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Abstract

Graph matching, also known as network align-
ment, aims at recovering the latent vertex
correspondence between two unlabeled, edge-
correlated weighted graphs. To tackle this task,
we propose a spectral method, GRAph Match-
ing by Pairwise eigen-Alignments (GRAMPA),
which first constructs a similarity matrix as a
weighted sum of outer products between all pairs
of eigenvectors of the two graphs, and then out-
puts a matching by a simple rounding procedure.
For a universality class of correlated Wigner mod-
els, GRAMPA achieves exact recovery of the la-
tent matching between two graphs with edge cor-
relation 1− 1/polylog(n) and average degree at
least polylog(n). This matches the state-of-the-
art guarantees for polynomial-time algorithms es-
tablished for correlated Erdős-Rényi graphs, and
significantly improves over existing spectral meth-
ods. The superiority of GRAMPA is also demon-
strated on a variety of synthetic and real datasets,
in terms of both statistical accuracy and computa-
tional efficiency.

1. Introduction
Given a pair of graphs, the problem of graph matching
or network alignment refers to finding a bijection between
the vertex sets so that the edge sets are maximally aligned
(Conte et al., 2004; Livi & Rizzi, 2013; Emmert-Streib
et al., 2016). This is a ubiquitous problem arising in a
variety of applications, including network de-anonymization
(Narayanan & Shmatikov, 2008; 2009), pattern recognition
(Conte et al., 2004; Schellewald & Schnörr, 2005), and
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computational biology (Singh et al., 2008; Kazemi et al.,
2016). Finding the best matching between two graphs with
adjacency matrices A,B ∈ Rn×n may be formalized as the
following combinatorial optimization problem over the set
of permutations Sn:

maxπ∈Sn
∑n
i,j=1AijBπ(i),π(j). (1)

This is an instance of the notoriously difficult quadratic
assignment problem (QAP) (Pardalos et al., 1994; Burkard
et al., 1998), which is NP-hard to solve or to approximate
within an approximation factor that even grows with n
(Makarychev et al., 2010).

As the worst-case computational hardness of the QAP (1)
may not be representative of typical graphs, various average-
case models have been studied. For example, when the
two graphs are isomorphic, the resulting graph isomor-
phism problem remains open to be solved in polynomial
time for worst-case instances, but can be solved for Erdős-
Rényi random graphs in linear time whenever information-
theoretically possible (Bollobás, 1982; Czajka & Panduran-
gan, 2008). In “noisy” settings where the graphs are not
exactly isomorphic, there is a recent surge of interest in
computer science, information theory, and statistics for
studying random graph matching (Yartseva & Grossglauser,
2013; Lyzinski et al., 2014; Kazemi et al., 2015; Cullina &
Kiyavash, 2016; Shirani et al., 2017; Cullina & Kiyavash,
2017; Dai et al., 2018; Barak et al., 2018; Cullina et al.,
2018; Ding et al., 2018; Feizi et al., 2019; Mossel & Xu,
2019).

1.1. Random Weighted Graph Matching

In this work, we study the following random weighted graph
matching problem: Consider two weighted graphs with n
vertices, and a latent permutation π∗ on [n] , {1, . . . , n}
such that vertex i of the first graph corresponds to ver-
tex π∗(i) of the second. Denoting by A and B their
(symmetric) weighted adjacency matrices, suppose that
{(Aij , Bπ∗(i),π∗(j)) : 1 ≤ i < j ≤ n} are independent
pairs of positively correlated random variables, with corre-
lation at least 1− σ2 where σ ∈ [0, 1]. We aim to recover
π∗ from A and B.

Notable special cases of this model include the following:
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• Erdős-Rényi graph model: (Aij , Bπ∗(i),π∗(j)) is a pair
of (standardized) correlated Bernoulli random variables.
Then A and B are Erdős-Rényi graphs with correlated
edges. This model has been extensively studied in
(Pedarsani & Grossglauser, 2011; Lyzinski et al., 2014;
Korula & Lattanzi, 2014; Cullina & Kiyavash, 2016;
Lubars & Srikant, 2018; Barak et al., 2018; Dai et al.,
2018; Cullina et al., 2018; Ding et al., 2018).

• Gaussian Wigner model: (Aij , Bπ∗(i),π∗(j)) is a pair of
correlated Gaussian variables. Then A and B are com-
plete graphs with correlated Gaussian edge weights. This
model was proposed in (Ding et al., 2018) as a prototype
of random graph matching due to its simplicity, and cer-
tain results in the Gaussian model are expected to carry
over to dense Erdős-Rényi graphs.

Spectral methods have a long history in testing graph isomor-
phism (Babai et al., 1982) and the graph matching problem
(Umeyama, 1988). In this paper, we introduce a new spec-
tral method for graph matching which enjoys the following
exact recovery guarantee.

