

Rigging the Lottery:
Making All Tickets Winners

Utku Evci 1 Trevor Gale 1 Jacob Menick 2 Pablo Samuel Castro 1 Erich Elsen 2

Abstract
Many applications require sparse neural networks
due to space or inference time restrictions. There
is a large body of work on training dense networks
to yield sparse networks for inference, but this lim-
its the size of the largest trainable sparse model to
that of the largest trainable dense model. In this
paper we introduce a method to train sparse neural
networks with a fixed parameter count and a fixed
computational cost throughout training, without
sacrificing accuracy relative to existing dense-to-
sparse training methods. Our method updates the
topology of the sparse network during training by
using parameter magnitudes and infrequent gra-
dient calculations. We show that this approach
requires fewer floating-point operations (FLOPs)
to achieve a given level of accuracy compared to
prior techniques. We demonstrate state-of-the-art
sparse training results on a variety of networks
and datasets, including ResNet-50, MobileNets on
Imagenet-2012, and RNNs on WikiText-103. Fi-
nally, we provide some insights into why allowing
the topology to change during the optimization
can overcome local minima encountered when the
topology remains static*.

1. Introduction

The parameter and floating point operation (FLOP) effi-
ciency of sparse neural networks is now well demonstrated
on a variety of problems (Han et al., 2015; Srinivas et al.,
2017). Multiple works have shown inference time speedups
are possible using sparsity for both Recurrent Neural Net-
works (RNNs) (Kalchbrenner et al., 2018) and Convolu-
tional Neural Networks (ConvNets) (Park et al., 2016; Elsen
et al., 2019). Currently, the most accurate sparse models

1Google Brain 2DeepMind. Correspondence to: Utku Evci
<evcu@google.com>, Erich Elsen <eriche@google.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

*Code available at github.com/google-research/rigl

Figure 1. RigL improves the optimization of sparse neural net-
works by leveraging weight magnitude and gradient information
to jointly optimize model parameters and connectivity.

are obtained with techniques that require, at a minimum,
the cost of training a dense model in terms of memory and
FLOPs (Zhu & Gupta, 2018; Guo et al., 2016), and some-
times significantly more (Molchanov et al., 2017).

This paradigm has two main limitations. First, the maximum
size of sparse models is limited to the largest dense model
that can be trained; even if sparse models are more parameter
efficient, we can’t use pruning to train models that are larger
and more accurate than the largest possible dense models.
Second, it is inefficient; large amounts of computation must
be performed for parameters that are zero valued or that will
be zero during inference. Additionally, it remains unknown
if the performance of the current best pruning algorithms is
an upper bound on the quality of sparse models. Gale et al.
(2019) found that three different dense-to-sparse training
algorithms all achieve about the same sparsity / accuracy
trade-off. However, this is far from conclusive proof that no
better performance is possible.

The Lottery Ticket Hypothesis (Frankle & Carbin, 2019)
hypothesized that if we can find a sparse neural network
with iterative pruning, then we can train that sparse network
from scratch, to the same level of accuracy, by starting from

https://github.com/google-research/rigl
mailto:eriche@google.com
mailto:evcu@google.com
https://github.com/google-research/rigl
mailto:eriche@google.com
mailto:evcu@google.com

Rigging the Lottery: Making All Tickets Winners

the original initial conditions. In this paper we introduce a
new method for training sparse models without the need of
a “lucky” initialization; for this reason, we call our method
“The Rigged Lottery” or RigL†. We make the following
specific contributions:

• We introduce RigL - an algorithm for training sparse
neural networks while maintaining memory and com-
putational cost proportional to density of the network.

• We perform an extensive empirical evaluation of RigL
on computer vision and natural language tasks. We
show that RigL achieves higher quality than all previ-
ous techniques for a given computational cost.

• We show the surprising result that RigL can find more
accurate models than the current best dense-to-sparse
training algorithms.

• We study the loss landscape of sparse neural networks
and provide insight into why allowing the topology of
nonzero weights to change over the course of training
aids optimization.

2. Related Work

Research on finding sparse neural networks dates back
decades, at least to Thimm & Fiesler (1995) who concluded
that pruning weights based on magnitude was a simple and
powerful technique. Ström (1997) later introduced the idea
of retraining the previously pruned network to increase ac-
curacy. Han et al. (2016b) went further and introduced
multiple rounds of magnitude pruning and retraining. This
is, however, relatively inefficient, requiring ten rounds of
retraining when removing 20% of the connections to reach
a final sparsity of 90%. To overcome this problem, Narang
et al. (2017) introduced gradual pruning, where connec-
tions are slowly removed over the course of a single round
of training. Zhu & Gupta (2018) refined the technique to
minimize the amount of hyper-parameter selection required.

A diversity of approaches not based on magnitude pruning
have also been proposed. Mozer & Smolensky (1989), Le-
Cun et al. (1990) and Hassibi & Stork (1993) are some early
examples, but impractical for modern neural networks as
they use information from the Hessian to prune a trained net-
work. More recent work includes L0 Regularization (Chris-
tos Louizos, 2018), Variational Dropout (Molchanov et al.,
2017), Dynamic Network Surgery (Guo et al., 2016), Dis-
covering Neural Wirings (Wortsman et al., 2019), Sensitiv-
ity Driven Regularization (Tartaglione et al., 2018). Gale
et al. (2019) examined magnitude pruning, L0 Regulariza-
tion, and Variational Dropout and concluded that they all

†Pronounced ”wriggle”.

achieve about the same accuracy versus sparsity trade-off
on ResNet-50 and Transformer architectures.

There are also structured pruning methods which attempt to
remove channels or neurons so that the resulting network is
dense and can be accelerated easily (Dai et al., 2018; Nek-
lyudov et al., 2017; Christos Louizos, 2018). We compare
RigL with these state-of-the-art structured pruning meth-
ods in Appendix B. We show that our method requires far
fewer resources and finds smaller networks that require less
FLOPs to run.

