
Latent Bernoulli Autoencoder

Jiri Fajtl 1 Vasileios Argyriou 1 Dorothy Monekosso 2 Paolo Remagnino 1

Abstract

In this work, we pose the question whether it is
possible to design and train an autoencoder model
in an end-to-end fashion to learn representations
in the multivariate Bernoulli latent space, and
achieve performance comparable with the state-of-
the-art variational methods. Moreover, we investi-
gate how to generate novel samples and perform
smooth interpolation and attributes modification
in the binary latent space. To meet our objective,
we propose a simplified, deterministic model with
a straight-through gradient estimator to learn the
binary latents and show its competitiveness with
the latest VAE methods. Furthermore, we propose
a novel method based on a random hyperplane
rounding for sampling and smooth interpolation
in the latent space. Our method performs on a
par or better than the current state-of-the-art meth-
ods on common CelebA, CIFAR-10 and MNIST
datasets.

1. Introduction
Unsupervised representation learning is a very exciting di-
rection in machine learning, particularly given the plethora
of easily available unlabeled data. There are many machine
learning algorithms that would greatly benefit from low di-
mensional, highly expressive features, whether for object
detection, classification, reinforcement learning or as gen-
erative models for compression, super resolution or novel
samples generation. This direction has been successfully
pursued with autoencoder models and particularly the varia-
tional autoencoder (VAE) (Kingma & Welling, 2014) and
its derivatives. Recently, fully deterministic, regularized
(Ghosh et al., 2020) and discrete, vector-quantized (VQ-
VAE) (van den Oord et al., 2017) autoencoders have been
proposed, demonstrating performance comparable to theirs
stochastic counterparts.

1Kingston University, London, UK 2Leeds Beckett University,
Leeds, UK. Correspondence to: Jiri Fajtl <j.fajtl@kingston.ac.uk>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

In this work we focus on a deterministic class of autoen-
coders learning a discrete representation, specifically the
multivariate Bernoulli distribution without enforcing any
prior on the latent space and trained with a gradient based
method in an end-to-end fashion.

Binary representations appear to be attractive for a number
of applications, for example the realization of an encoder
for sparse distributed representations for methods such as
the Hierarchical Temporal Memory (HTM) (Hawkins & Ah-
mad, 2016), modelling neurobiological processes (Bethge &
Berens, 2008), data compression, memory addressing (Rae
et al., 2016), for gating (hard attention)(Xu et al., 2015)
or for general representation learning (Bengio et al., 2012;
2013a). The authors believe that good, as defined by Bengio
et al. 2013a, binary features have also great potential in ap-
plication to energy based memory models such as Hopfield
networks operating on a single, capsule (Sabour et al., 2017)
like neuron level.

Current neural network learning algorithms are almost ex-
clusively based on very successful gradient based learning
methods. However, the need for differentiability of each
layer represents a challenge if one desires to train stochas-
tic neurons or other non-differentiable functions such as
quantization. Number of techniques have been proposed
allowing gradient propagation through such neurons such
as re-parametrization, (Kingma & Welling, 2014), surro-
gate gradient functions (Bengio et al., 2013b) or continuous
relaxation of non-differentiable nodes (Jang et al., 2017).
In our method we follow the approach behind the straight-
through estimator (Hinton, 2012; Bengio et al., 2013b) due
its conceptually simple setup.

Sampling from and interpolating in the discrete latent
space is equally challenging. Unlike multimodal, Gaus-
sian and many other real-valued distributions, the mul-
tivariate Bernoulli distribution concentrates most of the
information on the second and higher moments, since
the marginals are strictly unimodal and entirely described
by the mean p = E[bi], directly giving rise to variance
V ar[bi] = p(1− p) for Bernoulli variable bi at dimension
i. This also seems to play a key role in biological neurons,
where the binary, pairwise correlations provide strikingly
accurate encoding for neuronal firing patterns in primate
retina (Nirenberg & Victor, 2007; Schneidman et al., 2006;
Shlens et al., 2006).

Latent Bernoulli Autoencoder

Given that our model learns a distribution with unknown
prior, and based on the aforementioned premise, we pro-
pose to parametrize the learned distribution by its first two
moments, also motivated by the cross moment model by
Mishra et al. 2012. These parameters are learned from la-
tents encoded on the training data. To sample and interpolate
in the multivariate Bernoulli latent space we then propose
a novel method based on a random hyperplane rounding
technique derived from MAX-CUT algorithm (Goemans
& Williamson, 1995). Within this work we abbreviate the
Latent Bernoulli Autoencoder as LBAE.

We evaluate our method on the datasets CelebA and CIFAR-
10 and, for completeness, MNIST and show that our method
is competitive with the current state-of-the-art variational
and deterministic autoencoders. Our model shows high per-
formance particularly on the interpolation task, which is
remarkable, considering we are operating in the discrete
latent space. To best of our knowledge, none of the existing
discrete distribution autoencoders is able to perform sensi-
ble interpolation in the latent space. For example, a state of
the art method VQ-VAE (van den Oord et al., 2017) does
not suggest how to do so and even explicit methods, as in
Berthelot et al. 2019, admit difficulties in accomplishing this
task. Finally, we present a simple method for attributes mod-
ification in the latent space, also with competitive results.
PyTorch code and trained models are publicly available on
github1. Our work brings the following contributions:

• We show that a tanh function followed by a straight-
through estimator with an unity surrogate function in
the backward pass can be used to efficiently train an
autoencoder with state-of-the-art performance.

