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Abstract
Maximum selection under probabilistic queries
(probabilistic maximization) is a fundamental
algorithmic problem arising in numerous the-
oretical and practical contexts. We derive
the first query-optimal sequential algorithm for
probabilistic-maximization. Departing from pre-
vious assumptions, the algorithm and perfor-
mance guarantees apply even for infinitely many
items, hence in particular do not require a-priori
knowledge of the number of items. The algo-
rithm has linear query complexity, and is optimal
also in the streaming setting.

To derive these results we consider a probabilis-
tic setting where several candidates for a posi-
tion are asked multiple questions with the goal
of finding who has the highest probability of
answering interview questions correctly. Previ-
ous work minimized the total number of ques-
tions asked by alternating back and forth between
the best performing candidates, in a sense, invit-
ing them to multiple interviews. We show that
the same order-wise selection accuracy can be
achieved by querying the candidates sequentially,
never returning to a previously queried candidate.
Hence one interview is enough!

1. Introduction
Reinforcement learning, one of machine learning’s tripodal
paradigms, applies a sequence of actions and uses obser-
vations of their outcomes to learn the best possible strat-
egy. It typically addresses two general scenarios that differ
in the type of observations available to the learner. Full
knowledge, where following each action, the learner ob-
serves the outcomes of all possible actions, such as the
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returns of all stocks on a given day; and partial knowl-
edge, where the learner observes the outcomes of only a
subset of the actions. The simplest and by far most popu-
lar partial-knowledge observation is that of just the action
taken. For example, the effect of the administered medica-
tion, the click-rate of the placed ad, the performance of the
routing algorithm utilized, or back to investment, the return
of the strategy utilized.

The latter paradigm is captured by an idealized framework
where a gambler can choose between k slot-machine arms,
each with its own unknown return distribution. Through
successive arm pulls, the gambler tries to maximize their
return or find the most rewarding arm. The framework is
commonly called the multi-armed bandit (MAB) as “in the
long run... slot machines are as effective as human bandits
in separating the victim from his money” (Lai & Robbins,
1985).

Two common measures evaluate the gambler’s perfor-
mance, and corresponding strategy. Regret, or exploration-
exploitation, aims to maximize the gambler’s expected to-
tal return over time (Auer et al., 2002; Bubeck et al., 2012);
Maximization, or pure exploration, seeks the arm with the
highest expected return (Bubeck et al., 2009; Karnin et al.,
2013; Gabillon et al., 2012); We consider the latter. Maxi-
mum selection (maximization) arises in numerous applica-
tions ranging from medical trials (Robbins, 1952) to social
choice (Caplin & Nalebuff, 1991), to wireless channel band
selection (Audibert & Bubeck, 2010).

The typical approach for finding PAC maximum arm with
linear query complexity (Even-Dar et al., 2006; Zhou et al.,
2014) is to conduct the pulls (queries) in rounds. Starting
with all n arms, in round i, all surviving arms are queried
certain number of times, and the top half performing arms
continue to the next round while the bottom half are dis-
carded. Motivating this strategy is the goal of querying
low-expectation arms only few times, while querying high-
expectation arms successively more times, till the best is
found. This approach inherently alternates between the
arms, repeatedly looking for the best subset, and refining
the selection in subsequent rounds.

For several applications, there is a cost associated with
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changing the queried alternatives. For example, switching
back and forth between webpage layout styles frequently
can annoy users; in manufacturing, switching alternatives
might require reconfiguring entire production line.

One of the oldest branches of MAB research, has therefore
considered Bandits with switching costs (Dekel et al., 2014;
Koren et al., 2017). Our problem setup can be viewed in
that context. Finding the best alternative clearly requires
considering all possible alternatives, and if the switching
cost is sufficiently high, this would be achieved by consid-
ering each alternative consecutively without ever returning
back to the previously considered alternative.

In addition to reinforcement-learning motivation, the prob-
lem can be viewed from another perspective. The maxi-
mization model has also been likened to as an interview
process, e.g., (Schumann et al., 2017; David & Shimkin,
2014). An employer considers n applicants for a position,
and asks each of them questions that for simplicity we as-
sume have the same expected score, trying to find the one
whose expected grade is at most ε away from the best.

The traditional approach (Even-Dar et al., 2006; Zhou
et al., 2014) assumes the knowledge of n and that the vari-
ous candidates can be interviewed at will. While typical in-
terviews may not proceed in log n or log∗ n rounds, many
leading employers still conduct at least 2-round interviews
exploring other candidates in between the rounds. More
interview rounds are also common (fif).

Our results show that the knowledge of n is not necessary
and further that a single interview round is order optimal.

We now define our problem more formally.