Theorem (Informal statement). For the random weighted
graph matching problem, if the two graphs have edge corre-
lation at least 1−1/polylog(n) and average degree at least
polylog(n), then a spectral algorithm recovers the latent
matching π∗ exactly with high probability.

We describe the spectral method in Section 1.2 below. The
method may also be interpreted as a regularized convex
relaxation of the QAP program (1), and we discuss this con-
nection in Section 1.3. The performance guarantee matches
the state of the art of polynomial-time algorithms, namely,
the degree profile method proposed in (Ding et al., 2018),
and exponentially improves the performance of existing
spectral matching algorithms, which require the edge corre-
lation to be 1− 1/poly(n) as opposed to 1− 1/polylog(n).

1.2. A New Spectral Method

Write the spectral decompositions of the weighted adjacency
matrices A and B as

A =
∑n
i=1 λiuiu

>
i and B =

∑n
j=1 µjvjv

>
j (2)

where the eigenvalues are ordered such that λ1 ≥ · · · ≥ λn
and µ1 ≥ · · · ≥ µn.

Our new spectral method is given in Algorithm 1, which
we refer to as graph matching by pairwise eigen-alignments
(GRAMPA). Therein, the linear assignment problem (5)
can be solved efficiently using, e.g., the Hungarian algo-
rithm (Kuhn, 1955). Our theoretical results in Section 2
apply equally to other potential rounding procedures. We
discuss the choice of the bandwidth parameter η further in
Section 3, and find in practice that the performance is not

Algorithm 1 GRAph Matching by Pairwise eigen-
Alignments (GRAMPA)

1: Input: Weighted adjacency matrices A and B on n
vertices, and a bandwidth parameter η > 0.

2: Output: A permutation π̂ ∈ Sn.
3: Construct the similarity matrix

X̂ =

n∑
i,j=1

w(λi, µj) · uiu>i Jvjv>j ∈ Rn×n (3)

where J ∈ Rn×n denotes the all-ones matrix and w is
the Cauchy kernel of bandwidth η:

w(λ, µ) =
1

(λ− µ)2 + η2
. (4)

4: Output the permutation estimate π̂ by “rounding” X̂ to
a permutation, e.g., by solving the linear assignment
problem (LAP)

π̂ = argmax
π∈Sn

n∑
i=1

X̂i,π(i). (5)

too sensitive to this choice. Moreover, note that the compu-
tational complexity of GRAMPA is O(n3) in practice, same
as eigendecomposition and linear assignment.

Let us remark that Algorithm 1 exhibits the following two
elementary but desirable properties:

• Unlike previous proposals, our spectral method is insensi-
tive to the choices of signs for individual eigenvectors ui
and vj in the spectral decomposition (2). More generally,
it does not depend on the specific choice of eigenvectors
if certain eigenvalues have multiplicity greater than one.
This is because the similarity matrix (3) depends on the
eigenvectors ofA andB only through the projections onto
their distinct eigenspaces.

• Let π̂(A,B) denote the output of Algorithm 1 with inputs
A and B. For any fixed permutation π, denote by Bπ

the matrix with entries Bπij = Bπ(i)π(j), and by π ◦ π̂
the composition (π ◦ π̂)(i) = π(π̂(i)). Then we have the
equivariance property π ◦ π̂(A,Bπ) = π̂(A,B) and simi-
larly for Aπ . That is, the outputs given (A,Bπ) and given
(A,B) represent the same matching of the underlying
graphs. This may be verified from (3) as a consequence
of J = JΠ = ΠJ for any permutation matrix Π.

To further motivate the construction (3), we note that Al-
gorithm 1 follows the same general paradigm as several
existing spectral methods for graph matching, which seek to
recover π∗ by rounding a similarity matrix X̂ constructed
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to leverage correlations between eigenvectors of A and B.
These methods include:

• Low-rank methods that use a small number of eigenvectors
of A and B. The simplest such approach uses only the
leading eigenvectors, taking as the similarity matrix

X̂ = u1v
>
1 . (6)

Then π̂ which solves (5) sorts the entries of v1 in the
order of u1. Other rank-1 spectral methods and low-rank
generalizations have also been proposed and studied in
(Kazemi & Grossglauser, 2016; Feizi et al., 2019).

• Full-rank methods that use all eigenvectors of A and B.
A notable example is the popular method of Umeyama
(Umeyama, 1988), which sets

X̂ =
∑n
i=1 siuiv

>
i (7)

for some appropriately chosen signs si ∈ {±1}; see also
the related approach of (Xu & King, 2001). The motiva-
tion is that (7) is the solution to the orthogonal relaxation
of the QAP (1), where the feasible set is relaxed to the
set the orthogonal matrices (Finke et al., 1987). As the
correct choice of signs in (7) may be difficult to determine
in practice, (Umeyama, 1988) suggests also an alternative
construction

X̂ =
∑n
i=1 |ui||vi|> (8)

where |ui| denotes the entrywise absolute value of ui.