• We propose a novel technique to generate correlated
Bernoulli samples, perform smooth interpolation and
modify sample attributes in the discrete latent space.

• We show that, albeit its simplicity, our method per-
forms equally well or better than the state-of-the-art
using the FID, KID and Precision/Recall metrics.

2. Related Work
Unsupervised representation learning has been successfully
pursued with autoencoder models, particularly the varia-
tional autoencoder (VAE) (Kingma & Welling, 2014) due
to its simplicity and well defined probabilistic framework.
VAE unfortunately suffers from number of issues, most no-
tably producing blurred images (Dumoulin et al., 2017) and
posterior collapse (Razavi et al., 2019a). A number of meth-
ods have been proposed to improve the image quality with
reconstruction loss based on perceptual similarity in the fea-
ture space of an external CNN (Dosovitskiy & Brox, 2016;

1https://github.com/ok1zjf/lbae

Hou et al., 2017) or in its own latent space (Zhang et al.,
2019). Success of the Generative Adversarial Networks
(GAN) to learn image distribution motivated application of
the adversarial training to the latent space distribution in the
Adversarial Autoencoders (AAE) (Makhzani et al., 2016)
and its generalization in Wasserstein Autoencoders (WAE)
(Tolstikhin et al., 2018). More recently Dai & Wipf 2019
introduced a 2 stage VAE where the second stage learns the
latent space distribution, in principle, performs a density
estimation. From the work of Ghosh et al. 2020 it is appar-
ent that deterministic autoencoders are competitive with the
VAE and its derivatives, only for the price of ex-post density
estimation.

Most of the methods learn real-valued latent space owning
to the established gradient-based optimizations. VQ-VAE
(van den Oord et al., 2017) is perhaps the first competitive
deterministic, autoencoder that learns discrete representa-
tions. As in Ghosh et al. 2020, this method does not impose
any prior on the learned latent distribution, thus it requires
some form of external post density estimation. Authors pro-
pose the PixelCNN (Van den Oord et al., 2016), an autore-
gressive density estimator which learns a categorical prior
over the stored latents encoded from the training dataset.

Learning discrete representations with a gradient-based
optimization is not straightforward. Bengio et al. 2013b
proposed four methods, addressing the learning through
stochastic neurons, most notably the straight-through gradi-
ent estimator, originally described by Hinton 2012. The
straight-through estimator is also used in the VQ-VAE
model to allow gradient flow over non differentiable, nearest
neighbour operation in the forward pass. Chung et al. 2017
then introduces a straight-through estimator with the slope
annealing trick. Over the training period, this method grad-
ually reduces the difference between the non-differentiable
function in the forward pass and the surrogate in the back-
ward pass to converge to the discrete distribution in the limit.
This method is somewhat similar to the ST Gumbel-Softmax
(Jang et al., 2017). The Gumbel-Softmax was also applied
to the autoencoder model in JointVAE (Dupont, 2018).

3. Bernoulli Latent Space
3.1. Learning the Bernoulli Latent Space

The base of our method is a deterministic autoencoder with
encoder z = gφ(X), parametrized by φ, that produces typ-
ically real-valued latent representation z for input X. De-
coder X′ = fθ(z), parametrized by θ, attempts to recon-
structs X from z. Our model is trained with a single, com-
mon objective function L(θ, φ) = E[L(X,X′)], where L is
the reconstruction loss function. To discretize an N dimen-
sional latent z ∈ RN into the binary range b ∈ {−1, 1}N

https://github.com/ok1zjf/lbae

Latent Bernoulli Autoencoder

Decoder
f𝜽(b)x

1

-1

Encoder
g𝜙(X)

b

1
-1
1

-1
1

1Binarization
b = fb(z)

MSE Loss

z

𝜕 fs(z)

 𝜕 z

=1

1

-1

z = tanh(h)

h

X Xʼ
L = ||X-Xʼ||2

Figure 1. For N dimensional latent space the information bottleneck of a typical autoencoder is in LBAE replaced with tanh() followed by
binarization fb() ∈ {−1, 1}N with unit gradient surrogate function fs() for backward pass.

we threshold z at zero as follows:

bi = fb(zi) =

{
1, if zi ≥ 0

−1, otherwise.
(1)

We chose to represent the binary values by {−1, 1} rather
than {0, 1} due to its computational benefits such as zero
being the threshold level and b2i = 1 ∀i. The latents can be
easily converted between these two ranges without loss of
information.

Since fb() is not differentiable, we define a surrogate dif-
ferentiable function fs(z) = z with unit gradient∇zfs = 1
operating in the same domain as fb(). fs() is then used in
the backward pass. During the backpropagation this allows
the gradient to flow through the binarization operation and
lets the encoder correct its output in the direction of the bi-
narized quantities read by the decoder. The rounding during
the binarization brings an additional error that is not cor-
rected during the backpropagation and manifests as a noise.
This noise can be reduced by lowering the learning rate
but it slows down the training or hinders the convergence
altogether. To alleviate this weakness we add tanh() before
the binarization, which limits the gradient flow from the
decoder and minimizes the optimization overshoot during
the gradient descent.

3.2. Sampling Correlated Multivariate Bernoulli
Latents

Our goal is to realize a generative model of the form
x ∼ p(x | b; θ) for b ∼ p(b),b ∈ {−1, 1}N . Unlike
VAE, we do not enforce any prior on the latent space during
the training, thus the learned distribution p(b) is unknown.
Therefore, to efficiently sample novel latents we first learn
p(b) from the distribution of the training dataset in the latent
space and parametrize it by its first two moments.