1.1. Traditional bandits sequential maximization

The company can interview one candidate at a time. We as-
sume that each candidate interview consists of a sequence
of queries, with each query providing probabilistic evi-
dence about the candidate’s merits. Each candidate c has
a parameter vc ∈ [0, 1] indicating the probability that the
candidate answers each question correctly. To each ques-
tion asked, candidate c gives a correct response with prob-
ability vc, and distinct questions are answered indepen-
dently. The confidence in the candidate’s evaluation im-
proves as the number of queries increases, yet when each
candidate is interviewed, it is not clear how many queries
would truly suffice. At each interview, the administrator
can ask any number of queries to evaluate the current can-
didate but once the interview ends, the candidate can’t be
called for further evaluation. Adopting the conventional
PAC formulation, for given ε < 1/4 and δ < 1/4, we
would like to find w.p. ≥ 1 − δ an ε-maximum, i.e., one
whose value is at most ε below that of the maximum value
among all candidates. The goal is to minimize the total

number of queries.

This is the traditional multi-armed bandits formulation, ex-
cept that it is adapted for the streaming framework i.e., can-
didates come in a uniformly random sequence and one can-
didate can be interviewed at a time and once a candidate’s
interview is completed, they can’t be recalled for further
evaluation.

Under no constraints, (Mannor & Tsitsiklis, 2004) showed
that maximization algorithms require Θ

(
n
ε2 log 1

δ

)
queries

to find an ε-maximum with probability ≥ 1− δ. (Even-Dar
et al., 2006; Zhou et al., 2014) provided the matching upper
bound. Recall that these algorithms eliminate candidates in
multiple rounds. To derive a sequential algorithm, these
algorithms need to be modified in several ways. Only a
single “round” can be performed, during which all but one
item need to be discarded. Furthermore, we need to fix the
number of queries of each item without knowing the per-
formance of all subsequent items, let alone the best ones.

Questions In the sequential model, we ask the following
questions: a) What is the optimal query complexity? b)
Will the answer change if n is not known in advance?

Results In Theorems 10, 11 and 15, we derive optimal
n-agnostic streaming maximization algorithm that w.p.≥
1− δ usesO( nε2 log 1

δ ) queries and outputs an ε-maximum.
Notice that since query complexity is orderwise same as
that of lower bound for traditional multi-armed bandits set-
ting that need not be sequential and has a priori knowl-
edge of n, we answered all questions above, with the same
bound. Further it also implies that a candidate once in-
terviewed doesn’t need to be called for further evaluation.
One interview is enough!

General Models For simplicity, we prove our results when
each candidate has value vi and for each query we ob-
serve a Bernoulli(vi) random variable. Essentially the
same results hold even when for each candidate i, a query
results in a random variable with an arbitrary distribution
with bounded support, and the value of a candidate is the
distribution’s expected value. Query complexity scales ac-
cording to bounds on the distribution’s variance and do-
main size. We provide more explanation in Appendix.

In the process of designing optimal sequential maxi-
mization algorithm, we develop tools (ASYMMETRIC-
THRESHOLD in Section 2.4) and proof techniques that we
believe can be adapted to design optimal sequential algo-
rithms even under other setups. To demonstrate this, we
consider another variation of traditional multi-armed ban-
dits, dueling bandits (Szörényi et al., 2015; Yue et al.,
2012).
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1.2. Dueling bandits sequential maximization

Here, in each interview the company can compare two can-
didates. To facilitate these “pairwise comparisons”, the
company is allowed to keep a “buffer” of one candidate
and in each interview, it can compare the buffer candidate
with a new candidate assigning them tasks to complete. For
every independent task, candidate i will finish the task be-
fore candidate j with probability pi,j , which is also referred
to as the probability that i is preferred to j. If pi,j ≥ 1

2 ,
we say that i is preferable to j, denoted by i ≥ j. Let
p̃i,j = pi,j − 1/2 be the centered preference probability.
Candidate i is ε-preferable to candidate j if p̃i,j ≥ −ε. Our
goal here is: given ε < 1/4 and δ < 1/4, to w.p.≥ 1 − δ,
find an ε-maximum candidate that is ε-preferable to every
other candidate. The confidence in the candidates’ com-
parison improves as the number of tasks increases, yet dur-
ing each interview, it is not clear how many tasks would
truly suffice. After each interview the administrator de-
cides whether the newly-compared candidate is eliminated
and the “buffer” candidate continues, or the “buffer” candi-
date is eliminated and replaced by the new candidate. Once
a candidate is eliminated, they can’t be recalled. The pro-
cess may stop at any time, and at that point, the “buffer”
candidate is declared as ε-maximum.

This is the dueling bandits formulation, except that it is
adapted for the streaming framework i.e., candidates come
in a uniformly random sequence and at a time only one
interview can happen and after each interview a candidate
is sent away and can never be recalled.

On the outset, this setting might look easier than the regular
bandits setting since we can compare the current candidate
with the “buffer” candidate, thereby getting more informa-
tion about a previous (“buffer”) candidate. But observe that
this model is more general in the sense that it has Θ(n2) pa-
rameters whereas the traditional bandits setting has only n.

