ ||A− P ||optrace(X̂) +O(rρ) = OP (r
√
nρ).

The last inequality follows by (Lei & Rinaldo, 2015) and nρ ≥ c log n.

A.4. Proof of Corollary 4

Proof. Using the proof of Theorem 1 in Yan & Sarkar (2016), we have sup |Ŝij − Sij | ≤ O(
√

log n/d) with probability
at least 1− 1/n. Therefore, |〈R, X̂〉| = |〈Ŝ − S, X̂〉| ≤ O(n

√
log n/d) w.h.p. The result comes directly from Theorem

1.
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B. Additional theoretical results and proofs of results in Section 4
B.1. Proof of Theorem 6

Proof. With probability greater than 1− δest − δover − δunder, the following three inequalities hold.

For rT ≥ rt > r :

〈Ŝ22, X̂22
r 〉 ≥ 〈Ŝ22, X22

0 〉 − εest ≥ max
rT≥rt>r

〈Ŝ22, X̂22
rt 〉 − εest − εover

≥ max
rT≥rt>r

〈Ŝ22, X̂22
rt 〉 −∆

For rt < r :

〈Ŝ22, X̂22
r 〉 ≥ 〈Ŝ22, X22

0 〉 − εest ≥ max
rt<r
〈Ŝ22, X̂22

rt 〉 − εest + εunder

> max
rt<r
〈Ŝ22, X̂22

rt 〉+ ∆

Therefore, with probability at least 1−δest−δover−δunder, 〈Ŝ22, X̂22
r 〉 ≥ maxt〈Ŝ22, X̂22

rt 〉−∆. LetR = {rt : 〈Ŝ22, X̂22
rt 〉 ≥

maxt〈Ŝ22, X̂22
rt 〉 −∆}. It follows then r ∈ R.

Furthermore, with probabiltiy at least 1− δest − δunder, for rt < r :

〈Ŝ22, X̂22
rt 〉 ≤ 〈Ŝ

22, X22
0 〉 − εunder ≤ 〈Ŝ22, X̂22

r 〉+ εest − εunder

< max
t
〈Ŝ22, X̂22

rt 〉 −∆.

Therefore, for any rt < r, rt /∈ R, and min{rt : rt ∈ R} = r.

B.2. Proof of Theorem 8

We first prove a concentration lemma that holds for any normalized clustering matrix X independent of A.

Lemma S3. Consider a an adjacency matrix A and its population version P . Let X be a normalized clustering matrix
independent of A. Then with probability at least 1−O(n−1),

|〈A− P,X〉| ≤ (1 +Bmax)
√

trace(X) log n

with Bmax = maxi,j Bij .

Proof. The result follows from Hoeffding’s inequality and the fact that X is a projection matrix.

By independence between A and X ,

P

∑
i<j

(Aij − Pij)Xij > t

 ≤ exp(− 2t2

(1 +Bmax)2
∑
i<j X

2
ij

)

≤ exp(− 4t2

(1 +Bmax)2 ‖X‖2F
)

= exp(− 4t2

(1 +Bmax)2trace(X)
)

Let t = 1
2 (1 +Bmax)

√
trace(X) log n, then by symmetry in A and X , P (〈A− P,X〉 > (1 +Bmax)

√
trace(X) log n) =

O(1/n). The other direction is the same.
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In order to prove Theorem 8, we need to derive the three error bounds in Theorem 6 in this setting. For notational
convenience, we first derive the bounds for A and a general normalized clustering matrix X̂ , with the understanding that the
same asymptotic bounds apply to estimates obtained from the training graph provided the split is random and the number of
training nodes is Θ(n).

Lemma S4. For a sequence of underfitting normalized clustering matrix {X̂rt}rt<r, all independent of A, provided
nρ/
√
logn→∞, we have

max
rt<r
〈A, X̂rt〉 ≤ 〈A,X0〉 − ΩP (nρπ2

min/r
2),

for fixed r and πmin.

Proof. Let {Ĉk} be the clusters associated with X̂ . Denote γk,i = |Ĉk∩Ci|, and m̂k = |Ĉk| =
∑
i γk,i, rt = rank(X̂) < r.