The most straightforward way to learn and sample from the
correlated Bernoulli distribution would appear to treat it as a
Gaussian distribution with the binarization step. Let us con-
sider a matrix Y ∈ {−1, 1}(N×K) of K N-dimensional la-
tent vectors encoded on training data. Given expected value

E[Y] ∈ RN and covariance Σ = E[YYT]−E[Y]E[Y]
T

we can sample a latent b from the distribution as:

z ∼ NN (0, IN) (2)

b = fb(Lz+E[Y]), b ∈ {−1, 1}N , (3)

where Σ = LLT is a lower triangular Cholesky decomposi-
tion. This approach, however, does not produce Bernoulli
samples with the correct distribution. To mitigate this issue,
we propose a method inspired by the cross moment model
method (Mishra et al., 2012) and random hyperplane round-
ing technique for MAX-CUT (Goemans & Williamson,
1995). In Figure 2 we can see that a distribution generated
by the direct binarization (Eq. 3) (green) exhibits notice-
able error compared to the ground truth (blue). The red
plot shows distribution generated with the proposed random
hyperplane method.

0 50 100 150 200
Latent dimension

0.40

0.45

0.50

0.55

0.60

p
(z

i
=

1
)

Ground truth

Hyperplane bin.

Direct bin.

(a) Sorted marginal
probabilities

0 5000 10000 15000 20000
Index to vec(C)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

C
o
v
a
ri

a
n
ce

 C
(i

,j
)

Ground truth

Hyperplane bin.

Direct bin.

(b) Vectorized, sorted
covariances

Figure 2. Ground truth (200bits latents, MNIST train data) and the
distribution sampled with the random hyperplane method appear
identical while the direct rounding method exhibits a clear error.
Note the ground truth (blue) is mostly hidden behind the red.

Our method can be summarized in the following three steps:
(1) parametrize distribution of the training dataset in latent
space by first two moments, (2) relax each latent dimen-
sion to an unit vector on a hypersphere with a position
corresponding to its correlation with other dimensions, (3)
sample latent b by randomly splitting the sphere through
the centre with a hyperplane normal r and assigning binary
state 1 to dimensions corresponding to vectors on one side
of the plane and −1 to the rest.

Latent Bernoulli Autoencoder

The distribution of Y is parametrized by first moments and
second non-central moments, similar to Mishra et al. 2012,
in matrix M as:

M =

[
E[YYT] E[Y]

E[Y]
T

1

]
,M ∈ [−1, 1](N+1)×(N+1).

(4)

For N dimensional latent space we generate N + 1 unit
length vectors on sphere S(N+1). These vectors are or-
ganized as rows in matrix V ∈ R(N+1)×(N+1),∀i ∈
[1, .., N + 1], ‖Vi‖ = 1, where Vi is an ith row of V.
Each vector Vi represents one dimension in the latent space.
We express the covariances M as probabilities of vectors
Vi,Vj pointing in the same or opposite direction. For
positive, high covariance between dimensions i and j the
angle αi,j between corresponding vectors Vi and Vj will
be small and P (Vi,Vj) −→ 1, while for negative covari-
ance αi,j −→ π with P (Vi,Vj) −→ 0. For non correlated
dimensions Vi⊥Vj with P (Vi,Vj) ≈ 1

2 . Bits of posi-
tively correlated dimensions share the same state (-1 or 1)
while negatively correlated take opposite states. We set the
probabilities as:

P (Vi,Vj) =
Mi,j + 1

2
,∀(i, j), P (Vi,Vj) ∈ [0, 1] (5)

and express them as a function of the angle αi,j or dot
product 〈Vi,Vj〉.

P (Vi,Vj) = 1− αi,j
π
,∀(i, j), αi,j ∈ [0, π], (6)

= 1− cos−1(〈Vi,Vj〉)
π

. (7)

We define the dot products as Gram matrix Hi,j =
〈Vi,Vj〉, H ∈ R(N+1)×(N+1) as a function of M,

Hi,j = cos

((
1− 1

2
(Mi,j + 1)

)
π

)
(8)

= cos
(π

2
(1−Mi,j)

)
. (9)

To obtain V we perform a square root of H by lower trian-
gular Cholesky decomposition

H = VVT s.t. H < 0, (10)

where V is a row-normal lower triangular matrix with rows
being the desired unit vectors on S(N+1). The V(N+1) rep-
resents the boundary conditions for the first moments E[Y].
Concretely, it defines the positive hemisphere in S where
all vectors receive positive binary state. In other words, this
boundary vector orients the hypersphere space according to
the marginals E[Y]. Finally, to generate a novel latent b we
split the sphere S with a random plane through the center
and then assign positive binary states to latent dimensions
represented by vectors Vi in one hemisphere and negative

r ∼ 𝓝(N+1)(0, I(N+1))

1 -1 1 -1 11

Matrix of
Moments
H(N+1)x(N+1)

b

Decoder
Xʼ

Figure 3. Distribution of the training dataset in the latent space is
parametrized by matrix H of first two moments. Each dimension in
the latent space is represented by an unit vector on a hypersphere.

to the rest. Vectors sharing hemisphere with V(N+1) (yel-
low in Figure 4) will receive positive values. For a random
hyperplane given by normal r ∼ N(N+1)(0, I(N+1)) (green
in Figure 4) we generate the latent b with bits at each di-
mension as:

bi =

{
1, if fb(〈Vi, r〉) = fb(〈V(N+1), r〉)
−1, otherwise

,

∀i ∈ [1, .., N], r ∈ R(N+1)×1.