Training techniques that allow for sparsity throughout the
entire training process were, to our knowledge, first intro-
duced in Deep Rewiring (DeepR) (Bellec et al., 2018). In
DeepR, the standard Stochastic Gradient Descent (SGD)
optimizer is augmented with a random walk in parameter
space. Additionally, at initialization connections are as-
signed a pre-defined sign at random; when the optimizer
would normally flip the sign, the weight is set to 0 instead
and new weights are activated at random.

Sparse Evolutionary Training (SET) (Mocanu et al., 2018)
proposed a simpler scheme where weights are pruned ac-
cording to the standard magnitude criterion used in prun-
ing and are added back at random. The method is simple
and achieves reasonable performance in practice. Dynamic
Sparse Reparameterization (DSR) (Mostafa & Wang, 2019)
introduced the idea of allowing the parameter budget to
shift between different layers of the model, allowing for
non-uniform sparsity. This allows the model to distribute
parameters where they are most effective. Unfortunately,
the models under consideration are mostly convolutional
networks, so the result of this parameter reallocation (which
is to decrease the sparsity of early layers and increase the
sparsity of later layers) has the overall effect of increasing
the FLOP count because the spatial size is largest in the early
layers. Sparse Networks from Scratch (SNFS) (Dettmers &
Zettlemoyer, 2019) introduces the idea of using the momen-
tum of each parameter as the criterion to be used for growing
weights and demonstrates it leads to an improvement in test
accuracy. Like DSR, they allow the sparsity of each layer
to change and focus on a constant parameter, not FLOP,
budget. Importantly, the method requires computing gra-
dients and updating the momentum for every parameter in
the model, even those that are zero, at every iteration. This
can result in a significant amount of overall computation.
Additionally, depending on the model and training setup,
the required storage for the full momentum tensor could
be prohibitive. Single-Shot Network Pruning (SNIP) (Lee
et al., 2019) attempts to find an initial mask with one-shot
pruning and uses the saliency score of parameters to decide
which parameters to keep. After pruning, training proceeds
with this static sparse network. Properties of the different
sparse training techniques are summarized in Table 1.

�

�

�

�

�

Rigging the Lottery: Making All Tickets Winners

Method Drop Grow Selectable FLOPs Space & FLOPs /
SNIP

DeepR
SET
DSR
SNFS

RigL (ours)

min(|✓ ⇤ r✓L(✓)|)
stochastic
min(|✓|)
min(|✓|)
min(|✓|)
min(|✓|)

none
random
random
random

momentum
gradient

yes
yes
yes
no
no
yes

sparse
sparse
sparse
sparse
dense
sparse

Table 1. Comparison of different sparse training techniques. Drop and Grow columns correspond to the strategies used during the mask
update. Selectable FLOPs is possible if the cost of training the model is fixed at the beginning of training.

There has also been a line of work investigating the Lot-
tery Ticket Hypothesis (Frankle & Carbin, 2019). Frankle
et al. (2019) showed that the formulation must be weakened
to apply to larger networks such as ResNet-50 (He et al.,
2015). In large networks, instead of the original initializa-
tion, the values after thousands of optimization steps must
be used for initialization. (Zhou et al., 2019) showed that
”winning lottery tickets” obtain non-random accuracies even
before training has started. Though the possibility of train-
ing sparse neural networks with a fixed sparsity mask using
lottery tickets is intriguing, it remains unclear whether it is
possible to generate such initializations – for both masks
and parameters – de novo.

3. Rigging The Lottery

Our method, RigL, is illustrated in Figure 1 and detailed in
Algorithm 1. RigL starts with a random sparse network, and
at regularly spaced intervals it removes a fraction of con-
nections based on their magnitudes and activates new ones
using instantaneous gradient information. After updating
the connectivity, training continues with the updated net-
work until the next update. The main parts of our algorithm,
Sparsity Distribution, Update Schedule, Drop Criterion,
Grow Criterion, and the various options considered for each,
are explained below.

(0) Notation. Given a dataset D with individual samples
xi and targets yi, we aim to minimize the loss functionP

i L(f⇥(xi), yi), where f⇥(·) is a neural network with pa-
rameters ⇥ 2 RN . Parameters of the lth layer are denoted
with ⇥l which is a length N l vector. A sparse layer keeps
only a fraction sl 2 (0, 1) of its connections and parameter-
ized with vector ✓l of length (1 sl)N l . Parameters of the
corresponding sparse network is denoted with ✓. Finally, the
overall sparsity of a sparse network is defined as the ratio ofP

zeros to the total parameter count, i.e. S = l s l N l

N

(1) Sparsity Distribution. There are many ways of dis-
tributing the non-zero weights across the layers while main-
taining a certain overall sparsity. We avoid re-allocating
parameters between layers during the training process as
it makes it difficult to target a specific final FLOP budget,

which is important for many applications. We consider the
following three strategies:

1. Uniform: The sparsity sl of each individual layer is
equal to the total sparsity S. In this setting, we keep
the first layer dense, since sparsifying this layer has a
disproportional effect on the performance and almost
no effect on the total size.

2. Erd˝ enyi: As introduced in (Mocanu et al., 2018),os-R´
l-1 l n +nsl scales with 1 , where nl denotes number nl-1⇤nl

of neurons at layer l. This enables the number of con-
nections in a sparse layer to scale with the sum of the
number of output and input channels.

3. Erd˝ enyi-Kernel (ERK): This method modifies the os-R´
original Erdős-Renyi formulation by including the ker-´
nel dimensions in the scaling factors. In other words,
the number of parameters of the sparse convolutional

l-1 l l n +n +w +hl

layers are scaled proportional to 1 ,nl-1⇤nl⇤wl⇤hl

where wl and hl are the width and the height of the l’th
convolutional kernel. Sparsity of the fully connected
layers scale as in the original Erdős-Renyi formulation.´
Similar to Erdős-Renyi, ERK allocates higher sparsi-´
ties to the layers with more parameters while allocating
lower sparsities to the smaller ones.