Under this dueling bandits setting, to allow for the feasibil-
ity of existence of maximum, one needs to assume certain
transitivity property among the elements. We assume one
such property which has been used previously (Falahatgar
et al., 2017b;a).

The model is said to satisfy Strong Stochastic Transitivity
(SST) if there is an ordering � among elements such that
for all i � j and j � k, p̃i,k ≥ max(p̃i,j , p̃j,k).

For models with SST, (Falahatgar et al., 2017a) presented
a min-max optimal maximization algorithm with compar-
ison complexity of O

(
n
ε2 log 1

δ

)
. This algorithm is neither

streaming based nor n-agnostic. But in the process, for
the same model (Falahatgar et al., 2017a) also presented
a sub optimal min-max maximization algorithm, SEQ-
ELIMINATE with comparison complexity of O

(
n
ε2 log n

δ

)
.

This algorithm is streaming based but not n-agnostic.

Questions In the sequential scenario, a) what is the optimal
comparison complexity under the dueling bandit settings
with SST? b) will the answer change if n is not known in
advance?

Results In Theorem 18, we derive an optimal n-agnostic
streaming maximization algorithm that w.p.≥ 1 − δ uses
O( nε2 log 1

δ ) comparisons and outputs an ε-maximum. No-
tice that since comparison complexity is orderwise same as
that of lower bound for dueling bandits setting that need not
be sequential and has a priori knowledge of n, we answered
all questions above, with the same bound.

Outline In Section 2, we derive optimal sequential max-
imization algorithm under traditional bandits setting. In
Section 3, we derive optimal sequential maximization algo-
rithm under dueling bandits setting. In Section 4, we com-
pare empirical performance of maximization algorithms.
Finally, we provide our concluding remarks in Section 5.

2. Traditional Multi-armed bandits
2.1. Preliminaries

All sequential algorithms in this section share the same
structure. They sequentially interview the candidates and
maintain an anchor a deemed the best candidate inter-
viewed thus far. Upon interviewing candidate c they ap-
proximate its value vc by an estimate v̂c, and compare it to
the current anchor’s estimate v̂a, deciding whether to keep
the current anchor, or replace it by c. They output the final
anchor a∗ to be the best.

The algorithm’s additive error is |vb − va∗ | where b is the
candidate with highest value. We would like additive error
to be > ε with probability ≤ δ that we call uncertainty.

For simplicity, we say that candidate c is better than c′ if
vc > vc′ , and worse if vc < vc′ . Similarly we say that
candidate c is ε-better than c′ if vc > vc′ + ε, and ε-worse
than c′ if vc < vc′ − ε.

Hoeffding’s Inequality (Hoeffding, 1994) states that ifX ∼
Binomial(p, n), then

Pr(X ≤ (p− ε)n) ≤ e−2ε
2n

Pr(X ≥ (p+ ε)n) ≤ e−2ε
2n.

(1)

Hence with d 1
2ε2 ln 1

δ e queries, we can approximate a can-
didate’s value to a one-sided additive accuracy ≤ ε with
error probability, or uncertainty, ≤ δ.

2.2. Suboptimal sequential maximization

We first consider a simple sequential maximization algo-
rithm with suboptimal query complexity, and then build on
it to derive an optimal one.
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Notice that if we approximate all candidates’ values to ≤
ε/2 additive accuracy, then the candidate with the highest
approximated value will be an ε-maximum candidate.

2.2.1. ALGORITHM SUBOPTIMAL-SEQUENTIAL

Algorithm SUBOPTIMAL-SEQUENTIAL (S-S) maintains
anchor a, a proxy for the candidate with highest approx-
imated score so far. S-S updates a with current candidate
if their approximated score is more than that of a. After
interviewing the final candidate S-S outputs a.

From Hoeffding’s inequality, it follows that with 2
ε2 ln 1

δ′

queries, we can approximate a candidate’s value to addi-
tive accuracy ε/2 and confidence 1 − δ′. To ensure that
w.p. ≥ 1 − δ, all candidate values are approximated to an
additive accuracy of ε/2, one can evaluate the ith candi-
date using δi = δ/(2i2), and then invoke the union bound.
Pseudocode for algorithm S-S is given in Appendix.

By construction, |v̂c − vc| ≤ ε/2, for every candidate
c. Hence right after interviewing the best candidate b,
v̂a ≥ v̂b ≥ vb − ε/2. Since v̂a never decreases, the
same inequality holds for the final anchor a∗, namely,
va∗ ≥ v̂a∗ − ε/2 ≥ vb − ε.

For δ < 1/n, we have ln n
δ = Θ(ln 1

δ ), hence S-S uses
Θ
(
n
ε2 ln 1

δ

)
queries, within a constant factor from the (Man-

nor & Tsitsiklis, 2004) lower bound. However, for higher
confidences δ, e.g., constant, it may require up to lnn times
more queries than the lower bound. The remainder of the
section eliminates this extra factor.