(11)

In vector form the Eq. 11 is then:

b = fr(r) = fb(Vr)−(N+1)fb(V(N+1) r),

b ∈ {−1, 1}N ,
(12)

where subscript −(N+1) denotes all but (N +1) dimensions.
The expression fb(〈V(N+1), r〉), and its vectorized form
fb(V(N+1) r), returns the boundary decision bit. If positive,
the hyperplane normal r is located in the same hemisphere
as the boundary vector V(N+1). Finally, an image X′ is
decoded from the binary latent b as X′ = fθ(b).

3.3. Interpolation in the Bernoulli Latent Space

For each latent of the images we are interpolating, we first
lookup up a hyperplane normal responsible for generating
this latent vector according to Section 3.2. Then, intermedi-
ate latents are interpolated on the sphere S(N+1) between
the endpoints with spherical linear interpolation (SLERP)
(Shoemake, 1985).

Let us consider s ∈ {−1, 1}N to be our latent vector
for which we desire to find a hyperplane normal r ∈
R(N+1) that would generate back the latent s as per Eq.
11. Intuitively, one could attempt to find the solution
as r = V−1[s, 1] which, indeed, recovers s back as:
s = fr(Lr)−(N+1), where [s, 1] denotes s concatenated

Latent Bernoulli Autoencoder

1.0
0.5

0.0
0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4. Each dimension in the latent space is represented by an
unit vector on a hypersphere. Pairwise correlations are given by
angle between vectors; the smaller angle the higher correlation
between corresponding dimensions. New samples are generated
by splitting the sphere with a random plane (green) and assigning
positive states to dimensions (red) on the side of the plane shared
by the boundary vector (yellow) and negative to the rest (blue).

with 1. By setting the boundary decision bit to positive
state [s, 1] we will produce a hyperplane normal in the same
hemisphere as the boundary vector V(N+1), consequently
this hemisphere represents positive binary states.

The hyperplane found this way is, however, not suitable for
the interpolation. Interpolating between such hyperplanes
produces exact copies of the source latent till the midpoint
where it instantly flips to the target and stays there till the
end of interpolation. The source/target flip happens over
less than 1/106 degrees step. It appears that the hyperplanes
found this way are degenerate in some sense. They produce
latents very far from the main distribution manifold. To find
the nature of this behaviour is a subject of ongoing research.

Instead, we found that the most suitable latent-hyperplane in-
version can be carried out by placing the hyperplane normal
close to the centroids of the positive and negative vectors in
V. First, we get the centroid for all positive vectors in s.

rp =
∑N

i
(u(si)Vi)

T
, rp ∈ R(N+1)×1, (13)

where u(si) = 1
2 (1 + si) changes the range of its argument

from {−1, 1} to {0, 1}. rp is a prototype of the hyperplane
normal but it typically does not reproduce s accurately, caus-
ing reconstruction error in the pixel space when decoded.
To mitigate this, we propose an iterative process that tilts the
normal rp towards the vectors incorrectly placed behind the
hyperplane. The process stops when the Hamming distance
between s and fr(rp) does not decrease, which typically
takes < 4 steps. Similarly, we create a normal for the nega-
tive vectors rn =

∑N
i (u(−si)Vi)

T . The final normal is
then:

r =
rp
‖ rp ‖

− rn
‖ rn ‖

. (14)

A vector of error bits between s and its reconstruction with
hyperplane normal r is calculated as:

Eb(s, r) = u(−fr(r)� s), (15)

where � is Hadamard product. Hamming distance d is then:

d =

N∑
i=0

Eb(s, r)i, d ∈ {0, ..., N}. (16)

Algorithm 1 summarizes the process of looking up a hyper-
plane normal for a given Bernoulli latent vector and V.

Algorithm 1 Latent s to hyperplane normal r inversion
Function latent_to_hyperplane(s,V)
r =

∑N
i (u(si)Vi)

T # r is a mean vector of rows in V at si
= 1 (Eq. 13)
dbest = N # Start with the maximum Hamming distance (all
bits are different at all N dimensions)
repeat

e = Eb(s, r) # Error bits vector between s and its reconstruc-
tion with hyperplane normal r (Eq. 15)
d =

∑N
i ei # Hamming distance

if d ≥ dbest then
return r # If the distance does not improve return the hy-
perplane normal r

end if
r = r+

∑N
i (ei Vi)

T # Add vectors at the error bits posi-
tions
r = r / ‖ r ‖
dbest = d

until True

We then interpolate T normals between source rs and target
rt on the hypersphere, and for each generate a latent vector
according to Eq. 12 and decode it as an image X′i = fθ(ri)

4. Evaluation
In this section we evaluate how well our method reconstructs
images from latents, generates new images, interpolates
between existing images and modifies image attributes in
latent space. In Supplementary Material, Appendix B we
briefly look at the compression capabilities. We trained and
tested our model on the CelebA (Liu et al., 2015), CIFAR-
10 (Krizhevsky & Hinton, 2009) and MNIST (LeCun et al.,
2010) datasets with the default train/test splits and image
resolutions in Table 3. To evaluate LBAE against VAE with
the LBAE identical architecture, we modified the LBAE
encoder to output (µ, σ) and trained it in the VAE setup. We
call this model VAE(ours).

For all datasets we use almost identical models, varying
in the latent dimensions (Table 3). Encoder and decoder
are CNN networks with residual connections, where the
decoder mirrors the encoder with transposed convolutions.
The model was trained with ADAM(Kingma & Ba, 2015)
with learning rate 10−3, no weight decay and 512 batch size.