First note that for each i ∈ [r], ∃k ∈ [rt], s.t. γk,i ≥ |Ci|/rt. Since r > rt, by the Pigeonhole principle, we see that
∃i0, j0, k0, i0 6= j0, such that,

γk0,i0 = |Ĉk0 ∩ Ci0 | ≥ |Ci0 |/rt ≥ πminn/rt

γk0,j0 = |Ĉk0 ∩ Cj0 | ≥ |Cj0 |/rt ≥ πminn/rt (S2.6)

For each k 6= k0, ∑
i,j Bi,jγk,iγk,j

m̂k
≤
∑
iBi,i

∑
j γk,iγk,j

m̂k
=
∑
i

Bi,iγk,i.

For k = k0,

∑
i,j Bi,jγk,iγk,j

m̂k
=

∑
i,j Bi,iγk,iγk,j

m̂k
+

∑
i 6=j(Bi,j −Bi,i)γk,iγk,j

m̂k

=
∑
i

Bi,iγk,i +

∑
i6=j(Bi,j −Bi,i)γk,iγk,j

m̂k

≤
∑
i

Bi,iγk,i +
(2Bi0,j0 −Bi0,i0 −Bj0,j0)γk,i0γk,j0

m̂k

=
∑
i

Bi,iγk,i −
((Bi0,i0 −Bi0,j0) + (Bj0,j0 −Bi0,j0)) γk,i0γk,j0

m̂k

(a)

≤
∑
i

Bi,iγk,i −
2τγk,i0γk,j0
nπminm̂k

≤
∑
i

Bi,iγk,i −
2τπminn

r2
t m̂k

,

(S2.7)

where τ = nπminpgap, pgap := mini(Bi,i −maxj 6=iBi,j). (a) is true by definition of τ and Eq (S2.6).

Therefore, since m̂k0 ≤ n,

〈P, X̂〉 =

rt∑
k=1

∑
i,j Bi,jγk,iγk,j

m̂k
−O(ρrt) ≤

rt∑
k=1

r∑
i=1

Bi,iγk,i − Ω(
τπminn

r2
t m̂k0

)

= 〈P,X0〉 − Ω

(
τπmin

r2
t

)
. (S2.8)

Next by Lemma S3, for each X with trace(X) ≤ r,

|〈A− P,X〉| ≤ (1 +Bmax)
√
r log n
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with probabiltiy at least 1−O(1/n). By a union bound and using the same argument, w.h.p.

max
rt<r
|〈A− P, X̂rt〉| ≤ (1 +Bmax)

√
r log n (S2.9)

Eqs (S2.8) and (S2.9) imply w.h.p.

〈A,X0〉 −max
rt<r
〈A, X̂rt〉

=Ω

(
npgapπ

2
min

r2

)
−O(

√
r log n) = Ω

(
npgapπ

2
min

r2

)
(S2.10)

using the condition in the Lemma.

Lemma S5. For a sequence of overfitting normalized clustering matrix {X̂rt}r<rt≤rT , all independent of A, rT = Θ(r),
we have w.h.p.

max
r<rt≤rT

〈A, X̂rt〉 ≤ 〈A,X0〉+ (1 +Bmax)
√
rT log n+Bmaxr.

Proof. First note, for any X̂ , using weak assortativity on B,

〈P, X̂〉 ≤
∑
i,j

X̂i,jBC(i),C(j)

≤
∑
i

BC(i),C(i)

∑
j

X̂i,j

≤ 〈P,X0〉+Bmaxr, (S2.11)

where C(i) denotes the cluster node i belongs to. By the same argument as in Eq (S2.9), w.h.p.

max
r<rt≤rT

|〈A− P, X̂rt〉| ≤ (1 +Bmax)
√
rT log n (S2.12)

From the above

max
r<rt≤rT

〈A, X̂rt〉 ≤ 〈A,X0〉+ (1 +Bmax)
√
rT log n+Bmaxr.

Lemma S6. With probabilitiy at least 1−O(1/n), MATR-CV achieves exact recovery on the testing nodes given the true
cluster number r, i.e. X̂22

r = X22
0 , provided nπminρ/ log n→∞, γtrain = Θ(1).

Proof. Denote m11
k , m22

k as the number of nodes belonging to the cluster Ck in the training graph and testing graph
respectively.

First, with Theorem 2 in (Yan et al., 2017) and Lemma S7, we know SDP-2 can achieve exact recovery on traininng graph
with high probability. Now, consider a node s in testing graph, and assume it belongs to cluster Ck. The probability that it is

assigned to cluster k is: P (
∑

j∈Ck
A21

s,j

m11
k

≥ maxl 6=k

∑
j∈Cl

A21
s,j

m11
l

).