2.3. Properties of Sequential Maximization

We identify sufficient conditions for correctness of any se-
quential maximization algorithm, point out shortcomings
of S-S, and combine these observations to derive a query-
optimal algorithm.

The following two properties ensure an ε-maximum output:

Lemma 1. Suppose that (i) the anchor is never replaced
by a worse candidate, and (ii) when the best candidate is
interviewed, if it is ε-better than the anchor, then it replaces
the anchor. Then the final anchor is an ε-maximum.

The lemma holds because the first condition ensures that
the anchor’s values are a non-decreasing sequence, and the
second condition guarantees that right after the best candi-
date is interviewed, the anchor is an ε-maximum.

We will ensure that if anchor’s value is well approximated
then Lemma 1’s first condition fails for candidate i with
probability ≤ δ

16i2 , and the second fails with probability
≤ δ

4 .

Let v̂c be our approximation of candidate c’s value vc. To
ensure that with high probability the anchor is not updated

with a lower value candidate, we could as in S-S, ensure
that with probability ≥ 1 − δ, all candidate values are ap-
proximated to within ±ε/4, namely |v̂c − vc| < ε/4 ∀c,
and update the anchor only if v̂c ≥ v̂a + ε/2. However, as
noted earlier, this would entail an extra lnn factor.

To circumvent this issue we approximate candidate values
that are significantly lower than that of the anchor to lower
confidence. Assume that anchor’s value is approximated to
within ±ε/4 i.e., |v̂a − va| < ε/4.

We update anchor a only when v̂c > v̂a + ε/2. If this hap-
pens when the actual values satisfy vc ≤ va (and hence
vc ≤ v̂a + ε/4), we call that an overestimation. We ensure
that for ith candidate, overestimation happens with proba-
bility ≤ δ/(16i2). By the union bound over all candidates,
overestimation happens with probability ≤

∑
i

δ
16i2 <

δ
8 .

Similarly, the second condition of Lemma 1 fails only if
the best candidate b satisfies vb > va + ε (and hence vb >
v̂a+3ε/4) yet our evaluation of b concludes v̂b ≤ v̂a+ε/2.
We call that an underestimation. Since the best candidate is
interviewed at most once, we ensure that underestimation
occurs with probability ≤ δ/4.

Note the asymmetry between the two mis-estimations.
Overestimation of any candidate can be irreversibly harm-
ful, hence we ensure that the ith candidate, is overestimated
with very small probability ≤ δ/(16i2). By contrast, un-
derestimation is harmful only for the single best candidate.
We therefore ensure that any given candidate is underesti-
mated with a larger probability bound δ/4.

By Hoeffding’s Inequality (1), using 8
ε2 ln 16i2

δ queries for
ith candidate ensures that overestimation happens with
probability ≤ δ/(16i2) and underestimation happens with
probability≤ δ/(16i2). Since we are allowed more leeway
in underestimation probability bound, we can stop earlier if
we are in underestimation regime. Notice that overestima-
tion can happen only if v̂c > v̂a + ε/2 and underestimation
can happen only if v̂c ≤ v̂a + ε/2. Hence we can stop
earlier before using all allocated queries if v̂c ≤ v̂a + ε/2.
Observe that stopping earlier might only result in underes-
timation and will never result in overestimation. To ensure
that probability of underestimation is ≤ δ/4, for a given
candidate, we check if v̂c ≤ v̂a + ε/2 at specific check-
points and terminate if it is the case. We move ahead of
a checkpoint only if v̂c > v̂a + ε/2 at the checkpoint.
The checkpoints are selected such that by union bound over
all checkpoints, underestimation happens with probability
≤ δ/4. The checkpoints help in terminating much earlier
than using all queries in one shot.

Observe that for overestimation, we want to bound proba-
bility of overestimation at final checkpoint over all candi-
dates. In contrast for underestimation, we want to bound
probability of underestimation over all checkpoints for a
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single candidate. There exists several ways to allocate
checkpoints to achieve this goal. We now present one such
subroutine that takes advantage of the asymmetry between
overestimation and underestimation using checkpoints.

2.4. ASYMMETRIC-THRESHOLD

ASYMMETRIC-THRESHOLD (A-T) approximates a candi-
date c’s value vc by comparing it against the threshold t
at multiple checkpoints. Its goal is to determine whether
vc is larger than t + ε or smaller than t − ε. Since we
are more concerned with overestimation than underestima-
tion, we consider unbalanced estimators where if vc is be-
low t − ε, we output a value smaller than t w.p.≥ 1 − δo,
and if vc exceeds t+ ε, then we output a value higher than
t w.p. ≥ 1 − δu for some δo < δu. One can derive similar
algorithm for the case δu < δo.

