
   
    

                

 

      
        

          
        
          

         
         

         
     

     
       

        
     
       

     
         

     
        

      
     

        
       
       

   

  

       
         

            
        

        
       
         

         

       
    

         
         

  
    

         
        

       

         
            

          
       

         
           
           

           
         

         
           
        

          
            

       
         

          
    

        
          

          
           

Rigging the Lottery: 
Making All Tickets Winners 

Utku Evci 1 Trevor Gale 1 Jacob Menick 2 Pablo Samuel Castro 1 Erich Elsen 2 

Abstract 
Many applications require sparse neural networks 
due to space or inference time restrictions. There 
is a large body of work on training dense networks 
to yield sparse networks for inference, but this lim-
its the size of the largest trainable sparse model to 
that of the largest trainable dense model. In this 
paper we introduce a method to train sparse neural 
networks with a fixed parameter count and a fixed 
computational cost throughout training, without 
sacrificing accuracy relative to existing dense-to-
sparse training methods. Our method updates the 
topology of the sparse network during training by 
using parameter magnitudes and infrequent gra-
dient calculations. We show that this approach 
requires fewer floating-point operations (FLOPs) 
to achieve a given level of accuracy compared to 
prior techniques. We demonstrate state-of-the-art 
sparse training results on a variety of networks 
and datasets, including ResNet-50, MobileNets on 
Imagenet-2012, and RNNs on WikiText-103. Fi-
nally, we provide some insights into why allowing 
the topology to change during the optimization 
can overcome local minima encountered when the 
topology remains static*. 

1. Introduction 

The parameter and floating point operation (FLOP) effi-
ciency of sparse neural networks is now well demonstrated 
on a variety of problems (Han et al., 2015; Srinivas et al., 
2017). Multiple works have shown inference time speedups 
are possible using sparsity for both Recurrent Neural Net-
works (RNNs) (Kalchbrenner et al., 2018) and Convolu-
tional Neural Networks (ConvNets) (Park et al., 2016; Elsen 
et al., 2019). Currently, the most accurate sparse models 

1Google Brain 2DeepMind. Correspondence to: Utku Evci 
<evcu@google.com>, Erich Elsen <eriche@google.com>. 

Proceedings of the 37 th International Conference on Machine 
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by 
the author(s). 

*Code available at github.com/google-research/rigl 

Figure 1. RigL improves the optimization of sparse neural net-
works by leveraging weight magnitude and gradient information 
to jointly optimize model parameters and connectivity. 

are obtained with techniques that require, at a minimum, 
the cost of training a dense model in terms of memory and 
FLOPs (Zhu & Gupta, 2018; Guo et al., 2016), and some-
times significantly more (Molchanov et al., 2017). 

This paradigm has two main limitations. First, the maximum 
size of sparse models is limited to the largest dense model 
that can be trained; even if sparse models are more parameter 
efficient, we can’t use pruning to train models that are larger 
and more accurate than the largest possible dense models. 
Second, it is inefficient; large amounts of computation must 
be performed for parameters that are zero valued or that will 
be zero during inference. Additionally, it remains unknown 
if the performance of the current best pruning algorithms is 
an upper bound on the quality of sparse models. Gale et al. 
(2019) found that three different dense-to-sparse training 
algorithms all achieve about the same sparsity / accuracy 
trade-off. However, this is far from conclusive proof that no 
better performance is possible. 

The Lottery Ticket Hypothesis (Frankle & Carbin, 2019) 
hypothesized that if we can find a sparse neural network 
with iterative pruning, then we can train that sparse network 
from scratch, to the same level of accuracy, by starting from 

https://github.com/google-research/rigl
mailto:eriche@google.com
mailto:evcu@google.com
https://github.com/google-research/rigl
mailto:eriche@google.com
mailto:evcu@google.com


       

          
          

          
         

  

         
      

        

         
        

        
       

           
       
  

          
         

         
  

   

        
          

          
        

        
         
        

        
         

          
       

           
          

       

         
        
            

        
          

       
        

        
       

        
       

         

  

        
     

         
          

          
         

      
           

         
   

        
        
          

       
         

      
         
            

       

        
        

        
           
       

       
         

         
        

       
       

         
           

          
            

        
        

            
          

          
          

      
         

           
         

        
         

       
           

          
        

         
        

Rigging the Lottery: Making All Tickets Winners 

the original initial conditions. In this paper we introduce a 
new method for training sparse models without the need of 
a “lucky” initialization; for this reason, we call our method 
“The Rigged Lottery” or RigL†. We make the following 
specific contributions: 

• We introduce RigL - an algorithm for training sparse 
neural networks while maintaining memory and com-
putational cost proportional to density of the network. 

• We perform an extensive empirical evaluation of RigL 
on computer vision and natural language tasks. We 
show that RigL achieves higher quality than all previ-
ous techniques for a given computational cost. 