Compared with these constructions, GRAMPA has two im-
portant features that we elaborate below:

“All pairs matter.” Departing from existing approaches,
our proposal X̂ in (3) uses a combination of uiv>j for all n2

pairs i, j ∈ {1, . . . , n}, rather than only i = j. This renders
our method significantly more resilient to noise. Indeed,
while all of the above methods can succeed in recovering π∗
in the noiseless case, methods based only on pairs (ui, vi)
are brittle to noise if ui and vi quickly decorrelate as the
amount of noise increases—this may happen when λi is not
separated from other eigenvalues by a large spectral gap.
When this decorrelation occurs, ui becomes partially corre-
lated with vj for neighboring indices j, and the construction
(3) leverages these partial correlations in a weighted manner
to provide a more robust estimate of π∗.

The eigenvector alignment is quantitatively understood for
the Gaussian Wigner model B = A + σZ: For ui and
vj corresponding to eigenvalues in the bulk of the Wigner
semicircle spectrum, and for noise levels n−1+ε � σ2 �
n−ε, it is known that E[〈ui, vi〉2] = o(1) and

E[〈ui, vj〉2] ≈ 1
n

σ2

(λi−µj)2+Cσ4 (9)

whereC � 1 depends on the Wigner semicircle density near
λi ≈ µj . See (Bourgade & Yau, 2017; Benigni, 2017) for
more precise statements. Thus, for this range of noise, each
eigenvector ui of A is most aligned with O(nσ2) eigenvec-
tors vj of B for which |λi − µj | . σ2, and each such align-
ment is of typical size E[〈ui, vj〉2] � 1/(nσ2) � 1. The
signal for π∗ in our proposal (3) arises from a weighted aver-
age of these alignments. As a result, while existing spectral
approaches are only robust up to a noise level σ = 1

poly(n) ,1

our new spectral method is polynomially more robust and
can tolerate σ = O( 1

logn ).

Cauchy spectral weights. The performance of the spec-
tral method depends crucially on the choice of the weight
functionw in (3). In fact, there are other methods of the form
(3) that do not work equally well. For example, if we choose
w(λ, µ) = λµ, then (3) reduces to X̂ = AJB = ab>,
where a = A1 and b = B1 are the vectors of “degrees”.
Rounding such a similarity matrix is equivalent to matching
by sorting the degree of the vertices, which is known to fail
when σ = Ω(n−1) due to the small spacing of the order
statistics (cf. Remark 1 of (Ding et al., 2018)).

The Cauchy spectral weight (4) is a particular instance of
the more general form w(λ, µ) = K( |λ−µ|η ), where K is a
monotonically decreasing kernel function and η is a band-
width parameter. Such a choice upweights the eigenvector
pairs whose eigenvalues are close and penalizes those whose
eigenvalues are separated more than η. The specific choice
of the Cauchy kernel matches the form of E[〈ui, vj〉2] in
(9), and is in a sense optimal as explained by a heuristic
signal-to-noise calculation in Appendix H. In addition, the
Cauchy kernel has its genesis as a regularization term in the
associated convex relaxation, which we explain next.

1.3. Connection to Regularized Quadratic
Programming

Our new spectral method is also rooted in optimization, as
the similarity matrix X̂ in (3) corresponds to the solution to
a convex relaxation of the QAP (1), regularized by an added
ridge penalty.

Denote the set of permutation matrices in Rn×n by Sn.
Then (1) may be written in matrix notation as one of the
following equivalent optimization problems:

max
Π∈Sn

〈A,ΠBΠ>〉 ⇐⇒ min
Π∈Sn

‖AΠ−ΠB‖2F .

Note that the objective ‖AΠ − ΠB‖2F above is a convex
function in Π. Relaxing the set of permutations to its convex

1For example, a recent result of (Ganassali et al., 2019) shows
that in the Gaussian Wigner model, the rank-one method (6) based
on the top eigenvector pairs can only correctly match o(n) vertices
once the noise level reaches σ = Ω(n−6/7+ε).
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hull (the Birkhoff polytope of doubly stochastic matrices)

Bn , {X ∈ Rn×n : X1 = 1, X>1 = 1, Xij ≥ 0 ∀ i, j},

we arrive at the quadratic programming (QP) relaxation

min
X∈Bn

‖AX −XB‖2F , (10)

which was proposed in (Zaslavskiy et al., 2008; Aflalo
et al., 2015), following an earlier LP relaxation using the
`1-objective proposed in (Almohamad & Duffuaa, 1993).
Although this QP relaxation has achieved empirical success
(Aflalo et al., 2015; Vogelstein et al., 2015; Lyzinski et al.,
2016; Dym et al., 2017), understanding its performance
theoretically is a challenging task yet to be accomplished.