To achieve this, A-T maintains checkpoints at consecu-
tive integral multiples of d 1

2ε2 e queries with first check-

point at d 1
2ε2 e

(
1 + dln 1

δu
e
)

queries and final checkpoint

at d 1
2ε2 emax

(
1 + dln 1

δu
e, dln 1

δo
e
)

queries. The check-

points are present at nj = d 1
2ε2 e

(
j + dln 1

δu
e
)

for 1 ≤
j ≤ max(1, dln 1

δo
e − dln 1

δu
e). Notice that the number of

checkpoints is

max(1, dln 1

δo
e − dln 1

δu
e) (2)

To approximate vc, A-T first considers the fraction of
queries answered correctly until the first checkpoint. If
this fraction falls below t, the algorithm stops and returns
the fraction as the approximation of vc. If the fraction ex-
ceeds t, the candidate passes the first checkpoint, and A-T
queries the candidate till the second checkpoint. If the frac-
tion of queries answered correctly from the very first query
until the second checkpoint falls below t the algorithm
stops and returns this fraction as the approximated vc, and
so on. If the candidate passes all max(1, dln 1

δo
e−dln 1

δu
e)

checkpoints, the algorithm returns the final cumulative av-
erage as the approximation of vc.

For simplicity, let V (vc, t, ε, δu, δo) be the output of
A-T(c, t, ε, δu, δo), and let N(vc, t, ε, δu, δo) be the num-
ber of queries used.

We bound the number of queries used by A-T and prove
the asymmetric probability error bounds of overestimation
and underestimation.

Lemma 2. N(p, t, ε, δu, δo) = O
(

1
ε2 ln 1

δo

)
, and

V (p, t, ε, δu, δo)

{
< t w.p. ≥ 1− δo if p < t− ε,
≥ t w.p. ≥ 1− δu if p ≥ t+ ε.

Algorithm 1 ASYMMETRIC-THRESHOLD (A-T)
inputs

candidate c, threshold t, bias ε, underestimation con-
fidence δu, overestimation confidence δo < δu

initialize
l← d 1

2ε2 e, t← d 1
2ε2 e

(
1 + dln 1

δu
e
)

Ask c, t queries. v̂c ← Fraction of correct responses
while t < d 1

2ε2 edln
1
δo
e and v̂c ≥ t do

Ask c, l queries. x̂← Fraction of correct responses
v̂c = t

t+l v̂c + l
t+l x̂

t← t+ l
end while
return v̂c

Let Elast(p, t, ε, δu, δo) be the event that either last check-
point is not invoked or candidate’s value is approximated
to an accuracy of ε. We now bound the probability of
Elast(p, t, ε, δu, δo).

Lemma 3.

Pr(Elast(p, t, ε, δu, δo)) ≥ 1− 2δo.

We prove the majorization property of queries used by A-
T. These properties play a crucial role in bounding queries
of our main algorithm. Notice that when A-T is called with
overestimation confidence parameter as 0, it will have in-
finite allocated queries and will keep querying until candi-
date’s estimated value falls below threshold at a checkpoint.
We first show that worse candidates when queried against
higher threshold use fewer queries.

Lemma 4. For any p′ ≤ p, t′ ≥ t,

Pr(N(p′, t′, ε, δu, δo) > m) ≤ Pr(N(p, t, ε, δu, 0) > m).

We now lower bound the probability of better candidates
using all allocated queries by the probability that worse
candidates using more queries when called with overesti-
mation confidence parameter of 0.

Lemma 5. For any p′ ≥ p, t′ ≤ t, m ≥ d 1
2ε2 edln

1
δo
e,

Pr

(
N(p′, t′, ε, δu, δo) ≥ d

1

2ε2
edln 1

δo
e
)

≥ Pr (N(p, t, ε, δu, 0) ≥ m).

2.5. OPTIMAL-SEQUENTIAL

We now present our main algorithm OPTIMAL-
SEQUENTIAL (O-S).

As mentioned before, O-S ensures that for ith candidate,
overestimation happens with probability ≤ δ/(16i2) and
underestimation happens with probability ≤ δ/4. To
achieve this, for ith candidate, O-S invokes A-T with
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threshold at v̂a + ε/2, bias of ε/4, underestimation con-
fidence of δ/4 and overestimation confidence of δ/(16i2).
From Equation (2), A-T compares the ith candidate’s ap-
proximated value against the threshold at at most dln(4i2)e
checkpoints and if the candidate’s approximated value falls
below threshold at any checkpoint, A-T will not invoke fur-
ther checkpoints, thereby saving queries.

Algorithm 2 OPTIMAL-SEQUENTIAL (O-S)
inputs

Set S, bias ε, uncertainty δ
initialize

Anchor’s estimated value v̂a ← −∞, number of ele-
ments considered i← 0
while S 6= ∅ do
c← random element of S, S ← S \ {c}, i← i+ 1
v̂c ← A-T(c, v̂a + ε

2 ,
ε
4 ,

δ
4 ,

δ
16i2 )

if v̂c ≥ v̂a + ε/2 then
v̂a ← v̂c, a← c

end if
end while
return a

2.5.1. CORRECTNESS PROOF

We first prove the correctness of O-S. To prove correctness,
we never use randomness in candidates’ arrival. Hence
w.h.p., O-S outputs an ε-maximum even for adversarially
picked sequence of candidates.