• We show the surprising result that RigL can find more 
accurate models than the current best dense-to-sparse 
training algorithms. 

• We study the loss landscape of sparse neural networks 
and provide insight into why allowing the topology of 
nonzero weights to change over the course of training 
aids optimization. 

2. Related Work 

Research on finding sparse neural networks dates back 
decades, at least to Thimm & Fiesler (1995) who concluded 
that pruning weights based on magnitude was a simple and 
powerful technique. Ström (1997) later introduced the idea 
of retraining the previously pruned network to increase ac-
curacy. Han et al. (2016b) went further and introduced 
multiple rounds of magnitude pruning and retraining. This 
is, however, relatively inefficient, requiring ten rounds of 
retraining when removing 20% of the connections to reach 
a final sparsity of 90%. To overcome this problem, Narang 
et al. (2017) introduced gradual pruning, where connec-
tions are slowly removed over the course of a single round 
of training. Zhu & Gupta (2018) refined the technique to 
minimize the amount of hyper-parameter selection required. 

A diversity of approaches not based on magnitude pruning 
have also been proposed. Mozer & Smolensky (1989), Le-
Cun et al. (1990) and Hassibi & Stork (1993) are some early 
examples, but impractical for modern neural networks as 
they use information from the Hessian to prune a trained net-
work. More recent work includes L0 Regularization (Chris-
tos Louizos, 2018), Variational Dropout (Molchanov et al., 
2017), Dynamic Network Surgery (Guo et al., 2016), Dis-
covering Neural Wirings (Wortsman et al., 2019), Sensitiv-
ity Driven Regularization (Tartaglione et al., 2018). Gale 
et al. (2019) examined magnitude pruning, L0 Regulariza-
tion, and Variational Dropout and concluded that they all 

†Pronounced ”wriggle”. 

achieve about the same accuracy versus sparsity trade-off 
on ResNet-50 and Transformer architectures. 

There are also structured pruning methods which attempt to 
remove channels or neurons so that the resulting network is 
dense and can be accelerated easily (Dai et al., 2018; Nek-
lyudov et al., 2017; Christos Louizos, 2018). We compare 
RigL with these state-of-the-art structured pruning meth-
ods in Appendix B. We show that our method requires far 
fewer resources and finds smaller networks that require less 
FLOPs to run. 

Training techniques that allow for sparsity throughout the 
entire training process were, to our knowledge, first intro-
duced in Deep Rewiring (DeepR) (Bellec et al., 2018). In 
DeepR, the standard Stochastic Gradient Descent (SGD) 
optimizer is augmented with a random walk in parameter 
space. Additionally, at initialization connections are as-
signed a pre-defined sign at random; when the optimizer 
would normally flip the sign, the weight is set to 0 instead 
and new weights are activated at random. 

Sparse Evolutionary Training (SET) (Mocanu et al., 2018) 
proposed a simpler scheme where weights are pruned ac-
cording to the standard magnitude criterion used in prun-
ing and are added back at random. The method is simple 
and achieves reasonable performance in practice. Dynamic 
Sparse Reparameterization (DSR) (Mostafa & Wang, 2019) 
introduced the idea of allowing the parameter budget to 
shift between different layers of the model, allowing for 
non-uniform sparsity. This allows the model to distribute 
parameters where they are most effective. Unfortunately, 
the models under consideration are mostly convolutional 
networks, so the result of this parameter reallocation (which 
is to decrease the sparsity of early layers and increase the 
sparsity of later layers) has the overall effect of increasing 
the FLOP count because the spatial size is largest in the early 
layers. Sparse Networks from Scratch (SNFS) (Dettmers & 
Zettlemoyer, 2019) introduces the idea of using the momen-
tum of each parameter as the criterion to be used for growing 
weights and demonstrates it leads to an improvement in test 
accuracy. Like DSR, they allow the sparsity of each layer 
to change and focus on a constant parameter, not FLOP, 
budget. Importantly, the method requires computing gra-
dients and updating the momentum for every parameter in 
the model, even those that are zero, at every iteration. This 
can result in a significant amount of overall computation. 
Additionally, depending on the model and training setup, 
the required storage for the full momentum tensor could 
be prohibitive. Single-Shot Network Pruning (SNIP) (Lee 
et al., 2019) attempts to find an initial mask with one-shot 
pruning and uses the saliency score of parameters to decide 
which parameters to keep. After pruning, training proceeds 
with this static sparse network. Properties of the different 
sparse training techniques are summarized in Table 1. 
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Rigging the Lottery: Making All Tickets Winners 

Method Drop Grow Selectable FLOPs Space & FLOPs / 
SNIP 

DeepR 
SET 
DSR 
SNFS 

RigL (ours) 

min(|✓ ⇤ r✓L(✓)|) 
stochastic 
min(|✓|) 
min(|✓|) 
min(|✓|) 
min(|✓|) 

none 
random 
random 
random 

momentum 
gradient 

yes 
yes 
yes 
no 
no 
yes 

sparse 
sparse 
sparse 
sparse 
dense 
sparse 

Table 1. Comparison of different sparse training techniques. Drop and Grow columns correspond to the strategies used during the mask 
update. Selectable FLOPs is possible if the cost of training the model is fixed at the beginning of training. 