Our spectral method can be viewed as the solution of a
regularized further relaxation of the doubly stochastic QP
(10). Indeed, we show in Lemma A.1 that the matrix X̂ in
(3) is the minimizer of

min
X∈Rn×n

1

2
‖AX −XB‖2F +

η2

2
‖X‖2F − 1>X1. (11)

Equivalently, X̂ is a positive scalar multiple of the solution
X̃ to the constrained program

min
X∈Rn×n

‖AX −XB‖2F + η2‖X‖2F

s.t. 1>X1 = n (12)

which further relaxes (10) and adds a ridge penalty term
η2‖X‖2F . Note that X̂ and X̃ are equivalent as far as the
rounding step (5) is concerned. In contrast to (10), for which
there is currently limited theoretical understanding, we are
able to provide an exact recovery analysis for the rounded
solutions to (11) and (12).

Note that the total-sum constraint in (12) is a significant
relaxation of the double stochasticity (10). To make this
further relaxed program work, the regularization term plays
a key role. If η were zero, the similarity matrix X̂ in (3)
would involve the eigengap |λi − µj | in the denominator
which can be polynomially small in n. Hence the regular-
ization is crucial for reducing the variance of the estimate
and making X̂ stable, a rationale reminiscent of the ridge
regularization in high-dimensional linear regression.

1.4. Diagonal Dominance of the Similarity Matrix

Equipped with this optimization point of view, we now ex-
plain the typical structure of solutions to the above quadratic
programs including the spectral similarity matrix (3). It is
well known that even the solution to the most stringent re-
laxation (10) is not the latent permutation matrix, which has
been shown in (Lyzinski et al., 2016) by proving that the
KKT conditions cannot be fulfilled with high probability.

In fact, a heuristic calculation explains why the solution to
(10) is far from any permutation matrix: Let us consider the
“population version” of (10), where the objective function
is replaced by its expectation over the random instances A
and B. Consider π∗ = id the identity permutation, and the
Gaussian Wigner model B = A + σZ, where A and Z
are independent GOE matrices with N(0, 1

n ) off-diagonal
entries and N(0, 2

n ) diagonal entries. Then the expectation
of the objective function is

E‖AX −XB‖2F
= (2 + σ2)n+1

n ‖X‖
2
F − 2

n Tr(X)2 − 2
n 〈X,X

>〉,

so the population version of the quadratic program (10) is

min
X∈Bn

(2 + σ2)(n+ 1)‖X‖2F − 2 Tr(X)2 − 2〈X,X>〉,

whose solution is

X , εI + (1− ε)F, ε = 2
2+(n+1)σ2 ≈ 2

nσ2 .

This is a convex combination of the true permutation matrix
and the center of the Birkhoff polytope F = 1

nJ. Therefore,
the population solution X is in fact a very “flat” matrix,
with each entry on the order of 1

n , and is close to the center
of the Birkhoff polytope and far from any of its vertices.

This calculation nevertheless provides us with important
structural information about the solution to such a QP relax-
ation: X is diagonally dominant for small σ, with diagonals
about 2/σ2 times the off-diagonals. Although the actual
solution of the relaxed program (10) or (11) is not equal to
the population solution X in expectation, it is reasonable
to expect that it inherits the diagonal dominance property
in the sense that X̂i,π∗(i) > X̂ij for all j 6= π∗(i), which
enables rounding procedures such as (5) to succeed.

With this intuition in mind, let us revisit the regularized
quadratic program (11) whose solution is the spectral sim-
ilarity matrix (3). By a similar calculation, the solution to
the population version of (11) is given by αI + βJ, with
α = 2n2

(n(η2+σ2)+σ2)(n(η2+σ2+2)+σ2) ≈
2

(η2+σ2)(η2+σ2+2)

and β = n
n(η2+σ2+2)+σ2 ≈ 1

η2+σ2+2 , which is diagonally
dominant for small σ and η. In turn, the basis of our theoret-
ical guarantee is to establish the diagonal dominance of the
actual solution X̂; see Figure 1 for an empirical illustration.

Although the ridge penalty η2‖X‖2F guarantees the stability
of the solution as discussed in Section 1.3, it may seem
counterintuitive since it moves the solution closer to the
center of the Birkhoff polytope and further away from the
vertices (permutation matrices). In fact, several works in
the literature (Fogel et al., 2013; Dym et al., 2017) advo-
cate adding a negative ridge penalty, in order to make the
solution closer to a permutation at the price of potentially
making the optimization non-convex. This consideration,
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however, is not necessary, as the ensuing rounding step can
automatically map the solution to the correct permutation,
even if they are far away in the Euclidean distance.