In all methods, the bias and batch-norm parameters are kept
dense, since these parameters scale with total number of
neurons and have a negligible effect on the total model size.

(2) Update Schedule. The update schedule is defined by
the following parameters: (1) T : the number of iterations
between sparse connectivity updates, (2) Tend: the iteration
at which to stop updating the sparse connectivity, (3) ↵:
the initial fraction of connections updated and (4) fdecay: a
function, invoked every T iterations until Tend, possibly
decaying the fraction of updated connections over time.
For the latter, as in Dettmers & Zettlemoyer (2019), we use
cosine annealing, as we find it slightly outperforms the other
methods considered.

✓ ✓ ◆◆
↵ t⇡

fdecay (t; ↵, Tend) = 1 + cos
2 Tend

�
� �

� �

�

�

�

�
�

�

�

Rigging the Lottery: Making All Tickets Winners

Results obtained with other annealing functions, such as
constant and inverse power, are presented in Appendix G.

(3) Drop criterion. Every T steps we drop the con-
nections given by ArgTopK(|✓l|, (1 sl)N l), where
ArgTopK(v, k) gives the indices of the top-k elements
of vector v.

(4) Grow criterion. The novelty of our method
lies in how we grow new connections. We grow
the connections with highest magnitude gradients,
ArgTopKi/ (|r⇥l Lt|, k), where ✓l \ Idrop is the 2✓l\Idrop

set of active connections remaining after step (3). Newly
activated connections are initialized to zero and therefore
don’t affect the output of the network. However they are ex-
pected to receive gradients with high magnitudes in the next
iteration and therefore reduce the loss fastest. We attempted
using other initialization like random values or small values
along the gradient direction for the activated connections,
however zero initialization brought the best results.

This procedure can be applied to each layer in sequence
and the dense gradients can be discarded immediately after
selecting the top connections. If a layer is too large to store
the full gradient with respect to the weights, then the gra-
dients can be calculated in an online manner and only the

1top-k gradient values are stored. As long as T > , the 1 s
extra work of calculating dense gradients is amortized and
still proportional to 1 S. This is in contrast to the method
of (Dettmers & Zettlemoyer, 2019), which requires calculat-
ing and storing the full gradients at each optimization step.

Algorithm 1 RigL
Input: Network f⇥, dataset D

1Sparsity Distribution: S = {s , . . . , sL}
Update Schedule: T , Tend, ↵, fdecay

✓ Randomly sparsify ⇥ using S
for each training step t do

Sample a batch Bt ⇠ DP
Lt = L((f✓(xi), yi)i⇠Bt

if t (mod T) == 0 and t < Tend then
for each layer l do
k = fdecay(t; ↵, Tend)(1 sl)N l

Idrop = ArgTopK(|✓l|, k)
Igrow = ArgTopKi/ (|r⇥l Lt|, k)2✓l \Idrop

✓ Update connections ✓ using Idrop and Igrow

end for
else
✓ = ✓ ↵r✓Lt

end if
end for

4. Empirical Evaluation

Our experiments include image classification using CNNs
on the ImageNet-2012 (Russakovsky et al., 2015) and
CIFAR-10 (Krizhevsky, 2009) datasets and character based
language modeling using RNNs with the WikiText-103
dataset (Merity et al., 2016). We repeat all of our exper-
iments 3 times and report the mean and standard devia-
tion. We use the TensorFlow Model Pruning library (Zhu
& Gupta, 2018) for our pruning baselines. A Tensorflow
(Abadi et al., 2015) implementation of our method along
with three other baselines (SET, SNFS, SNIP) and check-
points of our models can be found at github.com/google-
research/rigl.

For all dynamic sparse training methods (SET, SNFS, RigL),
we use the same update schedule with T = 100 and
↵ = 0.3 unless stated otherwise. Corresponding hyper-
parameter sweeps can be found in Section 4.4. We set
the momentum value of SNFS to 0.9 and investigate other
values in Appendix D. We observed that stopping the mask
updates prior to the end of training yields slightly better
performance; therefore, we set Tend to 25k for ImageNet-
2012 and 75k for CIFAR-10 training which corresponds to
roughly 3/4 of the full training.

The default number of training steps used for training dense
networks might not be optimal for sparse training with dy-
namic connectivity. In our experiments we observe that
sparse training methods benefit significantly from increased
training steps. When increasing the training steps by a factor
M , the anchor epochs of the learning rate schedule and the
end iteration of the mask update schedule are also scaled
by the same factor; we indicate this scaling with a subscript
(e.g. RigLM⇥).

Additionally, in Appendix B, we compare RigL with struc-
tured pruning algorithms and in Appendix E we show that
solutions found by RigL are not lottery tickets.