Latent Bernoulli Autoencoder

Table 1. FID scores. Results are taken from the corresponding publications for VPGA,LPGA (Zhang et al., 2019), VAE, WAE-MMD,
RAE-L2, RAE-SN (Ghosh et al., 2020) and Best GAN, 2 Stage VAE (Dai & Wipf, 2019). For fair comparison, results for VAE,
WAE-MMD, RAE-L2 and RAE-SN are split intoN (0, 1) andN (µ,Σ) columns. The VAE(ours) architecture is identical to LBAE.

MNIST CIFAR-10 CELEBA
RECO. N (0, 1) N (µ,Σ) INTERP. RECO. N (0, 1) N (µ,Σ) INTERP. RECO. N (0, 1) N (µ,Σ) INTERP.

BEST GAN 10 70 49
VAE 18.26 19.21 18.21 57.94 106.37 88.62 39.12 48.12 44.49
VAE (OURS) 8.77 18.52 37.94 68.43 34.96 56.08
2 STAGE VAE 12.6 72.9 44.4
WAE-MMD 10.03 20.42 14.34 35.97 117.44 76.89 34.81 53.67 40.93
RAE-L2 10.53 22.22 14.54 32.24 80.8 62.54 43.52 51.13 45.98
RAE-SN 15.65 19.67 15.15 27.61 84.25 63.62 36.01 44.74 39.53
LPGA 12.06 55.87 14.53
VPGA 11.67 51.51 24.73
LBAE (OURS) 8.11 88.13 11.36 9.80 19.37 71.48 53.55 34.41 7.71 64.65 34.95 14.87

Table 2. KID Scores scaled by 103 as in Dai & Wipf 2019.

MNIST CIFAR-10 CELEBA
RECO. N (0, 1) N (µ,Σ) RECO. N (0, 1) N (µ,Σ) RECO. N (0, 1) N (µ,Σ)

VAE (OURS) 6.43 12.41 30.87 74.1 30.49 58.83
2 STAGE VAE 6.7 59.3 40.9
WAE-MMD 137.8 58.7 59.7
LBAE (OURS) 5.39 84.48 6.34 13.01 74.4 51.9 6.15 75.29 30.33

Table 3. Image resolutions, latent sizes and training epochs.

LATENT SIZE
IMAGE

RESOLUTION
LBAE
(bits)

VAE(ours)
(float32) EPOCHS

MNIST 32X32X1, zero
padded from 28x28 200 16 2000

CIFAR-10 32X32X3 600 128 2000

CELEBA 64X64X3, cropped
to 1:1 and scaled 1500 64 500

Mean squared error is used as the reconstruction loss except
for MNIST where we use the binary cross entropy. The
model architecture is shown in more details in Supplemen-
tary Material, Appendix A. The training is slower compared
to the VAE due to the gradient propagation through the
tanh() and binarization, nevertheless comparable to other
methods such as the 2 stage VAE(Dai & Wipf, 2019) which
requires 420 epochs on CelebA, 3000 on CIFAR-10 and
1200 on MNIST.

As the evaluation metrics we use the Fréchet Inception Dis-
tance (FID) (Lucic et al., 2018), Kernel Inception Distance
(KID) (Bińkowski et al., 2018) and Precision/Recall (Sajjadi
et al., 2018). For consistency purposes we use reference
implementations for all metrics 2,3,4. To compute FID and

2https://github.com/bioinf-jku/TTUR
3https://github.com/mbinkowski/MMD-GAN
4https://github.com/msmsajjadi/

precision-recall-distributions

KID we use 10k reference and evaluation images.

4.1. Reconstruction and Random Samples Generation

In Tables 1 and 2 we show that our model achieves the
lowest reconstruction FID and KID scores. This can be
attributed to the prior-free training, where the model is not
constrained to approximate any prior, which is believed to
produce blurry images in the case of VAE. From Figure 7
it is apparent that LBAE reconstructions are sharper than
typical VAE outputs. We can also see that, on the generative
task, LBAE outperforms all except the VPGA method, when
sampled with the proposed hyperplane rounding method.
When sampled from the binarized normal distribution fb(∼
NN (0, IN)), our scores are worse. This can be also seen
perceptually in Figure 5 where the generated images are
sharp but composed of features with wrong consistency.
This suggest that the correlation between the dimensions in
the latent space is, indeed the major source of information.

Figure 5. MNIST and CelebA images generated by LBAE from
latents b = fb(∼ NN (0, IN))

https://github.com/bioinf-jku/TTUR
https://github.com/mbinkowski/MMD-GAN
https://github.com/msmsajjadi/precision-recall-distributions
https://github.com/msmsajjadi/precision-recall-distributions

Latent Bernoulli Autoencoder

Table 4. Precision / Recall evaluation between LBAE and methods VAE, WAE-MMD, RAE-L2, RAE-SN from Ghosh et al. 2020.