-4000 -2000 0 2000 4000 6000 8000 10000 12000
0

100

200

300

400

500

600

700

800

(a) Histogram of diagonal (blue)
and off-diagonal (yellow with a

normal fit) entries of X̂ .

50 100 150 200

20

40

60

80

100

120

140

160

180

200 -4000

-2000

0

2000

4000

6000

8000

10000

12000

(b) Heat map of X̂ .

Figure 1: Diagonal dominance of the similarity matrix X̂
defined by (3) or (11) for the Gaussian Wigner model B =
A+ σZ with n = 200, σ = 0.05 and η = 0.01.

It is worth noting that, in contrast to the prevalent analysis of
convex relaxations in statistics and machine learning (where
the goal is to show that the relaxed solution is close to the
ground truth in a certain distance) or optimization (where
the goal is to bound the gap of the objective value to the
optimum), here our goal is not to show that the optimal so-
lution per se constitutes a good estimator, but to show that it
exhibits a diagonal dominance structure, which guarantees
the success of the subsequent rounding procedure. For this
reason, it is unclear from first principles that the guaran-
tees obtained for one program, such as (12), automatically
carry over to a tighter program, such as (10). Indeed, in
Appendix G, a separate analysis is required when we study
a tighter relaxation with row-sum constraints that achieves
similar performance guarantees as (12).

2. Guarantees for Exact Recovery
In this section, we first formalize the general correlated
Wigner model, and state the universal guarantees of exact
recovery achieved by GRAMPA. Then the guarantees for the
correlated Erdős-Rényi graph model follow as a corollary.

2.1. Correlated Wigner Model

To model a general random weighted graph, we consider the
following Wigner model: Let A = (Aij) be a symmetric
random matrix in Rn×n, where the entries (Aij)i≤j are
independent. Suppose that

E [Aij ] = 0, E
[
A2
ij

]
= 1/n for i 6= j, and (13)

E
[
|Aij |k

]
≤ Ck

nd(k−2)/2 for all i, j and k ≥ 2, (14)

where d ≡ d(n) is an n-dependent sparsity parameter and
C is a positive constant.

With the moment conditions (13) and (14) specified, we
are ready to introduce the correlated Wigner model, which
encompasses both the correlated Erdős-Rényi graph model
proposed in (Pedarsani & Grossglauser, 2011) and the cor-
related Gaussian model (Ding et al., 2018) as special cases.

Definition 2.1 (Correlated Wigner model). Let n be a pos-
itive integer, σ ∈ [0, 1] an (n-dependent) noise parameter,
π∗ a latent permutation on [n], and Π∗ ∈ {0, 1}n×n the
corresponding permutation matrix such that (Π∗)iπ∗(i) = 1.
Suppose that

{
(Aij , Bπ∗(i)π∗(j)) : i ≤ j

}
are independent

pairs of random variables such that both A = (Aij) and
B = (Bij) satisfy (13) and (14),

E
[
AijBπ∗(i)π∗(j)

]
≥ 1− σ2

n
for all i 6= j, (15)

and for a constant C > 0, any D > 0, and all n ≥ n0(D),

P
{∥∥A−Π∗BΠ>∗

∥∥ ≤ Cσ} ≥ 1− n−D (16)

where ‖ · ‖ denotes the spectral norm.

The parameter σ measures the effective noise level in the
model. In the special case of sparse Erdős-Rényi model
defined below, A and B are the centered and normalized
adjacency matrices of two Erdős-Rényi graphs, which differ
by a fraction 2σ2 of edges approximately.

We now state the exact recovery guarantees for GRAMPA,
making the informal statement in Section 1.1 precise.

Theorem 2.2 (Universal graph matching). Fix constants
κ > 2 and a > 2κ. Consider the correlated Wigner model
with n ≥ d ≥ (log n)32+7a. Then there exist constants
c, c′ > 0 and n0 = n0(κ, a) such that for all n ≥ n0, if

(log n)−a ≤ η ≤ c(log n)−2κ and σ ≤ c′η, (17)

then with probability at least 1− n−10,

min
k
X̂kπ∗(k) > max

` 6=π∗(k)
X̂k`, (18)

and hence π̂ which solves the linear assignment problem (5)
equals π∗.

The proof of this theorem is deferred to Appendix D.

2.2. Correlated (Sparse) Erdős-Rényi Graphs

An important application of the above universality result is
matching two correlated sparse Erdős-Rényi graphs. Let G
be an Erdős-Rényi graph with n vertices and edge probabil-
ity q, denoted by G ∼ G(n, q). Let A and B′ be two copies
of Erdős-Rényi graphs that are i.i.d. conditional on G, each
of which is obtained from G by deleting every edge of G
with probability 1− s independently where s ∈ [0, 1]. Then
we have that A,B′ ∼ G(n, p) marginally where p , qs.
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Equivalently, we may first sample an Erdős-Rényi graph
A ∼ G(n, p), and then define B′ by

B′ij ∼

{
Bern(s) if Aij = 1

Bern
(p(1−s)

1−p
)

if Aij = 0.