4.1. ImageNet-2012 Dataset

In all experiments in this section, we use SGD with momen-
tum as our optimizer. We set the momentum coefficient of
the optimizer to 0.9, L2 regularization coefficient to 0.0001,
and label smoothing (Szegedy et al., 2016) to 0.1. The learn-
ing rate schedule starts with a linear warm up reaching its
maximum value of 1.6 at epoch 5 which is then dropped
by a factor of 10 at epochs 30, 70 and 90. We train our
networks with a batch size of 4096 for 32000 steps which
roughly corresponds to 100 epochs of training. Our training
pipeline uses standard data augmentation, which includes
random flips and crops.

https://github.com/google-research/rigl
https://github.com/google-research/rigl
https://github.com/google

�

Rigging the Lottery: Making All Tickets Winners

Method Top-1
Accuracy

FLOPs
(Train)

FLOPs
(Test)

Top-1
Accuracy

FLOPs
(Train)

FLOPs
(Test)

Dense 76.8±0.09 1x
(3.2e18)

1x
(8.2e9)

S=0.8 S=0.9

Static 70.6±0.06 0.23x 0.23x 65.8±0.04 0.10x 0.10x
SNIP 72.0±0.10 0.23x 0.23x 67.2±0.12 0.10x 0.10x

Small-Dense 72.1±0.12 0.20x 0.20x 68.9±0.10 0.12x 0.12x
SET 72.9±0.39 0.23x 0.23x 69.6±0.23 0.10x 0.10x
RigL 74.6±0.06 0.23x 0.23x 72.0±0.05 0.10x 0.10x

Small-Dense5⇥ 73.9±0.07 1.01x 0.20x 71.3±0.10 0.60x 0.12x
RigL5⇥ 76.6±0.06 1.14x 0.23x 75.7±0.06 0.52x 0.10x

Static (ERK) 72.1±0.04 0.42x 0.42x 67.7±0.12 0.24x 0.24x
DSR* 73.3 0.40x 0.40x 71.6 0.30x 0.30x

RigL (ERK) 75.1±0.05 0.42x 0.42x 73.0±0.04 0.25x 0.24x
RigL5⇥ (ERK) 77.1±0.06 2.09x 0.42x 76.4±0.05 1.23x 0.24x

SNFS* 74.2 n/a n/a 72.3 n/a n/a
SNFS (ERK) 75.2±0.11 0.61x 0.42x 72.9±0.06 0.50x 0.24x

Pruning* 75.6 0.56x 0.23x 73.9 0.51x 0.10x
Pruning1.5⇥ * 76.5 0.84x 0.23x 75.2 0.76x 0.10x

DNW* 76 n/a n/a 74 n/a n/a

Figure 2. (left) Performance and cost of training 80% and 90% sparse ResNet-50s on the Imagenet-2012 classification task. We report
FLOPs needed for training and test (inference on single sample) and normalize them with the FLOPs of a dense model. To make a fair
comparison we assume pruning algorithm utilizes sparsity during the training (see Appendix H for details on how FLOPs are calculated).
Methods with superscript ‘*’ indicates reported results in corresponding papers (except DNW results, which is obtained from (Kusupati
et al., 2020)). Pruning results are obtained from (Gale et al., 2019). (top-right) Performance of sparse training methods on training
80% sparse ResNet-50 with uniform sparsity distribution. Points at each curve correspond to the individual training runs with training
multipliers from 1 to 5 (except pruning which is scaled between 0.5 and 2). The number of FLOPs required to train a standard dense
ResNet-50 along with its performance is indicated with a dashed red line. (bottom-right) Performance of RigL at different sparsity levels
with extended training.

4.1.1. RESNET-50

Figure 2-top-right summarizes the performance of various
methods on training an 80% sparse ResNet-50. We also
train small dense networks with equivalent parameter count.
All sparse networks use a uniform layer-wise sparsity dis-
tribution unless otherwise specified and a cosine update
schedule (↵ = 0.3, T = 100). Overall, we observe that
the performance of all methods improves with training time;
thus, for each method we run extended training with up to
5⇥ the training steps of the original.

As noted by Gale et al. (2019), Evci et al. (2019), Fran-
kle et al. (2019), and Mostafa & Wang (2019), training a
network with fixed sparsity from scratch (Static) leads to in-
ferior performance. Training a dense network with the same
number of parameters (Small-Dense) gets better results than
Static, but fails to match the performance of dynamic sparse
models. SET improves the performance over Small-Dense,
however saturates around 75% accuracy indicating the lim-
its of growing new connections randomly. Methods that
use gradient information to grow new connections (RigL

and SNFS) obtain higher accuracies, but RigL achieves the
highest accuracy and does so while consistently requiring
fewer FLOPs than the other methods.

Given that different applications or scenarios might require
a limit on the number of FLOPs for inference, we investigate
the performance of our method at various sparsity levels.
As mentioned previously, one strength of our method is that
its resource requirements are constant throughout training
and we can choose the level of sparsity that fits our training
and/or inference constraints. In Figure 2-bottom-right we
show the performance of our method at different sparsities
and compare them with the pruning results of (Gale et al.,
2019), which uses 1.5x training steps, relative to the original
32k iterations. To make a fair comparison with regards to
FLOPs, we scale the learning schedule of all other methods
by 5x. Note that even after extending the training, it takes
less FLOPs to train sparse networks using RigL compared
to the pruning method‡.

‡Except for the 80% sparse RigL-ERK

Rigging the Lottery: Making All Tickets Winners

S Method Top-1 FLOPs

0.75
Small-Dense5⇥

Pruning (Zhu)
RigL5⇥

RigL5⇥ (ERK)

66.0±0.11
67.7

71.5±0.06
71.9±0.01

0.23x
0.27x
0.27x
0.52x

0.9
Small-Dense5⇥

Pruning (Zhu)
RigL5⇥

RigL5⇥ (ERK)

57.7±0.34
61.8

67.0±0.17
68.1±0.11

0.09x
0.12x
0.12x
0.27x

Dense 72.1±0.17 1x (1.1e9)

0.75
Big-Sparse5⇥

Big-Sparse5⇥ (ERK)
76.4±0.05
77.0±0.08

0.98x
1.91x

Figure 3. (left) RigL significantly improves the performance of sparse MobileNets (v1 and v2) on ImageNet-2012 dataset and exceeds the
pruning results reported by (Zhu & Gupta, 2018). Performance of the dense MobileNets are indicated with red lines. (right) Performance
of sparse MobileNet-v1 architectures presented with their inference FLOPs. Networks with ERK distribution get better performance with
the same number of parameters but take more FLOPs to run. Training wider sparse models with RigL (Big-Sparse) yields a significant
performance improvement over the dense model.