MNIST CIFAR-10 CELEBA
N (0, 1) N (µ,Σ) N (0, 1) N (µ,Σ) N (0, 1) N (µ,Σ)

VAE 0.96 / 0.92 0.25 / 0.55 0.54 / 0.66
VAE (OURS) 0.88 / 0.93 0.55 / 0.74 0.62 / 0.64
WAE-MMD 0.93 / 0.88 0.38 / 0.68 0.59 / 0.68
RAE-L2 0.92 / 0.87 0.41 / 0.77 0.36 / 0.64
RAE-SN 0.89 / 0.95 0.36 / 0.73 0.54 / 0.68
LBAE (OURS) 0.37 / 0.44 0.92 / 0.97 0.48 / 0.76 0.66 / 0.87 0.50 / 0.57 0.73 / 0.82

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

VAE(ours)

LBAE N (µ,Σ)

(0, I)LBAE N

(a) MNIST

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

VAE(ours)

LBAE N (µ,Σ)

(0, I)LBAE N

(b) CIFAR-10

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

VAE(ours)

LBAE N(µ,Σ)

(0, I)LBAE N

(c) CelebA

Figure 6. Precision / Recall curves.

Table 5. Precision/Recall and FID scores for sampling from GMM, except our method LBAE where we sample from the matrix of
moments with the random hyperplane method.

MNIST CIFAR-10 CELEBA

FID ↓ PRECISION
/RECALL

↑ FID ↓ PRECISION
/RECALL

↑ FID ↓ PRECISION
/RECALL

↑
VAE 17.66 0.95 / 0.96 103.78 0.37 / 0.56 45.52 0.50 / 0.66
WAE-MMD 9.39 0.98 / 0.95 93.53 0.51 / 0.81 42.73 0.69 / 0.77
RAE-L2 8.69 0.98 / 0.98 74.16 0.57 / 0.81 47.97 0.44 / 0.65
RAE-SN 11.74 0.98 / 0.97 75.3 0.52 / 0.81 40.95 0.55 / 0.74
LBAE (OURS) 11.36 0.92 / 0.97 53.55 0.66 / 0.87 34.95 0.73 / 0.82

Note that the very high performance of the 2 Stage VAE(Dai
& Wipf, 2019) and the VPGA, LPGA (Zhang et al., 2019)
on the CelebA can be, in large part, attributed to the image
preprocessing. For example the Dai & Wipf 2019 authors
center-crop 108× 108 patch and resize it to 64× 64. This
augmentation removes most of the background which sim-
plifies the generative task.

While FID and KID metrics indicate a similarity between
the quality of generated and reference images, they do not
explain other important attributes such as the coverage of
the generated distribution. To disentangle the FID/KID
1D quality measure we evaluate our method by the Precis-
sion/Recall metric (Sajjadi et al., 2018). Precision measures
qualitative distance between the generated and reference
images, and recall how well the entire reference distribution
(e.g. all classes) is represented by the randomly generated
images. We set the entire test datasets of respective bench-

marks as the reference distributions. In Figure 6 we show
the Precision/Recall curves for random images generated by
sampling from normal, binarized distribution N (0, I), the
LBAE method, noted as N (µ,Σ), and VAE(ours) - VAE
model with the LBAE architecture. We can see that our
method shows consistently higher, balanced precision and
recall with the exception of sampling from N (0, I). In Ta-
ble 4 we then compare our method with Ghosh et al. 2020.
Here, again, the LBAE achieves relatively high precision
as well as recall. This signifies that the generated images
represent the entire distribution equally well and that the
image quality is close to the reference distribution.

In Table 5 we compare our model with Ghosh et al. 2020
results obtained by sampling from a GMM (10 Gaussians)
trained on latents encoded on the training data. With the
exception of MNIST, our model outperforms the GMM
sampling on both FID and Precision/Recall scales. Note

Latent Bernoulli Autoencoder

Figure 7. Reconstruction on the MNIST, CIFAR-10 and CelebA test datasets with the LBEA method. The ground truth image on the left
is followed by the reconstruction on right.

Figure 8. Novel samples generated with the LBAE method.

that the RAE-L2 method with GMM sampling shows lower
FID score than on the reconstruction on the test dataset. It
is conceivable that latents sampled from GMM, fitted to
the training data, are decoded by the RAE-L2 model that
overfits on the training data.

4.2. Interpolation in Latent Space

In the Figure 10 we show interpolation between two images
over T = 10 steps. We can see the interpolation is smooth
between the endpoints; there are no abrupt changes in the
context nor the image intensities. The composition of the in-
termediate samples also seems to lie on the path between the
endpoints as we intuitively expect. The FID and KID scores
for interpolation in Tables 1 and 2 support this observation.

1 2 3 4 5 6 7 8 9 10
Interpolation Step

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d

 H
a
m

m
in

g
 D

is
ta

n
ce dist. from source

dist. to target

(a) MNIST

1 2 3 4 5 6 7 8 9 10
Interpolation Step

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d

 H
a
m

m
in

g
 D

is
ta

n
ce dist. from source

dist. to target

(b) CIFAR-10

Figure 9. µ and σ of Hamming distance between interpolated latent
at step k and source and target latents.

SLERP interpolation given by two endpoints follows the
shortest path on the sphere. To understand what path the
latents follow in the binary space, we measure Hamming

distance between the interpolated latent bk, k ∈ [1, .., T]
at step k and the source and target latents. Plot of these
distances over 1k interpolations is shown in Figure 9. The
Hamming distance is normalized between the source and
target latents. We can see that the interpolation in the binary
space is almost linear which indicates that the feature mani-
folds in this space are continuous between the endpoints and
that our interpolation method provides a suitable mapping
between the binary latent space and the continual space on
the sphere.