Suppose that we observe a pair of graphs A and B =
Π>∗ B

′Π∗, where Π∗ is the latent permutation matrix. We
then wish to recover Π∗ or, equivalently, the corresponding
permutation π∗.

We first normalize the adjacency matrices A and B so that
they satisfy the moment conditions (13) and (14). Define
the centered, rescaled versions of A and B by

A , (np(1− p))−1/2(A− E[A])

and B , (np(1− p))−1/2(B− E[B]). (19)

Then we have the following result whose proof is deferred
to Appendix F.
Lemma 2.3. For all large n, the matrices A = (Aij) and
B = (Bij) satisfy conditions (13), (14), (15), and (16) with

d = np(1− p) and σ2 = max
(

1−s
1−p ,

(logn)7

d

)
.

Then we can combine Theorem 2.2 and Lemma 2.3 to obtain
the following exact recovery guarantees for the correlated
Erdős-Rényi graph model.
Corollary 2.4 (Erdős-Rényi graph matching). Suppose that
np(1 − p) ≥ (log n)61 and 1−s

1−p ≤ (log n)−8−δ for a con-
stant δ ∈ (0, 0.1). Then there exists n0 = n0(δ) such that
for all n ≥ n0, if η = (log n)−4−δ/3, then with probability
at least 1 − n−10, the solution π̂ to the linear assignment
problem (5) coincides with π∗.

Proof. Choose a and κ so that 4.1 > a > 4+δ/3 > 2κ > 4.
Then all conditions of Theorem 2.2 are satisfied for large n,
so Corollary 2.4 follows.

Remark 2.5. From Theorem 2.2, we can obtain similar ex-
act recovery guarantees for the correlated Gaussian Wigner
model B =

√
1− σ2Π>∗ AΠ∗ + σZ, where A and Z are

independent GOE matrices and σ ≤ (log n)−4−δ. In fact,
GRAMPA recovers the latent permutation Π∗ under a milder
condition σ ≤ c(log n)−1 for a small constant c > 0. How-
ever, this refined result requires a dedicated analysis dif-
ferent from the proof of Theorem 2.2, so we defer it to a
companion work.

2.3. Proof Outline for Theorem 2.2

We now discuss the overall strategy for proving Theorem 2.2,
which relies on techniques from random matrix theory. For
a real symmetric matrix A with spectral decomposition (2),
its resolvent is defined as

RA(z) , (A− zI)−1 =
∑
i

1
λi−zuiu

>
i for z ∈ C \ R.

Moreover, let m(z) ,
∫

1
x−zρ(x)dx = −z+

√
z2−4

2 denote
the Stieltjes transform of the Wigner semicircle density
ρ(x) = 1

2π

√
4− x2 1{|x|≤2}.

The first step of the proof is to apply the Cauchy integral
formula to obtain the following integral representation of
the similarity matrix (3) via resolvents:

X , ηX̂ =
1

2π
Re

∮
Γ

RA(z)JRB(z + iη)dz, (20)

where Γ is the rectangular contour with vertices ±3± iη/2.

Results from random matrix theory known as local laws
(Erdős et al., 2013a;b) provide entrywise bound on the resol-
vents. To establish the diagonal dominance of the matrix X ,
directly applying the local law to the integrand in (20) turns
out to be too crude. Instead, we employ a leave-one-out
technique using the Schur complement to obtain

Xij ≈
1

2π
(a(ij))>M (ij)b(ji), where M (ij) ,

Re

∮
Γ

m(z)m(z + iη)RA(ij)(z)JRB(ij)(z + iη)dz.

Here a(ij) denotes the i-th column of A with the i-th and
j-th entries removed, b(ji) denotes the j-th column of B
with the i-th and j-th entries removed, andA(ij) denotes the
matrix A with the i-th and j-th columns and rows removed.

Crucially, the matrix M (ij) is independent of the vectors
(a(ij), b(ji)), which allows us to apply a Hanson-Wright-like
inequality for concentration of bilinear forms to obtain that
with high probability,

• Xii ≈ 1−σ2

2πn Re TrM (ii) ≈ 1−σ2

η +O( ση2 ), and

• |Xij | . (logn)κ

n ‖M (ij)‖F . (logn)κ√
η for i 6= j,

where κ > 2 is any fixed constant. The above quantitative
control on TrM (ii) and ‖M (ij)‖F is achieved by analyzing
the resolvents involved, in particular, applying their local
laws.