There has also been a line of work investigating the Lot-
tery Ticket Hypothesis (Frankle & Carbin, 2019). Frankle 
et al. (2019) showed that the formulation must be weakened 
to apply to larger networks such as ResNet-50 (He et al., 
2015). In large networks, instead of the original initializa-
tion, the values after thousands of optimization steps must 
be used for initialization. (Zhou et al., 2019) showed that 
”winning lottery tickets” obtain non-random accuracies even 
before training has started. Though the possibility of train-
ing sparse neural networks with a fixed sparsity mask using 
lottery tickets is intriguing, it remains unclear whether it is 
possible to generate such initializations – for both masks 
and parameters – de novo. 

3. Rigging The Lottery 

Our method, RigL, is illustrated in Figure 1 and detailed in 
Algorithm 1. RigL starts with a random sparse network, and 
at regularly spaced intervals it removes a fraction of con-
nections based on their magnitudes and activates new ones 
using instantaneous gradient information. After updating 
the connectivity, training continues with the updated net-
work until the next update. The main parts of our algorithm, 
Sparsity Distribution, Update Schedule, Drop Criterion, 
Grow Criterion, and the various options considered for each, 
are explained below. 

(0) Notation. Given a dataset D with individual samples 
xi and targets yi, we aim to minimize the loss functionP 

i L(f⇥(xi), yi), where f⇥(·) is a neural network with pa-
rameters ⇥ 2 RN . Parameters of the lth layer are denoted 
with ⇥l which is a length N l vector. A sparse layer keeps 
only a fraction sl 2 (0, 1) of its connections and parameter-
ized with vector ✓l of length (1 sl)N l . Parameters of the 
corresponding sparse network is denoted with ✓. Finally, the 
overall sparsity of a sparse network is defined as the ratio ofP 

zeros to the total parameter count, i.e. S = l s l N l 

N 

(1) Sparsity Distribution. There are many ways of dis-
tributing the non-zero weights across the layers while main-
taining a certain overall sparsity. We avoid re-allocating 
parameters between layers during the training process as 
it makes it difficult to target a specific final FLOP budget, 

which is important for many applications. We consider the 
following three strategies: 

1. Uniform: The sparsity sl of each individual layer is 
equal to the total sparsity S. In this setting, we keep 
the first layer dense, since sparsifying this layer has a 
disproportional effect on the performance and almost 
no effect on the total size. 

2. Erd˝ enyi: As introduced in (Mocanu et al., 2018),os-R´ 
l-1 l n +nsl scales with 1 , where nl denotes number nl-1⇤nl 

of neurons at layer l. This enables the number of con-
nections in a sparse layer to scale with the sum of the 
number of output and input channels. 

3. Erd˝ enyi-Kernel (ERK): This method modifies the os-R´ 
original Erdős-Renyi formulation by including the ker-´ 
nel dimensions in the scaling factors. In other words, 
the number of parameters of the sparse convolutional 

l-1 l l n +n +w +hl

layers are scaled proportional to 1 ,nl-1⇤nl⇤wl⇤hl 

where wl and hl are the width and the height of the l’th 
convolutional kernel. Sparsity of the fully connected 
layers scale as in the original Erdős-Renyi formulation.´ 
Similar to Erdős-Renyi, ERK allocates higher sparsi-´ 
ties to the layers with more parameters while allocating 
lower sparsities to the smaller ones. 

In all methods, the bias and batch-norm parameters are kept 
dense, since these parameters scale with total number of 
neurons and have a negligible effect on the total model size. 

(2) Update Schedule. The update schedule is defined by 
the following parameters: (1) T : the number of iterations 
between sparse connectivity updates, (2) Tend: the iteration 
at which to stop updating the sparse connectivity, (3) ↵: 
the initial fraction of connections updated and (4) fdecay: a  
function, invoked every T iterations until Tend, possibly 
decaying the fraction of updated connections over time. 
For the latter, as in Dettmers & Zettlemoyer (2019), we use 
cosine annealing, as we find it slightly outperforms the other 
methods considered. 

✓ ✓ ◆◆ 
↵ t⇡ 

fdecay (t; ↵, Tend) =  1 +  cos 
2 Tend 
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Rigging the Lottery: Making All Tickets Winners 

Results obtained with other annealing functions, such as 
constant and inverse power, are presented in Appendix G. 

(3) Drop criterion. Every T steps we drop the con-
nections given by ArgTopK( |✓l|, (1 sl)N l), where 
ArgTopK(v, k) gives the indices of the top-k elements 
of vector v. 