Using the Chernoff bound, for some constant c,

P (

∑
j∈Ck

A21
s,j

m11
k

≥ Bk,k − c
√
Bk,k log n/m11

k ) ≥ 1− n−3;

P (

∑
j∈Cl

A21
s,j

m11
l

≤ Bl,k + c
√
Bl,k log n/m11

l ) ≥ 1− n−3. (S2.13)
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Since the graph split is random, for each k, with probability at least 1− n−3, |m11
k − γtrainmk| ≤ c1

√
mk log n for some

constant c1. By a union bound, this holds for all k with probability at least 1− rn−3. Then under this event,√
Bl,k log n

m11
l

≤ c2
√
Bl,k log n

nπmin

for some c2 since nπmin/ log n→∞. Since nπminρ/ log n→∞, by Eq (S2.13), with probabitliy at least 1−O(rn−3),

Bk,k − c
√
Bk,k log n/m11

k > max
l 6=k

Bl,k + c
√
Bl,k log n/m11

k ,

and node s is assigned correctly to cluster k. Taking a union over all s in the training set, with probability 1−O(rn−2),
MATR-CV would give exact recovery for the testing graph given r.

Lemma S7. If mk ≥ πn, then m11
k ≥ πnγtrain, and m22

k ≥ πn(1− γtrain), with high probability. If maxk,l
mk

ml
≤ δ, then

maxk,l
m11

k

m11
l
≤ δ + o(1) with high probability.

Proof. The result follows from (Skala, 2013).

Proof for Theorem 8

Proof. First we note that by a similar argument as in Lemma S6, |m22
k − (1 − γtrain)mk| ≤ c

√
mk log n for all k with

probability at least 1− rn−3. Then the size of the smallest cluster of the test graph A22 will be of the same order as nπmin.
Also A22 has size Θ(n). A22 is independent of any X̂22. Thus in Theorem 6, applying Lemma S4 and Lemma S5 to A22

shows
εunder = Ω(nρπ2

min/r
2),

εover = (1 +Bmax)
√
rT log n+Bmaxr,

and Lemma S6 shows εest = 0, w.h.p. For fixed r, πmin, we have εunder � εover. By Theorem 6, choosing ∆ =
(1 + Bmax)

√
rT log n + Bmaxr leads to MATR-CV returning the correct r. We can further refine ∆ by noting that

rmax := arg maxrt〈A, X̂rt〉 ≥ r w.h.p., then it suffices to consider the candidate range {r1, . . . , rmax}. The same
arguments still hold for this range, thus rT and r in ∆ can be replaced with rmax.

Proposition S8. Let X̃ be the optimal solution of SDP-2 for A ∼ SBM(B,Z). Suppose λ ≤ O(π2
minnmink 6=l(Bkk −

Bkl))− Ω(
√
ρn log n/πmin), and for every k < r − 1,

Ω(
√
nρ) + max{mr−1(Br−1,r−1 −Br−1,r),mr(Br,r −Br,r−1)} ≤ λ

≤ O(πminn min
k<r−1

(Bk,k +B∗r−1,r−1 − 2B∗k,r−1))− Ω(
√
ρn log n/πmin),

(S2.14)

then X̃ = X∗ with high probability, where X∗ is the normalized clustering matrix when the last two clusters are
merged, and B∗ is the (r − 1) × (r − 1) corresponding clustering probability matrix. k, l < r − 1, B∗kl = Bkl,

B∗k,r−1 =
mr−1Bk,r−1+mKBk,r

mr−1+mr
, B∗r−1,r−1 =

(m2
r−1Br−1,K−1+2∗mrmr−1Br−1,r+(m2

rBr,r)

(mr−1+mr)2 .

Proof of Proposition S8. We develop sufficient conditions with a construction of the dual certificate which guarantees X∗

to be the optimal solution. The KKT conditions can be written as below:

First order stationary:
−A− Λ + (1αT + α1T ) + βI − Γ

Primal feasibility:
X � 0, X ≥ 0, X1n = 1n, trace(X) = r

Dual feasibility:
Γ ≥ 0,Λ � 0
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Complementary slackness
〈Λ, X〉 = 0,Γ ◦X = 0.

Consider the following construction: denote Tk = Ck, nk = mk, for k < r − 1, Tr−1 = Cr−1

⋃
Cr, nr−1 = mr−1 +mr.