Comparing the diagonal entries Xii to off-diagonal entries
Xij where i 6= j, by a union bound, we conclude that with
high probability the similarity matrix X (and thus X̂) is
diagonally dominant under the assumptions of Theorem 2.2,
which ensures the correctness of Algorithm 1.

3. Numerical Experiments
This section is devoted to comparing our spectral method to
various existing algorithms for graph matching, using both
synthetic examples and real datasets.

Similar to the last step of Algorithm 1, many algorithms
we compare to also involve rounding a similarity matrix to
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produce a matching in the final step. In the experiments, for
the sake of comparison we use the linear assignment (5) for
rounding, unless otherwise specified.

3.1. Comparison to Existing Graph Matching Methods

We now compare the performance of GRAMPA to several ex-
isting methods in the literature. For GRAMPA, Theorem 2.2
suggests that the bandwidth parameter η needs to be cho-
sen within a certain range. In practice, one may compute
estimates π̂η for different values of η and select the one
with the minimum objective value ‖A−Bπ̂η‖2F . We find in
simulations that the performance of GRAMPA is in fact not
very sensitive to the choice of η, unless η is extremely close
to zero or larger than one. For simplicity and consistency,
we fix η = 0.2 in the following synthetic experiments.

First, we compare GRAMPA to other spectral methods. Be-
sides the rank-1 method of rounding the outer product of
top eigenvectors (6) (denoted by TopEigenVec), we con-
sider the IsoRank algorithm of (Singh et al., 2008), the
EigenAlign and LowRankAlign2 algorithms of (Feizi
et al., 2019), and Umeyama’s method (Umeyama, 1988)
which rounds the similarity matrix (8). In Figure 2(a), we ap-
ply these algorithms to match Erdős-Rényi graphs with 100
vertices3 and edge density 0.5. For each spectral method,
we plot the fraction of correctly matched pairs of vertices
of the two graphs versus the noise level σ, averaged over
10 independent repetitions. While all estimators recover the
exact matching in the noiseless case, it is clear that GRAMPA
is more robust to noise than all previous spectral methods
by a wide margin.
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Figure 2: Comparison of GRAMPA to existing methods for
matching Erdős-Rényi graphs with expected edge density
0.5. Each experiment is averaged over 10 repetitions.

2We implement the rank-2 version of LowRankAlign here
because a higher rank does not appear to improve its performance
in the experiments.

3This experiment is not run on larger graphs because IsoRank
and EigenAlign involve taking Kronecker products of graphs
and are thus not as scalable as the other methods.

Next, we consider more competitive graph matching algo-
rithms outside the spectral class. Since our method admits
an interpretation through the regularized QP (11) or (12), it
is of interest to compare its performance to (the algorithm
that rounds the solution to) the full QP (10) with full doubly
stochastic constraints, denoted by QP-DS. Another recently
proposed method for graph matching is Degree Profile (Ding
et al., 2018), for which theoretical guarantees comparable to
our results have been established for the Gaussian Wigner
and Erdős-Rényi models.

Figure 2(b) plots the fraction of correctly matched vertex
pairs by the three algorithms, on Erdős-Rényi graphs with
500 vertices and edge density 0.5, averaged over 10 indepen-
dent repetitions. GRAMPA outperforms DegreeProfile,
while QP-DS is clearly the most robust, albeit at a much
higher computational cost. Since off-the-shelf QP solvers
are extremely slow on instances with n larger than several
hundred, we resort to an alternating direction method of mul-
tipliers (ADMM) procedure used in (Ding et al., 2018). Still,
solving (10) is more than 350 times slower than computing
the similarity matrix (3) for the instances in Figure 2(b).
Moreover, DegreeProfile is about 15 times slower. We
argue that GRAMPA achieves a desirable balance between
speed and robustness when implemented on large networks.

3.2. Networks of Autonomous Systems

As suggested by both theory and the preceding experiments,
GRAMPA and DegreeProfile have been the two fast
and robust methods. We corroborate the improvement of
GRAMPA over DegreeProfile using quantitative bench-
marks on a time-evolving real-world network of n = 10000
vertices. Here, for simplicity, we apply both methods to
the unnormalized adjacency matrices, and set η = 1 for
GRAMPA. We find that the results are not very sensitive to
this choice of η. Although QP-DS yields better performance
in Figure 2(b), it is extremely slow to run on such a large
network, so we omit it from the comparison here.

We use a subset of the Autonomous Systems dataset from
the University of Oregon Route Views Project (University of
Oregon Route Views Project), available as part of the Stan-
ford Network Analysis Project (Leskovec & Krevl, 2014;
Leskovec et al., 2005). The data consists of instances of
a network of autonomous systems observed on nine days
between March 31, 2001 and May 26, 2001. Edges and (a
small fraction of) vertices of the network were added and
deleted over time. In particular, the number of vertices of
the network on the nine days ranges from 10,670 to 11,174
and the number of edges from 22,002 to 23,409. The labels
of the vertices are known.