(4) Grow criterion. The novelty of our method 
lies in how we grow new connections. We grow 
the connections with highest magnitude gradients, 
ArgTopKi/  (|r⇥l Lt|, k), where ✓l \ Idrop is the 2✓l\Idrop 

set of active connections remaining after step (3). Newly 
activated connections are initialized to zero and therefore 
don’t affect the output of the network. However they are ex-
pected to receive gradients with high magnitudes in the next 
iteration and therefore reduce the loss fastest. We attempted 
using other initialization like random values or small values 
along the gradient direction for the activated connections, 
however zero initialization brought the best results. 

This procedure can be applied to each layer in sequence 
and the dense gradients can be discarded immediately after 
selecting the top connections. If a layer is too large to store 
the full gradient with respect to the weights, then the gra-
dients can be calculated in an online manner and only the 

1top-k gradient values are stored. As long as T >  , the 1 s 
extra work of calculating dense gradients is amortized and 
still proportional to 1 S. This is in contrast to the method 
of (Dettmers & Zettlemoyer, 2019), which requires calculat-
ing and storing the full gradients at each optimization step. 

Algorithm 1 RigL 
Input: Network f⇥, dataset D 

1Sparsity Distribution: S = {s , . . . , sL} 
Update Schedule: T , Tend, ↵, fdecay 

✓ Randomly sparsify ⇥ using S 
for each training step t do 

Sample a batch Bt ⇠ DP 
Lt = L((f✓(xi), yi)i⇠Bt 

if t (mod T ) ==  0  and t < Tend then 
for each layer l do 
k = fdecay(t; ↵, Tend)(1 sl)N l 

Idrop = ArgTopK( |✓l|, k) 
Igrow = ArgTopKi/  (|r⇥l Lt|, k)2✓l \Idrop 

✓ Update connections ✓ using Idrop and Igrow 

end for 
else 
✓ = ✓ ↵r✓Lt 

end if 
end for 

4. Empirical Evaluation 

Our experiments include image classification using CNNs 
on the ImageNet-2012 (Russakovsky et al., 2015) and 
CIFAR-10 (Krizhevsky, 2009) datasets and character based 
language modeling using RNNs with the WikiText-103 
dataset (Merity et al., 2016). We repeat all of our exper-
iments 3 times and report the mean and standard devia-
tion. We use the TensorFlow Model Pruning library (Zhu 
& Gupta, 2018) for our pruning baselines. A Tensorflow 
(Abadi et al., 2015) implementation of our method along 
with three other baselines (SET, SNFS, SNIP) and check-
points of our models can be found at github.com/google-
research/rigl. 

For all dynamic sparse training methods (SET, SNFS, RigL), 
we use the same update schedule with T = 100 and 
↵ = 0.3 unless stated otherwise. Corresponding hyper-
parameter sweeps can be found in Section 4.4. We set 
the momentum value of SNFS to 0.9 and investigate other 
values in Appendix D. We observed that stopping the mask 
updates prior to the end of training yields slightly better 
performance; therefore, we set Tend to 25k for ImageNet-
2012 and 75k for CIFAR-10 training which corresponds to 
roughly 3/4 of the full training. 

The default number of training steps used for training dense 
networks might not be optimal for sparse training with dy-
namic connectivity. In our experiments we observe that 
sparse training methods benefit significantly from increased 
training steps. When increasing the training steps by a factor 
M , the anchor epochs of the learning rate schedule and the 
end iteration of the mask update schedule are also scaled 
by the same factor; we indicate this scaling with a subscript 
(e.g. RigLM⇥). 

Additionally, in Appendix B, we compare RigL with struc-
tured pruning algorithms and in Appendix E we show that 
solutions found by RigL are not lottery tickets. 

4.1. ImageNet-2012 Dataset 

In all experiments in this section, we use SGD with momen-
tum as our optimizer. We set the momentum coefficient of 
the optimizer to 0.9, L2 regularization coefficient to 0.0001, 
and label smoothing (Szegedy et al., 2016) to 0.1. The learn-
ing rate schedule starts with a linear warm up reaching its 
maximum value of 1.6 at epoch 5 which is then dropped 
by a factor of 10 at epochs 30, 70 and 90. We train our 
networks with a batch size of 4096 for 32000 steps which 
roughly corresponds to 100 epochs of training. Our training 
pipeline uses standard data augmentation, which includes 
random flips and crops. 

https://github.com/google-research/rigl
https://github.com/google-research/rigl
https://github.com/google
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Rigging the Lottery: Making All Tickets Winners 

Method Top-1 
Accuracy 

FLOPs 
(Train) 

FLOPs 
(Test) 

Top-1 
Accuracy 

FLOPs 
(Train) 

FLOPs 
(Test) 

Dense 76.8±0.09 1x 
(3.2e18) 

1x 
(8.2e9) 