RigL, our method with constant sparsity distribution, ex-
ceeds the performance of magnitude based iterative pruning
in all sparsity levels while requiring less FLOPs to train.
Sparse networks that use Erdős-Renyi-Kernel (ERK) sparsity
distribution obtains even greater performance. For exam-
ple ResNet-50 with 96.5% sparsity achieves a remarkable
72.75% Top-1 Accuracy, around 3.5% higher than the ex-
tended magnitude pruning results reported by (Gale et al.,
2019). As observed earlier, smaller dense models (with the
same number of parameters) or sparse models with a static
connectivity can not perform at a comparable level.

A more fine grained comparison of sparse training methods
is presented in Figure 2-left. Methods using uniform spar-
sity distribution and whose FLOP/memory footprint scales
directly with (1-S) are placed in the first sub-group of the
table. The second sub-group includes DSR and networks
with ERK sparsity distribution which require a higher num-
ber of FLOPs for inference with same parameter count. The
final sub-group includes methods that require the space and
the work proportional to training a dense model.

4.1.2. MOBILENET

MobileNet is a compact architecture that performs remark-
ably well in resource constrained settings. Due to its com-
pact nature with separable convolutions it is known to be dif-
ficult to sparsify without compromising performance (Zhu
& Gupta, 2018). In this section we apply our method to
MobileNet-v1 (Howard et al., 2017) and MobileNet-v2 (San-
dler et al., 2018). Due to its low parameter count we keep the
first layer and depth-wise convolutions dense. We use ERK
or Uniform sparsity distributions to sparsify the remaining
layers. We calculate sparsity fractions in this section over

wise convolutions are included) are slightly lower than the
reported values (i.e. 74.2, 84.1, 89, 94 for 75, 85, 90, 95 %
sparsity).

The performance of sparse MobileNets trained with RigL
as well as the baselines are shown in Figure 3. We extend
the training (5x of the original number of steps) for all runs
in this section. RigL trains 75% sparse MobileNets with no
loss in performance. Performance starts dropping after this
point, though RigL consistently gets the best results by a
large margin.

Figure 2-top-right and Figure 3-left show that the sparse
models are more accurate than the dense models with the
same number of parameters, corroborating the results of
Kalchbrenner et al. (2018). To validate this point further, we
train a sparse MobileNet-v1 with width multiplier of 1.98
and constant sparsity of 75%, which has the same FLOPs
and parameter count as the dense baseline. Training this
network with RigL yields an impressive 4.3% absolute im-
provement in Top-1 Accuracy demonstrating the exciting
potential of sparse networks at increasing the performance
of widely-used dense models.

4.2. Character Level Language Modeling

Most prior work has only examined sparse training on vision
networks §. To fully understand these techniques it is impor-
tant to examine different architectures on different datasets.
Kalchbrenner et al. (2018) found sparse GRUs (Cho et al.,
2014) to be very effective at modeling speech, however the
dataset they used is not available. We choose a proxy task
with similar characteristics (dataset size and vocabulary size
are approximately the same) - character level language mod-

pruned layers and real sparsities (when first layer and depth- §The exception being the work of Bellec et al. (2018)

�

Rigging the Lottery: Making All Tickets Winners

Figure 4. (left) Final validation loss of various sparse training methods on character level language modeling task. Cross entropy loss is
converted to bits (from nats). (right) Test accuracies of sparse WideResNet-22-2’s on CIFAR-10 task.

eling on the publicly available WikiText-103 (Merity et al.,
2016) dataset.

Our network consists of a shared embedding with dimen-
sionality 128, a vocabulary size of 256, a GRU with a state
size of 512, a readout from the GRU state consisting of
two linear layers with width 256 and 128 respectively. We
train the next step prediction task with the cross entropy loss
using the Adam optimizer. The remaining hyper-parameters
are reported in Appendix I.

In Figure 4-left we report the validation bits per step of vari-
ous solutions at the end of the training. For each method we
perform extended runs to see how the performance of each
method scales with increased training time. As observed
before, SET performs worse than the other dynamic training
methods and its performance improves only slightly with
increased training time. On the other hand the performance
of RigL and SNFS continuously improves with more train-
ing steps. Even though RigL exceeds the performance of the
other sparse training approaches it fails to match the perfor-
mance of pruning in this setting, highlighting an important
direction for future work.

4.3. WideResNet-22-2 on CIFAR-10

We also evaluate the performance of RigL on the CIFAR-10
image classification benchmark. We train a Wide Residual
Network (Zagoruyko & Komodakis, 2016) with 22 layers
using a width multiplier of 2 for 250 epochs (97656 steps).
The learning rate starts at 0.1 which is scaled down by a fac-
tor of 5 every 30,000 iterations. We use an L2 regularization
coefficient of 5e-4, a batch size of 128 and a momentum
coefficient of 0.9. We use the default mask update interval
for RigL (T = 100) and the default ERK sparsity distribu-
tion. Results with other mask update intervals and sparsity

distributions yield similar results. These can be found in
Appendix J.

The final accuracy of RigL for various sparsity levels is
presented in Figure 4-right. The dense baseline obtains
94.1% test accuracy; surprisingly, some of the 50% sparse
networks generalize better than the dense baseline demon-
strating the regularization aspect of sparsity. With increased
sparsity, we see a performance gap between the Static and
Pruning solutions. Training static networks longer seems to
have limited effect on the final performance. On the other
hand, RigL matches the performance of pruning with only a
fraction of the resources needed for training.

4.4. Analyzing the performance of RigL

In this section we study the effect of sparsity distributions
and update schedules on the performance of our method.
The results for SET and SNFS are similar and are discussed
in Appendices C and F. Additionally, we investigate the en-
ergy landscape of sparse ResNet-50s and show that dynamic
connectivity provided by RigL helps escaping sub-optimal
solutions found by static training.