To test the graph matching methods, we consider 10,000
vertices of the network that are present on all nine days.
The resulting nine graphs can be seen as noisy versions of
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each other, with correlation decaying over time. We apply
GRAMPA and DegreeProfile to match each graph to
that on the first day of March 31, with vertices randomly
permuted.
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Figure 3: Comparison of GRAMPA with DegreeProfile
for matching networks of autonomous systems on nine days
to that on the first day

In Figure 3(a), we plot the fraction of correctly matched
pairs of vertices against the chronologically ordered dates.
GRAMPA correctly matches many more pairs of vertices
than DegreeProfile for all nine days. As expected, the
performance of both methods degrades over time as the
network becomes less correlated with the original one.

Note that even the matching of the graph on the first day to it-
self is not exact for both methods. This is due to the fact that
there are over 3,000 degree-one vertices in this graph, and
some of them are attached to the same high-degree vertices.
Therefore the exact matching is non-identifiable. Thus for a
given matching π̂, an arguably more relevant figure of merit
is the number of common edges, i.e. the (rescaled) objec-
tive value 〈A,Bπ̂〉/2. We plot this in Figure 3(b) together
with the value for the ground-truth matching. The values
of GRAMPA and of the ground-truth matching are the same
on the first day, indicating that GRAMPA successfully finds
an automorphism of this graph, while DegreeProfile
fails. Furthermore, GRAMPA consistently recovers a match-
ing with more common edges over the nine days.

3.3. Deformable Shape Matching

Matching 3D deformable shapes is a central problem in
computer vision with a wide variety of applications, and
has been extensively studied for decades. In this section,
we evaluate the performance of GRAMPA on the SHREC’16
dataset (Lähner et al., 2016), which provides a realistic and
challenging experiment setup for evaluating shape matching
methods on noisy data. The test data in SHREC’16 contains
25 kid shapes (15 for training and 10 for testing), undergo-
ing non-rigid deformations (e.g. change in pose) and large
topological changes. At the lower resolution, each shape
is represented by a triangulated mesh graph consisting of
∼10K vertices with 3D coordinates and ∼20K triangular

faces.

For each of the 90 pairs from the 10 test shapes, we apply our
GRAMPA algorithm with η = 1 to the unweighted adjacency
matrices of the mesh graphs, without using the training
data. As the graph sizes are slightly different across dif-
ferent shapes, we generalize GRAMPA to match a m-vertex
graph A to a n-vertex graph B by letting J in (3) to be
the m × n all-one matrix. Moreover, to speed up round-
ing, we solve the LAP in (5) approximately via the greedy
max-weight matching. Finally, to boost the matching ac-
curacy, we apply an iterative clean-up procedure: Πt+1 =
argmaxΠ∈Sn 〈Π, AΠtB〉 for t = 0, . . . , 100, where the
initial permutation matrix Π0 is given by GRAMPA; each
LAP is again approximated by the greedy max-weighted
matching. See Fig. 4(a) for a visualization of the final cor-
respondence between two kid shapes, where the matched
vertices are colored with the same color.

To evaluate the matching quality, we follow the Princeton
benchmark protocol (Kim et al., 2011). Assume that a
matching algorithm matches vertex i in shapeM to vertex j
in shapeN , while the ground-truth correspondence is (i, j∗).
Then the normalized geodesic error of this correspondence
at vertex i is defined as ε(i) = dN (j,j∗)√

area(N )
, where dN denotes

the geodesic distance on N and area(N ) is the total surface
area ofN . Finally, we plot the cumulative distribution curve
of {ε(i)}mi=1 in Fig. 4(b), where curve(x) is the fraction of
vertices i such that ε(i) ≤ x. In particular, curve(0) is the
fraction of correctly matched vertices in shapeM.

(a) Visualization of the
correspondence by GRAMPA
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Figure 4: Comparison of GRAMPA to existing methods on
SHREC’16 dataset.

We compare with three existing methods tested in the origi-
nal SHREC’16 paper (Lähner et al., 2016), namely, Isomet-
ric embedding (EM) (Sahillioğlu & Yemez, 2012), Green’s
function embedding alignment (GE) (Lipman et al., 2010),
and random forests (RF) (Rodolà et al., 2014). From
Fig. 4(b), we see that GRAMPA significantly improves over
existing methods, especially in terms of the fraction of cor-
rectly matched vertices. Unlike these algorithms, GRAMPA
does not use the 3D coordinates of vertices, and does not
require a training set as opposed to the learning-based tech-
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niques such as RF.
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