Recall that if we ensure conditions in Lemma 1, then the
output is an ε-maximum.

To prove that w.h.p., anchor is never replaced by a worse
candidate, we first show that for any candidate, w.h.p.,, ei-
ther last checkpoint is not invoked or the candidate’s value
is approximated to an additive accuracy of ε/4. Since an-
chor is updated only if the final checkpoint is invoked,
w.h.p., anchor’s value is always approximated to an addi-
tive accuracy of ε/4. Notice that in O-S, when calling A-T,
threshold is always set to be ε/2 more than that of current
anchor’s approximated value. Therefore, w.h.p., threshold
is always at least ε/4 more than that of anchor’s true value.
Once again, recall that anchor is updated only when final
checkpoint is invoked. If the value of current candidate is
less than that of anchor, then w.h.p., either the last check-
point is not invoked or candidate’s value is approximated to
an additive accuracy of ε/4, and hence approximated value
fails to be more than that of threshold. Therefore, anchor
will never be replaced by a worse candidate. We prove the
above arguments formally in below lemmas. Some defini-
tions follow.

Let Ei,last be defined as the event that either the last check-
point was not invoked for candidate i, or its value is ap-
proximated to an additive accuracy of ≤ ε/4. We bound

the probability of Ei,last happening over all i.
Lemma 6. Pr(

⋃
iEi,last) ≥ 1− δ/4.

Now we show that w.h.p., all anchors’ values are approxi-
mated to an additive accuracy of ε/4.
Lemma 7. Under event

⋃
iEi,last, values of all anchors are

approximated to an additive accuracy of ε/4 i.e.,

|v̂a − va| ≤ ε/4.

Now we prove that anchor never gets replaced by a worse
candidate.
Lemma 8. Under event

⋃
iEi,last, anchor never gets

worse.

Now we prove that after best candidate is interviewed the
anchor is an ε-maximum.

EventEbest : After the best candidate is interviewed, anchor
will be an ε-maximum. We bound the probability of Ebest.
Lemma 9. Pr(Ebest|

⋃
iEi,last) ≥ 1− δ/4.

Now we prove the correctness of O-S.
Theorem 10. W.p.≥ 1 − δ/2, O-S(S, ε, δ) outputs an ε-
maximum.

2.5.2. QUERY ANALYSIS

We now bound the query complexity of O-S. We first con-
sider the case of low delta namely δ < 200/n1/3 and show
that queries used by O-S is orderwise optimal.
Theorem 11. For δ < 200/n1/3, O-S(S, ε, δ) uses
O
(
n
ε2 ln 1

δ

)
queries.

So from here on we assume δ > 200/n1/3 and bound the
query complexity using the randomness of the sequence.
We first outline the proof that bounds the query complexity.

Proof Sketch Recall from Algorithm O-S that for the i-
th candidate, δu = δ/4 and δo = δ/(16i2). From Equa-
tion (2), candidates ≤ i will be interviewed at ≤ dln(4i2)e
checkpoints. We upper bound the number of later candi-
dates (arrive after first i candidates) that are likely to be
interviewed at checkpoint dln(4i2) + 1e for each i. To
achieve this we first lowerbound the threshold after inter-
viewing first i candidates.

Recall that jth checkpoint is nj = d 8
ε2 e
(
j + dln 4

δ e
)
. Let

rk be the candidate with the k-th highest value, where ties
are broken arbitrarily. Omitting ε and δ for brevity, define

Ck,l,α
def
= sup{t : Pr(N(vrk , t, ε/4, δ/4, 0) ≥ nl) ≥ α}

to be the highest threshold against which the kth highest
valued candidate will pass all first l checkpoints w.p. ≥ α.

Lemma 12 observes that if the threshold exceeds the candi-
date’s value plus ε/4, then with high probability the candi-
date will not pass even the first few checkpoints. More pre-
cisely that for every l and α > δ/(4el), Ck,l,α ≤ vrk +ε/4.
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In Lemma 13 we combine this lemma, majorization prop-
erty of A-T, and the sequence randomness to show that
with high probability, the threshold after interviewing i
candidates exceeds C

k,dln(4i2)e,
√

4n/ki
.

Lemma 14, then deduces that with high probability, at most
O
(
n
i1/3

)
candidates will be interviewed at dln(4i2) + 1e

checkpoint.

Finally, Theorem 15 bounds the total number of queries by
summing over number of times each checkpoint is invoked.

Formal Proof We first upperbound Ck,l,α using value vrk
of the kth ranked candidate. .

Lemma 12. For any α > δ
4el

,

Ck,l,α ≤ vrk + ε/4.