Effect of Sparsity Distribution: Figure 5-left shows how
the sparsity distribution affects the final test accuracy of
sparse ResNet-50s trained with RigL. Erdős-Renyi-Kernel´
(ERK) performs consistently better than the other two distri-
butions. ERK automatically allocates more parameters to
the layers with few parameters by decreasing their sparsi-
ties¶. This reallocation seems to be crucial for preserving
the capacity of the network at high sparsity levels where
ERK outperforms other distributions by a greater margin.
Though it performs better, the ERK distribution requires

¶see Appendix K for exact layer-wise sparsities.

�

Rigging the Lottery: Making All Tickets Winners

approximately twice as many FLOPs compared to a uni-
form distribution. This highlights an interesting trade-off
between accuracy and computational efficiency where better
performance is obtained by increasing the number of FLOPs
required to evaluate the model. This trade-off also highlights
the importance of reporting non-uniform sparsities along
with respective FLOPs when two networks of same sparsity
(parameter count) are compared.

Effect of Update Schedule and Frequency: In Figure 5-
right, we evaluate the performance of our method on update
intervals T 2 [50, 100, 500, 1000] and initial drop frac-
tions ↵ 2 [0.1, 0.3, 0.5]. The best accuracies are obtained
when the mask is updated every 100 iterations with an initial
drop fraction of 0.3 or 0.5. Notably, even with infrequent
update intervals (e.g. every 1000 iterations), RigL performs

above 73.5%.

Effect of Dynamic connections: Frankle et al. (2019) and
Mostafa & Wang (2019) observed that static sparse training
converges to a solution with a higher loss than dynamic
sparse training. In Figure 6-left we examine the loss land-
scape lying between a solution found via static sparse train-
ing and a solution found via pruning to understand whether
the former lies in a basin isolated from the latter. Performing
a linear interpolation between the two reveals the expected
result – a high-loss barrier – demonstrating that the loss land-
scape is not trivially connected. However, this is only one of
infinitely many paths between the two points (Garipov et al.,
2018; Draxler et al., 2018) and does not imply the nonex-
istence of such a path. For example Garipov et al. (2018)
showed different dense solutions lie in the same basin by

Figure 5. Effect of (left) sparsity distribution and (right) update schedule (�T , ↵) on the final performance.

Figure 6. (left) Training loss evaluated at various points on interpolation curves between a magnitude pruning model (0.0) and a model
trained with static sparsity (1.0). (right) Training loss of RigL and Static methods starting from the static sparse solution, and their final
accuracies.

Rigging the Lottery: Making All Tickets Winners

finding 2nd order Bézier curves with low energy between the
two solutions. Following their method, we attempt to find
quadratic and cubic Bézier curves between the two sparse
solutions. Surprisingly, even with a cubic curve, we fail to
find a path without a high-loss barrier. These results sug-
gest that static sparse training can get stuck at local minima
that are isolated from better solutions. On the other hand,
when we optimize the quadratic Bézier curve across the full
dense space we find a near-monotonic path to the improved
solution, suggesting that allowing new connections to grow
yields greater flexibility in navigating the loss landscape.

In Figure 6-right we train RigL starting from the sub-optimal
solution found by static sparse training, demonstrating that
it is able to escape the local minimum, whereas re-training
with static sparse training cannot. RigL first removes con-
nections with the smallest magnitudes since removing these
connections have been shown to have a minimal effect on
the loss (Han et al., 2015; Evci, 2018). Next, it activates
connections with the high gradients, since these connections
are expected to decrease the loss fastest. In Appendix A we
discuss the effect of RigL updates on the energy landscape.

5. Discussion & Conclusion

In this work we introduced RigL, an algorithm for training
sparse neural networks efficiently. For a given computa-
tional budget RigL achieves higher accuracies than existing
dense-to-sparse and sparse-to-sparse training algorithms.
RigL is useful in three different scenarios: (1) To improve
the accuracy of sparse models intended for deployment; (2)
To improve the accuracy of large sparse models which can
only be trained for a limited number of iterations; (3) Com-
bined with sparse primitives to enable training of extremely
large sparse models which otherwise would not be possible.

The third scenario is unexplored due to the lack of hard-
ware and software support for sparsity. Nonetheless, work
continues to improve the performance of sparse networks
on current hardware (Hong et al., 2019; Merrill & Garland,
2016), and new types of hardware accelerators will have
better support for parameter sparsity (Wang et al., 2018;
Mike Ashby, 2019; Liu et al., 2018; Han et al., 2016a; Chen
et al., 2019). RigL provides the tools to take advantage of,
and motivation for, such advances.

ACKNOWLEDGMENTS

We would like to thank Eleni Triantafillou, Hugo Larochelle,
Bart van Merriënboer, Fabian Pedregosa, Joan Puigcerver,
Nicolas Le Roux, Karen Simonyan for giving feedback
on the preprint of the paper; Namhoon Lee for helping us
verifying/debugging our SNIP implementation; Chris Jones
for helping discovering/solving the distributed training bug.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
URL http://tensorflow.org/.

Bellec, G., Kappel, D., Maass, W., and Legenstein, R. A.
Deep rewiring: Training very sparse deep networks. In
International Conference on Learning Representations,
2018.

Chen, Y., Yang, T., Emer, J., and Sze, V. Eyeriss v2: A
flexible accelerator for emerging deep neural networks on
mobile devices. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 9(2):292–308, June 2019.
doi: 10.1109/JETCAS.2019.2910232.

Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F.,
Schwenk, H., and Bengio, Y. Learning phrase represen-
tations using rnn encoder-decoder for statistical machine
translation. In Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2014), 2014.

Christos Louizos, Max Welling, D. P. K. Learning sparse
neural networks through l0 regularization. In Interna-
tional Conference on Learning Representations, 2018.