XTk
= Enk

/nk, XTkTl
= 0, for k 6= l ≤ r − 1

ΛTk
= −ATk

+ (1nk
αTTk

+ αTk
1Tnk

) + λInk

ΛTkTl
= −(I − Enk

nk
)ATkTl

(I − Enl

nl
)

ΓTk
= 0,ΓTk,Tl

= −ATkTl
− ΛTkTl

+ (1nk
αTTl

+ αTk
1Tnl

)

αTk
=

1

nk
(ATk

1nk
+ φk1nk

)

φk = −1

2
(β +

1Tnk
ATk

1nk

nk
)

All the KKT conditions are satisfied by construction except for positive semidefiniteness of Λ and positiveness of Γ. Now,
we show it one by one.

Positive semidefiniteness of Λ Since span(1Tk
) ⊂ ker(Λ), it suffices to show that for any u ∈ span(1Tk

)⊥, uTΛu ≥ 0.
Consider u =

∑
k uTk

, where uTk
:= u ◦ 1Tk

, then uTk
⊥ 1nk

.

uTΛu =−
∑
k

uTTk
ATk

uTk
+ λ

∑
k

uTTk
uTk
−
∑
k 6=l

uTTk
ATkTl

uTl

= −
∑
k

uTTk
(A− P )Tk

uTk
−
∑
k 6=l

uTTk
(A− P )TkTl

uTl
+ λ ‖u‖22 − u

TPu

= −uT (A− P )u+ λ ‖u‖22 − u
T
Tr−1

PTr−1Tr−1
uTr−1

(S2.15)

Now consider uTTr−1
PTr−1Tr−1

uTr−1
, and note that Tr−1 = Cr−1

⋃
Cr, and

PTr−1Tr−1 =

[
Br−1,r−1Emr−1mr−1

, Br−1,rEmr−1mr

Br,r−1Emrmr−1 , Br,rEmrmr

]
Since uTr−1 ⊥ 1nr−1 ,

uTTr−1

[
Br−1,rEmr−1mr−1

, Br−1,rEmr−1mr

Br,r−1Emrmr−1
, Br,r−1Emrmr

]
uTr−1

= 0,

therefore

uTTr−1
PTr−1Tr−1

uTr−1
= uTTr−1

[
(Br−1,r −Br−1,r−1)Emr−1mr−1 , 0

0, (Br−1,r −Br,r)Emrmr

]
uTr−1

≤ max{mr−1(Br−1,r−1 −Br−1,r),mr(Br,r −Br,r−1)} ‖u‖22

(S2.16)

Since ‖A− P‖ ≤ c0
√
np provided p ≥ c0 log n/n, Therefore, a sufficient condition is:

λ ≥ Ω(
√
npmax) + max{mr−1(Br−1,r−1 −Br−1,r),mr(Br,r −Br,r−1)} (S2.17)

Positiveness of Γ Define d∗i (Tk) =
∑
j∈Tk

Ai,j , d̄∗i (Tk) =
d∗i (Tk)
nk

, and d̄∗(TkTl) =
∑

i∈Tl
d̄∗i (Tk)

nl
. Then consider x ∈ Tk,

y ∈ Tl, we need

d̄∗x(Tk)− d̄∗x(Tl) +
1

2
(d̄∗(TkTl)− d̄∗(TkTk)) + d̄∗y(Tl)− d̄∗y(Tk) +

1

2
(d̄∗(TkTl)− d̄∗(TlTl))−

λ

2nl
− λ

2nk
≥ 0,
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Using Chernoff bound, for positiveness of Γ with high probability we only need

1

2
(B∗kk +B∗ll − 2B∗kl)−

√
6 log n(

√
B∗kk
nk

+

√
B∗ll
nl

)−
√

18B∗kl log n(
1

nk
+

1

nl
) ≥ λ

2nl
+

λ

2nk

where for k, l < r − 1,
B∗kl = Bkl,

B∗k,r−1 =
mr−1Bk,r−1 +mrBk,r

mr−1 +mr
,

B∗r−1,r−1 =
(m2

r−1Br−1,r−1 + 2 ∗mrmr−1Br−1,r + (m2
rBr,r)

(mr−1 +mr)2
.

If k, l < r − 1, then B∗kl = Bkl, nl = ml, the condition becomes

1

2
(Bkk +Bll − 2Bkl)−

√
6 log n(

√
Bkk
mk

+

√
Bll
ml

)−
√

18Bkl log n(
1

mk
+

1

ml
) ≥ λ

2ml
+

λ

2mk
,

which is equivalent to
λ ≤ O(πminnmin

k 6=l
(Bkk −Bkl))− Ω(

√
ρn log n/πmin).

