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Appendix A Model Architecture
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Figure 1. LBAE Encoder
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Figure 2. LBAE Decoder

Appendix B Compression
While not a comprehensive evaluation, the Table 1 shows compression performance of our method LBAE compared
with VAE and, only on the CIFAR-10 dataset, to the VQ-VAE (van den Oord et al., 2017). Compression ratio on the
ImageNet(Russakovsky et al., 2015) images with resolution 128× 128× 3, as presented in the VQ-VAE work, has not been
yet explored with our method.

The compression is reported as the input sample (image) size over the compressed latent representation, both in bits, similar
to the method in VQ-VAE publication. Additionally, we relate the compression ratio to the reconstruction quality reported
as FID. On the CIFAR-10, the VQ-VAE discrete latent code indexes 8× 8× 10 embeddings in a dictionary with 512 entries.
Therefore, each index requires 9 bits and together the code consumes 8× 8× 10× 9 = 5760 bits. Size of the real-valued
VAE latents is estimated as 32 bits (32 bits floating-point variables) per dimension. Arguably, the latents do not saturate
all 32 bits at each dimension, thus the reported values are just informative. More thorough evaluation in this direction is a
subject of upcoming research work.

In Table 1, we can observe that LBAE shows significantly higher compression compared to VAE as well as higher quality in
FID. LBAE offers also higher compression than the VQ-VAE, although we could not compare the reconstruction quality,
thus this result can not be considered conclusive.

Appendix C Qualitative results
Appendix C.1 CIFAR-10
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Table 1. Comparison of input/latent size compression ratio and corresponding FIDs on the test dataset reconstruction. VQ-VAE compres-
sion is based on data from the van den Oord et al. 2017 publication, available only for CIFAR-10.

MNIST CIFAR-10 CelebA
Image size: 1024 bits (32x32x1) Image size: 24576 bits (32x32x3x8) Image size: 98304 bits (64x64x3x8)

Method Latent
size(bits)

Compression
ratio FID Latent

size(bits)
Compression
ratio FID Latent

size(bits)
Compression
ratio FID

LBAE 200 5.12 8.11 600 40.96 19.37 1500 65.54 7.71
VAE (OURS) 512 2 8.77 4096 6 37.9 2048 48 34.96
VQ-VAE 5760 4.27

Figure 3. Reconstruction on the test dataset. Figure 4. Random samples with LBAE method.
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Figure 5. Interpolation on the test dataset.
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Appendix C.2 MNIST

Figure 6. Reconstruction on the test dataset. Figure 7. Random samples with LBAE method.

Figure 8. Interpolation on the test dataset.
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Appendix C.3 CelebA

Figure 9. Reconstruction on the test dataset. Figure 10. Random samples with LBAE method.

Figure 11. Interpolation on the test dataset.
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(a) Setting eyeglasses attribute

(b) Setting goatee attribute

Figure 12. Interpolation between test images (left) and the same images (right) with modified attributes.
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