Dai, B., Zhu, C., Guo, B., and Wipf, D. Compressing neural
networks using the variational information bottleneck. In
International Conference on Machine Learning, 2018.

Dettmers, T. and Zettlemoyer, L. Sparse networks from
scratch: Faster training without losing performance.
ArXiv, 2019. URL http://arxiv.org/abs/1907.
04840.

Draxler, F., Veschgini, K., Salmhofer, M., and Hamprecht,
F. A. Essentially no barriers in neural network energy
landscape. In International Conference on Machine
Learning, 2018. URL http://proceedings.mlr.
press/v80/draxler18a/draxler18a.pdf.

Elsen, E., Dukhan, M., Gale, T., and Simonyan, K. Fast
sparse convnets. ArXiv, 2019. URL https://arxiv.
org/abs/1911.09723.

Evci, U. Detecting dead weights and units in neural net-
works. ArXiv, 2018. URL http://arxiv.org/
abs/1806.06068.

http://tensorflow.org/
http://arxiv.org/abs/1907.04840
http://arxiv.org/abs/1907.04840
http://proceedings.mlr.press/v80/draxler18a/draxler18a.pdf
http://proceedings.mlr.press/v80/draxler18a/draxler18a.pdf
https://arxiv.org/abs/1911.09723
https://arxiv.org/abs/1911.09723
http://arxiv.org/abs/1806.06068
http://arxiv.org/abs/1806.06068

Rigging the Lottery: Making All Tickets Winners

Evci, U., Pedregosa, F., Gomez, A. N., and Elsen, E. The
difficulty of training sparse neural networks. ArXiv, 2019.
URL http://arxiv.org/abs/1906.10732.

Frankle, J. and Carbin, M. The lottery ticket hypothe-
sis: Finding sparse, trainable neural networks. In In-
ternational Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=rJl-b3RcF7.

Frankle, J., Dziugaite, G. K., Roy, D. M., and Carbin, M.
The lottery ticket hypothesis at scale. ArXiv, 2019. URL
http://arxiv.org/abs/1903.01611.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity
in deep neural networks. ArXiv, 2019. URL http:
//arxiv.org/abs/1902.09574.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P., and
Wilson, A. G. Loss surfaces, mode connectivity, and fast
ensembling of dnns. In Advances in Neural Information
Processing Systems, 2018.

Guo, Y., Yao, A., and Chen, Y. Dynamic network surgery
for efficient DNNs. ArXiv, 2016. URL http://arxiv.
org/abs/1608.04493.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
In Advances in Neural Information Processing Systems,
2015.

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz,
M. A., and Dally, W. J. EIE: Efficient Inference Engine on
compressed deep neural network. In Proceedings of the
43rd International Symposium on Computer Architecture,
2016a.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural network with pruning, trained
quantization and huffman coding. In International Con-
ference on Learning Representations, 2016b. URL
http://arxiv.org/abs/1510.00149.

Hassibi, B. and Stork, D. Second order derivatives for
network pruning: Optimal Brain Surgeon. In Advances
in Neural Information Processing Systems, 1993.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the 2015 IEEE
International Conference on Computer Vision (ICCV),
2015.

Hong, C., Sukumaran-Rajam, A., Nisa, I., Singh, K., and
Sadayappan, P. Adaptive sparse tiling for sparse ma-
trix multiplication. In Proceedings of the 24th Sym-
posium on Principles and Practice of Parallel Pro-

gramming, 2019. URL http://doi.acm.org/10.
1145/3293883.3295712.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam, H.
Mobilenets: Efficient convolutional neural networks for
mobile vision applications. ArXiv, 2017. URL http:
//arxiv.org/abs/1704.04861.

Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S.,
Casagrande, N., Lockhart, E., Stimberg, F., Oord, A.,
Dieleman, S., and Kavukcuoglu, K. Efficient neural au-
dio synthesis. In International Conference on Machine
Learning, 2018.

Krizhevsky, A. Learning multiple layers of fea-
tures from tiny images. In University of Toronto,
2009. URL https://www.cs.toronto.edu/
˜kriz/learning-features-2009-TR.pdf.

Kusupati, A., Ramanujan, V., Somani, R., Wortsman, M.,
Jain, P., Kakade, S., and Farhadi, A. Soft threshold weight
reparameterization for learnable sparsity. In International
Conference on Machine Learning, 2020.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal Brain
Damage. In Advances in Neural Information Processing
Systems, 1990.

Lee, N., Ajanthan, T., and Torr, P. H. S. SNIP: Single-shot
Network Pruning based on Connection Sensitivity. In
International Conference on Learning Representations,
2019.

Liu, C., Bellec, G., Vogginger, B., Kappel, D., Partzsch, J.,
Neumaerker, F., Höppner, S., Maass, W., Furber, S. B.,
Legenstein, R. A., and Mayr, C. Memory-efficient deep
learning on a spinnaker 2 prototype. In Front. Neurosci.,
2018.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Re-
thinking the value of network pruning. In International
Conference on Learning Representations, 2019.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. ArXiv, 2016. URL http:
//arxiv.org/abs/1609.07843.

Merrill, D. and Garland, M. Merge-based sparse matrix-
vector multiplication (spmv) using the csr storage for-
mat. In Proceedings of the 21st ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Pro-
gramming, 2016. URL http://doi.acm.org/10.
1145/2851141.2851190.