4.3. Attribute Manipulation in Latent Space

Attributes of the generated samples can be directly modified
in the latent space. We demonstrate this on two examples
where we add eyeglasses or goatee CelebA attributes to
random test images. This operation does not require the
model to be conditionally trained with the attributes, only to
collect K latents Ya ∈ {−1, 1}(N×K) with the attribute a
and then get the expected value p = E[Ya],p ∈ RN . Here,
the Ya are latents encoded on all images with attribute
a from the training dataset. To change the attribute a in
an image represented by latent b we set its bits bi whose
expected value pi is outside threshold D as:

bi =

1, if pi > D

−1, if pi < −D
bi, otherwise.

(17)

The threshold D determines how many bits will be modi-
fied, consequently how strongly the source image will be
altered. Experimentally we found thatD = 0.1 provides sat-

Latent Bernoulli Autoencoder

Figure 10. Interpolations between test images from MNIST,
CIFAR-10 and CelebA.

isfactory results and used this value for all our experiments.
Interpolation is then performed by the method described
in the Section 3.3. Examples of two attributes alterations
are shown in Figure 11. More qualitative results are in
Supplementary Material, Appendix C.

5. Relation to VQ-VAE
VQ-VAE was introduced by van den Oord et al. 2017 as
a discrete, deterministic autoencoder. In a multi-scale, hi-
erarchical organization (Razavi et al., 2019b) it achieves
generative performance comparable to GANs.

VQ-VAE learns the discrete representations indirectly, as
indexes to a codebook with continual-value embeddings
that are then passed to the decoder for reconstruction. The
indexes are looked up as nearest codebook neighbours of the
encoder output. During training the indexed embeddings in
the codebook are moved closer to the encoder output. The
non differentiable nearest neighbour operation is replaced
with the straight-through gradient estimator in the backward
pass. To sample new images authors propose to learn a
categorical prior over latents encoded on the training data
with PixelCNN (Oord et al., 2016).

LBAE learns the latent codes directly, though we could
think of the first fully connected layer in the decoder as a
dictionary of embeddings that is implicitly learned. The
binary latents, in fact, work as row selectors of the weight
matrix, where each row can be considered an embedding
vector. Row vectors corresponding to ones in the input are
summed together and sent down to the following layers in

(a) Setting the CelebA eyeglasses attribute.

(b) Setting the CelebA goatee attribute.

Figure 11. Interpolation between test images (left) and the same
images (right) with modified attributes.

the decoder. The possibility of training an autoregressive
model on this dictionary, in the VQ-VAE fashion, is left for
future research.

Unlike LBAE, the VQ-VAE cannot be easily used for inter-
polation and other operations in the latent space as shown
by Berthelot et al. 2019. While VQ-VAE needs to train
an external autoregressive model, LBAE can perform the
generative tasks in the discrete latent space with its decoder.

6. Conclusion
In this paper, we show that a simple deterministic, discrete
latent autoencoder, trained with the straight-through gradi-
ent estimator performs on a par with the VAE model, its
derivatives and the latest regularized, deterministic autoen-
coders, on all common tasks such as reconstruction, novel
samples generation, interpolation and attribute modification
on benchmarks CelebA, CIFAR-10 and MNIST.

We propose a simple, closed form method for sampling
from the Bernoulli latent space as well as to perform a
smooth interpolation and attribute modification in this space.
To our knowledge this is the first successful method that
directly learns binary representation of images and allows
for smooth interpolation in the discrete latent space.

Our model achieves higher reconstruction as well as gen-
erative image quality compared to VAE. Furthermore, our
method for random sampling from the latent space covers
the entire distribution without over or under representa-
tion of any classes, indicating resilience to mode collapse.
Equally, on a simple experiment of modifying image at-
tributes we show a potential of the representation power of
the Bernoulli latent space.

Latent Bernoulli Autoencoder

Acknowledgement
This work has been supported in part by the NATO SPS
programme under the funding NATO SPS G5381 MIDAS:
Control of team of mini-UAVs to support counter-terrorism
missions.

References
Bengio, Y., Courville, A. C., and Vincent, P. Unsupervised

feature learning and deep learning: A review and new
perspectives. CoRR, abs/1206.5538, 1:2012, 2012.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE transac-
tions on pattern analysis and machine intelligence, 35(8):
1798–1828, 2013a.

Bengio, Y., Léonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons for con-
ditional computation. arXiv preprint arXiv:1308.3432,
2013b.

Berthelot, D., Raffel, C., Roy, A., and Goodfellow, I. Under-
standing and improving interpolation in autoencoders via
an adversarial regularizer. In International Conference
on Learning Representations, 2019.

Bethge, M. and Berens, P. Near-maximum entropy models
for binary neural representations of natural images. In
Platt, J. C., Koller, D., Singer, Y., and Roweis, S. T. (eds.),
Advances in Neural Information Processing Systems 20,
pp. 97–104. Curran Associates, Inc., 2008.

Bińkowski, M., Sutherland, D. J., Arbel, M., and Gretton, A.
Demystifying MMD GANs. In International Conference
on Learning Representations, 2018.

Chung, J., Ahn, S., and Bengio, Y. Hierarchical multiscale
recurrent neural networks. In International Conference
on Learning Representations, 2017.

Dai, B. and Wipf, D. Diagnosing and enhancing VAE mod-
els. In International Conference on Learning Representa-
tions, 2019.

Dosovitskiy, A. and Brox, T. Generating images with per-
ceptual similarity metrics based on deep networks. In
Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 29, pp. 658–666. Curran Associates,
Inc., 2016.

Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky,
M., Mastropietro, O., and Courville, A. C. Adversari-
ally learned inference. In International Conference on
Learning Representations, 2017.