S=0.8 S=0.9 

Static 70.6±0.06 0.23x 0.23x 65.8±0.04 0.10x 0.10x 
SNIP 72.0±0.10 0.23x 0.23x 67.2±0.12 0.10x 0.10x 

Small-Dense 72.1±0.12 0.20x 0.20x 68.9±0.10 0.12x 0.12x 
SET 72.9±0.39 0.23x 0.23x 69.6±0.23 0.10x 0.10x 
RigL 74.6±0.06 0.23x 0.23x 72.0±0.05 0.10x 0.10x 

Small-Dense5⇥ 73.9±0.07 1.01x 0.20x 71.3±0.10 0.60x 0.12x 
RigL5⇥ 76.6±0.06 1.14x 0.23x 75.7±0.06 0.52x 0.10x 

Static (ERK) 72.1±0.04 0.42x 0.42x 67.7±0.12 0.24x 0.24x 
DSR* 73.3 0.40x 0.40x 71.6 0.30x 0.30x 

RigL (ERK) 75.1±0.05 0.42x 0.42x 73.0±0.04 0.25x 0.24x 
RigL5⇥ (ERK) 77.1±0.06 2.09x 0.42x 76.4±0.05 1.23x 0.24x 

SNFS* 74.2 n/a n/a 72.3 n/a n/a 
SNFS (ERK) 75.2±0.11 0.61x 0.42x 72.9±0.06 0.50x 0.24x 

Pruning* 75.6 0.56x 0.23x 73.9 0.51x 0.10x 
Pruning1.5⇥ * 76.5 0.84x 0.23x 75.2 0.76x 0.10x 

DNW* 76 n/a n/a 74 n/a n/a 

Figure 2. (left) Performance and cost of training 80% and 90% sparse ResNet-50s on the Imagenet-2012 classification task. We report 
FLOPs needed for training and test (inference on single sample) and normalize them with the FLOPs of a dense model. To make a fair 
comparison we assume pruning algorithm utilizes sparsity during the training (see Appendix H for details on how FLOPs are calculated). 
Methods with superscript ‘*’ indicates reported results in corresponding papers (except DNW results, which is obtained from (Kusupati 
et al., 2020)). Pruning results are obtained from (Gale et al., 2019). (top-right) Performance of sparse training methods on training 
80% sparse ResNet-50 with uniform sparsity distribution. Points at each curve correspond to the individual training runs with training 
multipliers from 1 to 5 (except pruning which is scaled between 0.5 and 2). The number of FLOPs required to train a standard dense 
ResNet-50 along with its performance is indicated with a dashed red line. (bottom-right) Performance of RigL at different sparsity levels 
with extended training. 

4.1.1. RESNET-50 

Figure 2-top-right summarizes the performance of various 
methods on training an 80% sparse ResNet-50. We also 
train small dense networks with equivalent parameter count. 
All sparse networks use a uniform layer-wise sparsity dis-
tribution unless otherwise specified and a cosine update 
schedule (↵ = 0.3, T = 100). Overall, we observe that 
the performance of all methods improves with training time; 
thus, for each method we run extended training with up to 
5⇥ the training steps of the original. 

As noted by Gale et al. (2019), Evci et al. (2019), Fran-
kle et al. (2019), and Mostafa & Wang (2019), training a 
network with fixed sparsity from scratch (Static) leads to in-
ferior performance. Training a dense network with the same 
number of parameters (Small-Dense) gets better results than 
Static, but fails to match the performance of dynamic sparse 
models. SET improves the performance over Small-Dense, 
however saturates around 75% accuracy indicating the lim-
its of growing new connections randomly. Methods that 
use gradient information to grow new connections (RigL 

and SNFS) obtain higher accuracies, but RigL achieves the 
highest accuracy and does so while consistently requiring 
fewer FLOPs than the other methods. 

Given that different applications or scenarios might require 
a limit on the number of FLOPs for inference, we investigate 
the performance of our method at various sparsity levels. 
As mentioned previously, one strength of our method is that 
its resource requirements are constant throughout training 
and we can choose the level of sparsity that fits our training 
and/or inference constraints. In Figure 2-bottom-right we 
show the performance of our method at different sparsities 
and compare them with the pruning results of (Gale et al., 
2019), which uses 1.5x training steps, relative to the original 
32k iterations. To make a fair comparison with regards to 
FLOPs, we scale the learning schedule of all other methods 
by 5x. Note that even after extending the training, it takes 
less FLOPs to train sparse networks using RigL compared 
to the pruning method‡. 