Now we can lower bound the threshold after interviewing
i candidates . Let ti be the threshold after interviewing i
candidates. The Lemma below lower bounds the value of
ti. This is the only Lemma that uses the randomness in the
arrival of candidates.

Lemma 13. For any i and k s.t.
√

4n
ki > δ

4i2 , w.p. ≥

1− e− ki
4n − e−

√
ki
64n ,

ti ≥ Ck,dln(4i2)e,√ 4n
ki

.

Now we bound the number of candidates invoked for a
checkpoint. For this we use Lemma 13 to bound the thresh-
old after first i candidates and bound the number of candi-
dates ranked outside k candidates that can cross this thresh-
old.

Lemma 14. For any i and k s.t.
√

4n
ki >

δ
4i2 ,

w.p.≥ 1−e− ki
4n −e−

√
ki
64n −e−n

√
4n
ki , the number of times(

dln(4i2)e+ 1
)
th checkpoint invoked is

≤ k + n

√
144n

ki
.

The below theorem establishes the query complexity of O-
S.

Theorem 15. For δ > 200/n1/3, w.p.≥ 1 − δ/2,
O-S(S, ε, δ) uses O

(
n
ε2 ln 1

δ

)
queries.

3. Dueling Bandits Sequential Maximization
3.1. Tools
We use subroutine COMPARE (Falahatgar et al., 2017a) as
a building block in our maximization algorithms. For the
reader’s convenience, we provide a brief outline of COM-
PARE here and state its guarantees in Lemma 16. We also
present the algorithm COMPARE in Appendix.

For εu > εl, COMPARE(i, j, εl, εu, δ) compares elements i
and j for O

(
1

(εu−εl)2 log 1
δ

)
times and deems if p̃i,j ≤ εl

(returns 1) or p̃i,j ≥ εu (returns 2). The guarantees are
presented in Lemma 16.

Lemma 16 (Lemma 1 (Falahatgar et al., 2017a)). For
εu > εl, COMPARE(i, j, εl, εu, δ) uses ≤ 2

(εu−εl)2 log 2
δ

comparisons and if p̃i,j ≤ εl, then w.p.≥ 1 − δ, returns
1, else if p̃i,j ≥ εu, w.p.≥ 1− δ, returns 2.

3.2. Agnostic Version of SEQ-ELIMINATE (Falahatgar
et al., 2017a)

Recall that under models with SST property, SEQ-
ELIMINATE is a sub optimal maximization algorithm and
is sequential and requires the knowledge of n a priori.

We first describe an outline of SEQ-ELIMINATE and
present an easy fix to make it n-agnostic with orderwise
same sample complexity. SEQ-ELIMINATE starts with the
first element as the anchor r, sequentially compares r with
elements of S using COMPARE(S(i), r, 0, ε, δ/n), and up-
dates r with S(i) if COMPARE returns 2. This ensures
that with probability 1 − δ/n: 1) the updated anchor is
at least as good as the previous anchor, and 2) the updated
anchor is ε-preferable to S(i). These two key properties
along with SST property and the union bound, ensure that
w.p.≥ 1 − δ, the final anchor is an ε-maximum. Notice
that to ensure that the total error probability is bounded
by δ, SEQ-ELIMINATE uses each instance of COMPARE
with confidence parameter δ/n and hence requires know-
ing n beforehand. A simple fix is to use confidence pa-
rameter δ/(2i2) (observe that

∑∞
i=1 δ/(2i

2) ≤ δ) when
using the ith instance of COMPARE and hence does not
require knowing the value of n. Now we present the
maximization algorithm AGNOSTIC-SEQ with this fix ap-
plied to SEQ-ELIMINATE. Notice that even the nth in-
stance of COMPARE uses O

(
1
ε2 log n

δ

)
comparisons and

hence AGNOSTIC-SEQ has orderwise the same compari-
son complexity as SEQ-ELIMINATE. The pseudocode for
AGNOSTIC-SEQ is provided in Appendix.

In the Lemma 17, we prove the correctness and bound the
comparison complexity of AGNOSTIC-SEQ.

Lemma 17. Under SST model, AGNOSTIC-SEQ(S, ε, δ)
uses O

(
n
ε2 log n

δ

)
comparisons and w.p.≥ 1 − δ, outputs

an ε-maximum.

Observe that AGNOSTIC-SEQ is n-agnostic and min-max
optimal for δ ≤ 1

n but requires an extra multiplicative fac-
tor of log n comparisons than the known lower bound for
constant δ.
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3.3. Optimal Agnostic Sequential Maximization
In this subsection, for models with SST property, we
present maximization algorithm OPT-AGNOSTIC-SEQ that
is both sequential and n-agnostic and yet uses orderwise
same comparisons as the min-max optimal maximization
algorithm that has the knowledge of n and is not necessar-
ily sequential. Hence OPT-AGNOSTIC-SEQ is also a min-
max optimal maximization algorithm.