Dupont, E. Learning disentangled joint continuous and dis-
crete representations. In Advances in Neural Information
Processing Systems, pp. 710–720, 2018.

Ghosh, P., Sajjadi, M. S. M., Vergari, A., Black, M., and
Scholkopf, B. From variational to deterministic autoen-
coders. In International Conference on Learning Repre-
sentations, 2020.

Goemans, M. X. and Williamson, D. P. Improved approx-
imation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of
the ACM, 42(6):1115–1145, 1995.

Hawkins, J. and Ahmad, S. Why neurons have thousands
of synapses, a theory of sequence memory in neocortex.
Frontiers in Neural Circuits, 10:23, 2016. ISSN 1662-
5110. doi: 10.3389/fncir.2016.00023.

Hinton, G. Neural networks for machine learning, coursera
video lectures. Coursera, 2012.

Hou, X., Shen, L., Sun, K., and Qiu, G. Deep feature
consistent variational autoencoder. In 2017 IEEE Winter
Conference on Applications of Computer Vision, pp. 1133–
1141. IEEE, 2017.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with gumbel-softmax. In International Conference
on Learning Representations, 2017.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In Bengio, Y. and LeCun, Y. (eds.), International
Conference on Learning Representations, 2014.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Technical Report,University
of Toronto, 2009.

LeCun, Y., Cortes, C., and Burges, C. Mnist handwritten
digit database. ATT Labs [Online]. Available: http://yann.
lecun. com/exdb/mnist, 2, 2010.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proceedings of International
Conference on Computer Vision, December 2015.

Lucic, M., Kurach, K., Michalski, M., Gelly, S., and Bous-
quet, O. Are gans created equal? a large-scale study. In
Advances in Neural Information Processing Systems, pp.
700–709, 2018.

Makhzani, A., Shlens, J., Jaitly, N., and Goodfellow, I.
Adversarial autoencoders. In International Conference
on Learning Representations, 2016.

Latent Bernoulli Autoencoder

Mishra, V. K., Natarajan, K., Tao, H., and Teo, C.-P. Choice
prediction with semidefinite optimization when utilities
are correlated. IEEE Transactions on Automatic Control,
57(10):2450–2463, 2012.

Nirenberg, S. H. and Victor, J. D. Analyzing the activity
of large populations of neurons: how tractable is the
problem? Current opinion in neurobiology, 17(4):397–
400, 2007.

Oord, A. V., Kalchbrenner, N., and Kavukcuoglu, K. Pixel
recurrent neural networks. In Balcan, M. F. and Wein-
berger, K. Q. (eds.), Proceedings of The 33rd Interna-
tional Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pp. 1747–
1756, New York, New York, USA, 20–22 Jun 2016.
PMLR.

Rae, J. W., Hunt, J. J., Harley, T., Danihelka, I., Senior,
A., Wayne, G., Graves, A., and Lillicrap, T. P. Scaling
memory-augmented neural networks with sparse reads
and writes. In Proceedings of the 30th International
Conference on Neural Information Processing Systems,
NIPS’16, pp. 3628–3636, Red Hook, NY, USA, 2016.
Curran Associates Inc. ISBN 9781510838819.

Razavi, A., van den Oord, A., Poole, B., and Vinyals, O.
Preventing posterior collapse with delta-VAEs. In Interna-
tional Conference on Learning Representations, 2019a.

Razavi, A., van den Oord, A., and Vinyals, O. Generating
diverse high-fidelity images with vq-vae-2. In Advances
in Neural Information Processing Systems, pp. 14866–
14876, 2019b.

Sabour, S., Frosst, N., and Hinton, G. E. Dynamic routing
between capsules. In Advances in Neural Information
Processing Systems, pp. 3859–3869, 2017.

Sajjadi, M. S., Bachem, O., Lucic, M., Bousquet, O., and
Gelly, S. Assessing generative models via precision and
recall. In Advances in Neural Information Processing
Systems, pp. 5228–5237, 2018.

Schneidman, E., Berry, M. J., Segev, R., and Bialek, W.
Weak pairwise correlations imply strongly correlated net-
work states in a neural population. Nature, 440(7087):
1007–1012, 2006.

Shlens, J., Field, G. D., Gauthier, J. L., Grivich, M. I., Petr-
usca, D., Sher, A., Litke, A. M., and Chichilnisky, E. The
structure of multi-neuron firing patterns in primate retina.
Journal of Neuroscience, 26(32):8254–8266, 2006.

Shoemake, K. Animating rotation with quaternion curves. In
Proceedings of the 12th annual conference on Computer
graphics and interactive techniques, pp. 245–254, 1985.

Tolstikhin, I., Bousquet, O., Gelly, S., and Schoelkopf, B.
Wasserstein auto-encoders. In International Conference
on Learning Representations, 2018.

Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals,
O., Graves, A., et al. Conditional image generation with
pixelcnn decoders. In Advances in Neural Information
Processing Systems, pp. 4790–4798, 2016.

van den Oord, A., Vinyals, O., et al. Neural discrete repre-
sentation learning. In Advances in Neural Information
Processing Systems, pp. 6306–6315, 2017.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudi-
nov, R., Zemel, R., and Bengio, Y. Show, attend and tell:
Neural image caption generation with visual attention. In
Proceedings of the International Conference on Machine
Learning, pp. 2048–2057, 2015.

Zhang, Z., Zhang, R., Li, Z., Bengio, Y., and Paull, L. Per-
ceptual generative autoencoders. In International Confer-
ence on Learning Representations, Workshop DeepGen-
Struct, 2019.