Now, suppose k < r − 1, l = r − 1, the condition becomes:

1

2
(Bkk +B∗ll − 2B∗kl)−

√
6 log n(

√
Bkk
mk

+

√
B∗ll

mr−1 +mr
)

−

√
18B∗kl log n(

1

mk
+

1

mr−1 +mr
) ≥ λ

2mr−1 + 2mr
+

λ

2mk
.

(S2.18)

Since
√

6 log n(
√

Bkk

mk
+
√

B∗ll
mr−1+mr

)mk(mr−1+mr)
mk+mr−1+mr

= O(
√
ρn log n/πmin), and similarly for other terms, then we have

the sufficient condition for positiveness of Γ on λ:

λ ≤
(mkmr−1 +mkmr)(Bk,k +B∗r−1,r−1 − 2B∗k,r−1)

mk +mr−1 +mr
− Ω(

√
ρn log n/πmin).

λ ≤ O(πminn min
k<r−1

(Bk,k +B∗r−1,r−1 − 2B∗k,r−1))− Ω(
√
ρn log n/πmin).

C. Proof of Theorem 10
The proof is similar in spirit to that of Theorem 8. First we have the following concentration result from the proof of
Theorem 1 in Yan & Sarkar (2016):

‖Ŝ − S‖∞ = O(

√
log n

d
) (S3.19)

with probability at least 1− 1/n. This implies

|〈Ŝ − S,X〉| = O(n

√
log n

d
) (S3.20)

with probability 1− 1/n.

For notational convenience, we derive the underfitting and overfitting bounds for Ŝ and a general normalized clustering
matrix X̂ , with the understanding that the same asymptotic bounds apply to estimates obtained from the training graph
provided the split is random and the number of training nodes is Θ(n).
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Lemma S9. Recall that pgap = mink(akk −max` 6=k ak`) > 0, τ = nπminpgap. For a sequence of underfitting normalized
clustering matrix {X̂rt}rt<r, provided r, πmin, pgap are all fixed, and d/ log n→∞, we have w.h.p.

max
rt<r
〈Ŝ, X̂rt〉 ≤ 〈Ŝ,X0〉 − Ω(τπmin/r

2).

Proof. By the same argument as in Eq (S2.8), for any underfitting X̂rt ,

〈S, X̂rt〉 ≤ 〈S,X0〉 − Ω

(
τπmin

r2
t

)
The above combined with Eq (S3.20) gives the desired result provided d/ log n→∞.

Lemma S10. For a sequence of overfitting normalized clustering matrix {X̂rt}r<rt≤rT , rT = Θ(r) and is fixed, we have
w.h.p.

max
r<rt≤rT

〈Ŝ, X̂rt〉 ≤ 〈Ŝ,X0〉+O(n

√
log n

d
).

Proof. By the same argument as in Eq (S2.11) (without the diagonal effect),

〈S, X̂rt〉 ≤ 〈S,X0〉

for any overfitting X̂rt . Combined with (S3.20), we have the desired result.

Lemma S11. With high probability, MATR-CV achieves exact recovery on the testing set given the true cluster number r,
i.e. X̂22

r = X22
0 , provided d/ log n→∞, mink 6=` ‖µk − µ`‖ ≥ η > 0, maxk 6=` |ak`| <∞, and γtrain = Θ(1).

Proof. Denote {m11
k } as the cluster sizes and {m̂11

k } as the estimated cluster sizes in the training set; {C11
k } as the true

clusters, and {Ĉk} as the estimated clusters from the training set.

For a datapoint t in the testing set, assume it belongs to cluster Ck. The probability that it is assigned to cluster k is:

P (

∑
j∈Ĉk

Ŝ21
t,j

m̂11
k

≥ max
l 6=k

∑
j∈Ĉl

Ŝ21
t,j

m̂11
l

).

We first note that ∑
j∈Ĉk

(Ŝ21
t,j − S21

t,j)

m̂11
k

≥ −c
√

log n

d
(S3.21)

for all t, k with probability at least 1− 1/n by Eq (S3.19). By Theorem 4 in Yan & Sarkar (2016),

|m̂11
k /m

11
k − 1| = O(log d/d) (S3.22)

for all k w.h.p., assuming r is fixed, and mink 6=` ‖µk − µ`‖ ≥ η > 0. Then in (S3.21),∑
j∈Ĉk