‡Except for the 80% sparse RigL-ERK 



       

    

  

  
 

  

 
 

 
 

 
 
 
 

  

  
 

  

 
 

 
 

 
 
 
 

    

  

  
 
 

 
 

                    
                    

                 
                     

      

       
        

          
       

      
        

        
         
         

          
        

         
        

       
           

        
        

          
         

        

  

       
         
          
       

           
       

             
         

        
         

         
             
 

        
            
            

          
        

          
  

         
          

        
          

         
          
         

        
       

        
    

     

          
         

        
          

          
           

        
       

                   

Rigging the Lottery: Making All Tickets Winners 

S Method Top-1 FLOPs 

0.75 
Small-Dense5⇥ 

Pruning (Zhu) 
RigL5⇥ 

RigL5⇥ (ERK) 

66.0±0.11 
67.7 

71.5±0.06 
71.9±0.01 

0.23x 
0.27x 
0.27x 
0.52x 

0.9 
Small-Dense5⇥ 

Pruning (Zhu) 
RigL5⇥ 

RigL5⇥ (ERK) 

57.7±0.34 
61.8 

67.0±0.17 
68.1±0.11 

0.09x 
0.12x 
0.12x 
0.27x 

Dense 72.1±0.17 1x (1.1e9) 

0.75 
Big-Sparse5⇥ 

Big-Sparse5⇥ (ERK) 
76.4±0.05 
77.0±0.08 

0.98x 
1.91x 

Figure 3. (left) RigL significantly improves the performance of sparse MobileNets (v1 and v2) on ImageNet-2012 dataset and exceeds the 
pruning results reported by (Zhu & Gupta, 2018). Performance of the dense MobileNets are indicated with red lines. (right) Performance 
of sparse MobileNet-v1 architectures presented with their inference FLOPs. Networks with ERK distribution get better performance with 
the same number of parameters but take more FLOPs to run. Training wider sparse models with RigL (Big-Sparse) yields a significant 
performance improvement over the dense model. 

RigL, our method with constant sparsity distribution, ex-
ceeds the performance of magnitude based iterative pruning 
in all sparsity levels while requiring less FLOPs to train. 
Sparse networks that use Erdős-Renyi-Kernel (ERK) sparsity 
distribution obtains even greater performance. For exam-
ple ResNet-50 with 96.5% sparsity achieves a remarkable 
72.75% Top-1 Accuracy, around 3.5% higher than the ex-
tended magnitude pruning results reported by (Gale et al., 
2019). As observed earlier, smaller dense models (with the 
same number of parameters) or sparse models with a static 
connectivity can not perform at a comparable level. 

A more fine grained comparison of sparse training methods 
is presented in Figure 2-left. Methods using uniform spar-
sity distribution and whose FLOP/memory footprint scales 
directly with (1-S) are placed in the first sub-group of the 
table. The second sub-group includes DSR and networks 
with ERK sparsity distribution which require a higher num-
ber of FLOPs for inference with same parameter count. The 
final sub-group includes methods that require the space and 
the work proportional to training a dense model. 

4.1.2. MOBILENET 

MobileNet is a compact architecture that performs remark-
ably well in resource constrained settings. Due to its com-
pact nature with separable convolutions it is known to be dif-
ficult to sparsify without compromising performance (Zhu 
& Gupta, 2018). In this section we apply our method to 
MobileNet-v1 (Howard et al., 2017) and MobileNet-v2 (San-
dler et al., 2018). Due to its low parameter count we keep the 
first layer and depth-wise convolutions dense. We use ERK 
or Uniform sparsity distributions to sparsify the remaining 
layers. We calculate sparsity fractions in this section over 

wise convolutions are included) are slightly lower than the 
reported values (i.e. 74.2, 84.1, 89, 94 for 75, 85, 90, 95 % 
sparsity). 

The performance of sparse MobileNets trained with RigL 
as well as the baselines are shown in Figure 3. We extend 
the training (5x of the original number of steps) for all runs 
in this section. RigL trains 75% sparse MobileNets with no 
loss in performance. Performance starts dropping after this 
point, though RigL consistently gets the best results by a 
large margin. 

Figure 2-top-right and Figure 3-left show that the sparse 
models are more accurate than the dense models with the 
same number of parameters, corroborating the results of 
Kalchbrenner et al. (2018). To validate this point further, we 
train a sparse MobileNet-v1 with width multiplier of 1.98 
and constant sparsity of 75%, which has the same FLOPs 
and parameter count as the dense baseline. Training this 
network with RigL yields an impressive 4.3% absolute im-
provement in Top-1 Accuracy demonstrating the exciting 
potential of sparse networks at increasing the performance 
of widely-used dense models. 

4.2. Character Level Language Modeling 

Most prior work has only examined sparse training on vision 
networks §. To fully understand these techniques it is impor-
tant to examine different architectures on different datasets. 
Kalchbrenner et al. (2018) found sparse GRUs (Cho et al., 
2014) to be very effective at modeling speech, however the 
dataset they used is not available. We choose a proxy task 
with similar characteristics (dataset size and vocabulary size 
are approximately the same) - character level language mod-

pruned layers and real sparsities (when first layer and depth- §The exception being the work of Bellec et al. (2018) 
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Figure 4. (left) Final validation loss of various sparse training methods on character level language modeling task. Cross entropy loss is 
converted to bits (from nats). (right) Test accuracies of sparse WideResNet-22-2’s on CIFAR-10 task. 

eling on the publicly available WikiText-103 (Merity et al., 
2016) dataset. 