Mike Ashby, Christiaan Baaij, P. B. M. B. O. B. A. C.
C. C. L. C. S. D. N. v. D. J. F. G. H. B. H. D. P. J.

http://arxiv.org/abs/1906.10732
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://arxiv.org/abs/1903.01611
http://arxiv.org/abs/1902.09574
http://arxiv.org/abs/1902.09574
http://arxiv.org/abs/1608.04493
http://arxiv.org/abs/1608.04493
http://arxiv.org/abs/1510.00149
http://doi.acm.org/10.1145/3293883.3295712
http://doi.acm.org/10.1145/3293883.3295712
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
http://doi.acm.org/10.1145/2851141.2851190
http://doi.acm.org/10.1145/2851141.2851190

Rigging the Lottery: Making All Tickets Winners

S. S. S. Exploiting unstructured sparsity on next-
generation datacenter hardware. 2019. URL https://
myrtle.ai/wp-content/uploads/2019/06/
IEEEformatMyrtle.ai_.21.06.19_b.pdf.

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H.,
Gibescu, M., and Liotta, A. Scalable training of ar-
tificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature Communi-
cations, 2018. URL http://www.nature.com/
articles/s41467-018-04316-3.

Molchanov, D., Ashukha, A., and Vetrov, D. P. Variational
Dropout Sparsifies Deep Neural Networks. In Interna-
tional Conference on Machine Learning, pp. 2498–2507,
2017.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz,
J. Pruning Convolutional Neural Networks for Resource
Efficient Transfer Learning. ArXiv, 2016. URL https:
//arxiv.org/abs/1611.06440.

Mostafa, H. and Wang, X. Parameter efficient training of
deep convolutional neural networks by dynamic sparse
reparameterization. In International Conference on Ma-
chine Learning, 2019. URL http://proceedings.
mlr.press/v97/mostafa19a.html.

Mozer, M. C. and Smolensky, P. Skeletonization: A tech-
nique for trimming the fat from a network via relevance
assessment. In Advances in Neural Information Process-
ing Systems, 1989.

Narang, S., Diamos, G., Sengupta, S., and Elsen, E. Ex-
ploring sparsity in recurrent neural networks. In In-
ternational Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=BylSPv9gx.

Neklyudov, K., Molchanov, D., Ashukha, A., and Vetrov, D.
Structured bayesian pruning via log-normal multiplicative
noise. In Advances in Neural Information Processing
Systems, 2017.

Park, J., Li, S. R., Wen, W., Li, H., Chen, Y., and Dubey,
P. Holistic SparseCNN: Forging the trident of accuracy,
speed, and size. ArXiv, 2016. URL http://arxiv.
org/abs/1608.01409.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. Imagenet large scale
visual recognition challenge. International Journal of
Computer Vision (IJCV), 2015.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L. Mobilenetv2: Inverted residuals and linear
bottlenecks. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018.

Srinivas, S., Subramanya, A., and Babu, R. V. Training
sparse neural networks. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition Workshops
(CVPRW), 2017.

Ström, N. Sparse Connection and Pruning in Large Dynamic
Artificial Neural Networks. In EUROSPEECH, 1997.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer
vision. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition,, 2016. URL http://
arxiv.org/abs/1512.00567.

Tartaglione, E., Lepsøy, S., Fiandrotti, A., and Francini, G.
Learning sparse neural networks via sensitivity-driven
regularization. In Advances in Neural Information Pro-
cessing Systems, 2018. URL http://dl.acm.org/
citation.cfm?id=3327144.3327303.

Thimm, G. and Fiesler, E. Evaluating pruning methods. In
Proceedings of the International Symposium on Artificial
Neural Networks, 1995.

Wang, P., Ji, Y., Hong, C., Lyu, Y., Wang, D., and Xie, Y.
Snrram: An efficient sparse neural network computation
architecture based on resistive random-access memory.
In Proceedings of the 55th Annual Design Automation
Conference, 2018. URL http://doi.acm.org/10.
1145/3195970.3196116.

Wortsman, M., Farhadi, A., and Rastegari, M. Discovering
neural wirings. ArXiv, 2019. URL http://arxiv.
org/abs/1906.00586.

Zagoruyko, S. and Komodakis, N. Wide residual
networks. In British Machine Vision Conference,
2016. URL http://www.bmva.org/bmvc/2016/
papers/paper087/index.html.

Zhou, H., Lan, J., Liu, R., and Yosinski, J. Deconstruct-
ing lottery tickets: Zeros, signs, and the supermask.
ArXiv, 2019. URL http://arxiv.org/abs/1905.
01067.

Zhu, M. and Gupta, S. To prune, or not to prune: Explor-
ing the efficacy of pruning for model compression. In
International Conference on Learning Representations
Workshop, 2018. URL https://arxiv.org/abs/
1710.01878.

https://myrtle.ai/wp-content/uploads/2019/06/IEEEformatMyrtle.ai_.21.06.19_b.pdf
https://myrtle.ai/wp-content/uploads/2019/06/IEEEformatMyrtle.ai_.21.06.19_b.pdf
https://myrtle.ai/wp-content/uploads/2019/06/IEEEformatMyrtle.ai_.21.06.19_b.pdf
http://www.nature.com/articles/s41467-018-04316-3
http://www.nature.com/articles/s41467-018-04316-3
https://arxiv.org/abs/1611.06440
https://arxiv.org/abs/1611.06440
http://proceedings.mlr.press/v97/mostafa19a.html
http://proceedings.mlr.press/v97/mostafa19a.html
https://openreview.net/forum?id=BylSPv9gx
https://openreview.net/forum?id=BylSPv9gx
http://arxiv.org/abs/1608.01409
http://arxiv.org/abs/1608.01409
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://dl.acm.org/citation.cfm?id=3327144.3327303
http://dl.acm.org/citation.cfm?id=3327144.3327303
http://doi.acm.org/10.1145/3195970.3196116
http://doi.acm.org/10.1145/3195970.3196116
http://arxiv.org/abs/1906.00586
http://arxiv.org/abs/1906.00586
http://www.bmva.org/bmvc/2016/papers/paper087/index.html
http://www.bmva.org/bmvc/2016/papers/paper087/index.html
http://arxiv.org/abs/1905.01067
http://arxiv.org/abs/1905.01067
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1710.01878