Due to lack of space, here we only provide a brief outline of
our algorithm and state the main result. The motivation and
analysis is very similar to that of OPTIMAL-SEQUENTIAL
and is presented in detail in Appendix.

3.3.1. OPT-ANCHOR-UPDATE

Observe that in each instance to update the anchor,
AGNOSTIC-SEQ uses COMPARE with confidence param-
eter δ

8i2 . Here we present an alternative OPT-ANCHOR-
UPDATE for using COMPARE in one shot. Similar
to ASYMMETRIC-THRESHOLD, within each instance of
OPT-ANCHOR-UPDATE, we use multiple rounds of COM-
PARE, decreasing the confidence parameter with each con-
secutive round such that overall comparisons used over
all rounds are orderwise same as comparisons used in a
single instance of COMPARE with confidence parameter
Θ( δi2 ). Within each instance, we move to the next COM-
PARE round only if the previous round returns 2. This helps
in terminating much earlier than if only one round of COM-
PARE is used.

Algorithm 3 OPT-ANCHOR-UPDATE

1: inputs
2: element e, element f , bias ε, confidence δ, number i
3: Initialize: t← 0, a← 2
4: while a = 2 and t < max(2, log log 1

δ
i2 + 1) do

5: a← COMPARE(e, f, 0, ε, δ2
t+1/8)

6: t← t+ 1
7: end while
8: if a = 1 then
9: return f

10: else
11: return e
12: end if

3.3.2. OPT-AGNOSTIC-SEQ

We now present our main algorithm OPT-AGNOSTIC-SEQ
that uses OPT-ANCHOR-UPDATE as subroutine to update
the anchor.

In the below Theorem, we provide guarantees for OPT-
AGNOSTIC-SEQ.

Theorem 18. Under SST models, w.p.≥ 1 − δ, OPT-
AGNOSTIC-SEQ (S, ε, δ) uses O

(
n
ε2 log 1

δ

)
comparisons

Algorithm 4 OPT-AGNOSTIC-SEQ

1: inputs
2: Set S, bias ε, confidence δ
3: anchor r ← S(1), S = S \ {r}, candidate number
i← 0

4: while S 6= ∅ do
5: c← random element of S, S = S \ {c}, i← i+ 1
6: r ← OPT-ANCHOR-UPDATE(c, r, ε, δ, i)
7: end while
8: return r
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Figure 1. Comparison of Maximization Algorithms
and outputs an ε−maximum.

4. Experiments
In this section, we compare the performance of
various sequential maximization algorithms SEQ-
ELIMINATE (Falahatgar et al., 2017a), AGNOSTIC-SEQ
and OPT-AGNOSTIC-SEQ. Note that SEQ-ELIMINATE
uses the knowledge of n whereas AGNOSTIC-SEQ and
OPT-AGNOSTIC-SEQ are n-agnostic. Further recall
that SEQ-ELIMINATE and AGNOSTIC-SEQ are sub-
optimal with query complexity of O

(
n
ε2 log n

δ

)
and

OPT-AGNOSTIC-SEQ is optimal with query complexity
of O

(
n
ε2 log 1

δ

)
. Experiments in (Falahatgar et al., 2017a;

2018) demonstrate that SEQ-ELIMINATE performs better
than other maximization algorithms. Hence we don’t
compare with other maximization algorithms. In all the ex-
periments in this section, we try to find an 0.05-maximum
with δ = 0.1. All results are averaged over 100 runs.

We first consider the model where all items are essen-
tially equal i.e., pi,j = 1/2 ∀i, j. Figure 1(a) show
the performance of sequential maximization algorithms for
this model. Notice that OPT-AGNOSTIC-SEQ uses signif-
icantly less comparisons than both SEQ-ELIMINATE and
AGNOSTIC-SEQ. Notice that since AGNOSTIC-SEQ is
an agnostic version of SEQ-ELIMINATE, AGNOSTIC-SEQ
uses more comparisons than SEQ-ELIMINATE.

We now consider the model where pi,j = 0.6 ∀i < j
same as in (Yue & Joachims, 2011; Falahatgar et al.,
2017b;a; 2018). Figure 1(b) presents the performance of
sequential maximization algorithms for this model. No-
tice again that OPT-AGNOSTIC-SEQ uses less comparisons
than SEQ-ELIMINATE, that in turn uses fewer comparisons
than AGNOSTIC-SEQ.
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Since (Falahatgar et al., 2017a; 2018) showed that SEQ-
ELIMINATE outperforms other maximization algorithms
and empirical performance of OPT-AGNOSTIC-SEQ is bet-
ter than SEQ-ELIMINATE, OPT-AGNOSTIC-SEQ outper-
forms even non-sequential maximization algorithms.

5. Conclusion and Future Work
We presented the first optimal sequential probabilistic
maximization algorithm that works even without a-priori
knowledge of number of items. The algorithm has linear
complexity both under traditional- and dueling (with SST
property)- bandits frameworks. In the future, we propose
to extend these works to more general settings.
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