Our network consists of a shared embedding with dimen-
sionality 128, a vocabulary size of 256, a GRU with a state 
size of 512, a readout from the GRU state consisting of 
two linear layers with width 256 and 128 respectively. We 
train the next step prediction task with the cross entropy loss 
using the Adam optimizer. The remaining hyper-parameters 
are reported in Appendix I. 

In Figure 4-left we report the validation bits per step of vari-
ous solutions at the end of the training. For each method we 
perform extended runs to see how the performance of each 
method scales with increased training time. As observed 
before, SET performs worse than the other dynamic training 
methods and its performance improves only slightly with 
increased training time. On the other hand the performance 
of RigL and SNFS continuously improves with more train-
ing steps. Even though RigL exceeds the performance of the 
other sparse training approaches it fails to match the perfor-
mance of pruning in this setting, highlighting an important 
direction for future work. 

4.3. WideResNet-22-2 on CIFAR-10 

We also evaluate the performance of RigL on the CIFAR-10 
image classification benchmark. We train a Wide Residual 
Network (Zagoruyko & Komodakis, 2016) with 22 layers 
using a width multiplier of 2 for 250 epochs (97656 steps). 
The learning rate starts at 0.1 which is scaled down by a fac-
tor of 5 every 30,000 iterations. We use an L2 regularization 
coefficient of 5e-4, a batch size of 128 and a momentum 
coefficient of 0.9. We use the default mask update interval 
for RigL ( T = 100) and the default ERK sparsity distribu-
tion. Results with other mask update intervals and sparsity 

distributions yield similar results. These can be found in 
Appendix J. 

The final accuracy of RigL for various sparsity levels is 
presented in Figure 4-right. The dense baseline obtains 
94.1% test accuracy; surprisingly, some of the 50% sparse 
networks generalize better than the dense baseline demon-
strating the regularization aspect of sparsity. With increased 
sparsity, we see a performance gap between the Static and 
Pruning solutions. Training static networks longer seems to 
have limited effect on the final performance. On the other 
hand, RigL matches the performance of pruning with only a 
fraction of the resources needed for training. 

4.4. Analyzing the performance of RigL 

In this section we study the effect of sparsity distributions 
and update schedules on the performance of our method. 
The results for SET and SNFS are similar and are discussed 
in Appendices C and F. Additionally, we investigate the en-
ergy landscape of sparse ResNet-50s and show that dynamic 
connectivity provided by RigL helps escaping sub-optimal 
solutions found by static training. 

Effect of Sparsity Distribution: Figure 5-left shows how 
the sparsity distribution affects the final test accuracy of 
sparse ResNet-50s trained with RigL. Erdős-Renyi-Kernel´ 
(ERK) performs consistently better than the other two distri-
butions. ERK automatically allocates more parameters to 
the layers with few parameters by decreasing their sparsi-
ties¶. This reallocation seems to be crucial for preserving 
the capacity of the network at high sparsity levels where 
ERK outperforms other distributions by a greater margin. 
Though it performs better, the ERK distribution requires 

¶see Appendix K for exact layer-wise sparsities. 
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approximately twice as many FLOPs compared to a uni-
form distribution. This highlights an interesting trade-off 
between accuracy and computational efficiency where better 
performance is obtained by increasing the number of FLOPs 
required to evaluate the model. This trade-off also highlights 
the importance of reporting non-uniform sparsities along 
with respective FLOPs when two networks of same sparsity 
(parameter count) are compared. 

Effect of Update Schedule and Frequency: In Figure 5-
right, we evaluate the performance of our method on update 
intervals T 2 [50, 100, 500, 1000] and initial drop frac-
tions ↵ 2 [0.1, 0.3, 0.5]. The best accuracies are obtained 
when the mask is updated every 100 iterations with an initial 
drop fraction of 0.3 or 0.5. Notably, even with infrequent 
update intervals (e.g. every 1000 iterations), RigL performs 

above 73.5%. 

Effect of Dynamic connections: Frankle et al. (2019) and 
Mostafa & Wang (2019) observed that static sparse training 
converges to a solution with a higher loss than dynamic 
sparse training. In Figure 6-left we examine the loss land-
scape lying between a solution found via static sparse train-
ing and a solution found via pruning to understand whether 
the former lies in a basin isolated from the latter. Performing 
a linear interpolation between the two reveals the expected 
result – a high-loss barrier – demonstrating that the loss land-
scape is not trivially connected. However, this is only one of 
infinitely many paths between the two points (Garipov et al., 
2018; Draxler et al., 2018) and does not imply the nonex-
istence of such a path. For example Garipov et al. (2018) 
showed different dense solutions lie in the same basin by 

Figure 5. Effect of (left) sparsity distribution and (right) update schedule (�T , ↵) on the final performance. 