S21
t,j

m̂11
k

=
|Ĉk ∩ C11

k |akk +
∑
` 6=k |Ĉk ∩ C11

` |ak`
m̂11
k

≥ |Ĉk ∩ C
11
k |akk + |Ĉk ∩ C̃11

k |min` 6=k ak`
m̂11
k

≥ akk (1−O(log d/d)) +O(log d/d) min
` 6=k

ak` (S3.23)

by Eq (S3.22), where C̃11
k denotes the complement of C11

k in the training set. Using (S3.23) in (S3.21),∑
j∈Ĉk

Ŝ21
t,j

m̂11
k

≥ akk −O(log d/d)− c
√

log n

d
(S3.24)
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w.h.p. Similarly we can show w.h.p. ∑
j∈Ĉ`

Ŝ21
t,j

m̂11
k

≤ ak` +O(log d/d) + c

√
log n

d
. (S3.25)

Then Eqs (S3.24) and (S3.25) imply the event∑
j∈Ĉk

Ŝ21
t,j

m̂11
k

≥ max
l 6=k

∑
j∈Ĉl

Ŝ21
t,j

m̂11
l

holds w.h.p. for large n, for d/ log n → ∞. Since all the bounds are uniform in t, we have strong consistency with
MATR-CV.

Proof of Theorem 10. Now the proof directly comes from applying Theorem 6 and the results in Lemma S9-S11. We have
εunder = Ω(τπmin/r

2) = Ω(n) since all the other parameters have constant order, εover = O(n
√

log n/d), and εest = 0.

Thus it suffices to choose ∆ = n
√

(logn)1.1

d .

D. Detailed parameter settings in experiments and additional results
D.1. Details on motivating examples in Section 3 (Figure 1)

Figure 1(a): We generate an adjacency matrix from a SBM model with four communities, each having 50 nodes, and

B =


0.8 0.6 0.4 0.4
0.6 0.8 0.4 0.4
0.4 0.4 0.8 0.6
0.4 0.4 0.6 0.8

 .
The visualization of the underlying probability matrix is shown in Figure 1(a).

Figure 1(b): We consider a four-component Gaussian mixture model, where the means µ1, . . . , µ4 are generated from
Gaussian distributions centered at (0, 0), (0, 0), (5, 5), (10, 10) with covariance 6I , so that the first two clusters are closer
to each other than the rest. Then we generate 1000 data points centered at these means with covariance 0.5I , each point
assigned to one of the four clusters independently with probability (0.48, 0.48, 0.02, 0.02). Finally, we introduce correlation

between the two dimensions by multiplying each point by
[
2 1
1 2

]
. A scatter plot example of the datapoints is shown in

Figure 1(c).

D.2. Additional results on real data in Section 5.2

In Figure S1, we show the 2D projection of the handwritten digits dataset using tSNE and color the points by the clusters
they belong to according to each method. We see that as indicated by the NMI scores reported in the main paper, the
clustering by MATR, MST and KNN correspond more closely to the true clustering than DS.

D.3. Additional settings and results on simulated data in Section 5.3 (Figure 5)

We first consider graphs generated from a SBM with equal sized clusters, where

B = ρ×


0.8 0.5 0.3 0.3
0.5 0.8 0.3 0.3
0.3 0.3 0.8 0.5
0.3 0.3 0.5 0.8

 .
In Table S1 (a,b), we show the median number of clusters selected by each method as ρ changes for both the equal sized and
unequal sized cases described above. The ground truth is 4 clusters.
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(a) True clustering (b) Clustering by MATR (c) Clustering by DS

(d) Clustering by KNN (e) Clustering by MST

Figure S1: Visualization of clustering results on handwritten digits dataset.
ρ MATR-CV BH ECV
0.2 2 2 2
0.3 2 2 2
0.4 4 2 2
0.5 4 2 2
0.6 4 4 2

(a) Median number of clusters selected for equal sized case

ρ MATR-CV BH ECV
0.2 2 2 2
0.3 2 2 2
0.4 3 2 2
0.5 4 2 2
0.6 4 3 2

(b) Median number of clusters selected for unequal sized case

Table S1: Comparison of model selection results along with ρ for all algorithms.

D.4. Additional results on simulated data in Section 5.4

In Table S2, we compare model selection results obtained from different methods on simulated mixture of Gaussian data.
The same setting as in Figure 2(c)-(d) is used (described in Section D.2) with r = 4 and equal probabilities of cluster
assignment. MATR-CV performs similarly as GAP but better than SIL.

separation 1 1.5 2.2 3.3 5.0
MATR-CV 1 1 1 1 1
GAP 1 1 1 1 1
SIL 0 0 1 1 1

Table S2: Exact recovery fractions for balanced 4 clusters
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