Figure 6. (left) Training loss evaluated at various points on interpolation curves between a magnitude pruning model (0.0) and a model 
trained with static sparsity (1.0). (right) Training loss of RigL and Static methods starting from the static sparse solution, and their final 
accuracies. 
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finding 2nd order Bézier curves with low energy between the 
two solutions. Following their method, we attempt to find 
quadratic and cubic Bézier curves between the two sparse 
solutions. Surprisingly, even with a cubic curve, we fail to 
find a path without a high-loss barrier. These results sug-
gest that static sparse training can get stuck at local minima 
that are isolated from better solutions. On the other hand, 
when we optimize the quadratic Bézier curve across the full 
dense space we find a near-monotonic path to the improved 
solution, suggesting that allowing new connections to grow 
yields greater flexibility in navigating the loss landscape. 

In Figure 6-right we train RigL starting from the sub-optimal 
solution found by static sparse training, demonstrating that 
it is able to escape the local minimum, whereas re-training 
with static sparse training cannot. RigL first removes con-
nections with the smallest magnitudes since removing these 
connections have been shown to have a minimal effect on 
the loss (Han et al., 2015; Evci, 2018). Next, it activates 
connections with the high gradients, since these connections 
are expected to decrease the loss fastest. In Appendix A we 
discuss the effect of RigL updates on the energy landscape. 

5. Discussion & Conclusion 

In this work we introduced RigL, an algorithm for training 
sparse neural networks efficiently. For a given computa-
tional budget RigL achieves higher accuracies than existing 
dense-to-sparse and sparse-to-sparse training algorithms. 
RigL is useful in three different scenarios: (1) To improve 
the accuracy of sparse models intended for deployment; (2) 
To improve the accuracy of large sparse models which can 
only be trained for a limited number of iterations; (3) Com-
bined with sparse primitives to enable training of extremely 
large sparse models which otherwise would not be possible. 

The third scenario is unexplored due to the lack of hard-
ware and software support for sparsity. Nonetheless, work 
continues to improve the performance of sparse networks 
on current hardware (Hong et al., 2019; Merrill & Garland, 
2016), and new types of hardware accelerators will have 
better support for parameter sparsity (Wang et al., 2018; 
Mike Ashby, 2019; Liu et al., 2018; Han et al., 2016a; Chen 
et al., 2019). RigL provides the tools to take advantage of, 
and motivation for, such advances. 
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enberg, J., Mané, D., Monga, R., Moore, S., Murray, D., 
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, 
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, 
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., 
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. 
URL http://tensorflow.org/. 

Bellec, G., Kappel, D., Maass, W., and Legenstein, R. A. 
Deep rewiring: Training very sparse deep networks. In 
International Conference on Learning Representations, 
2018. 

Chen, Y., Yang, T., Emer, J., and Sze, V. Eyeriss v2: A 
flexible accelerator for emerging deep neural networks on 
mobile devices. IEEE Journal on Emerging and Selected 
Topics in Circuits and Systems, 9(2):292–308, June 2019. 
doi: 10.1109/JETCAS.2019.2910232. 

Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., 
Schwenk, H., and Bengio, Y. Learning phrase represen-
tations using rnn encoder-decoder for statistical machine 
translation. In Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2014), 2014. 

Christos Louizos, Max Welling, D. P. K. Learning sparse 
neural networks through l0 regularization. In Interna-
tional Conference on Learning Representations, 2018. 

Dai, B., Zhu, C., Guo, B., and Wipf, D. Compressing neural 
networks using the variational information bottleneck. In 
International Conference on Machine Learning, 2018. 

Dettmers, T. and Zettlemoyer, L. Sparse networks from 
scratch: Faster training without losing performance. 
ArXiv, 2019. URL http://arxiv.org/abs/1907. 
04840. 

Draxler, F., Veschgini, K., Salmhofer, M., and Hamprecht, 
F. A. Essentially no barriers in neural network energy 
landscape. In International Conference on Machine 
Learning, 2018. URL http://proceedings.mlr. 
press/v80/draxler18a/draxler18a.pdf. 

Elsen, E., Dukhan, M., Gale, T., and Simonyan, K. Fast 
sparse convnets. ArXiv, 2019. URL https://arxiv. 
org/abs/1911.09723. 

Evci, U. Detecting dead weights and units in neural net-
works. ArXiv, 2018. URL http://arxiv.org/ 
abs/1806.06068. 

http://tensorflow.org/
http://arxiv.org/abs/1907.04840
http://arxiv.org/abs/1907.04840
http://proceedings.mlr.press/v80/draxler18a/draxler18a.pdf
http://proceedings.mlr.press/v80/draxler18a/draxler18a.pdf
https://arxiv.org/abs/1911.09723
https://arxiv.org/abs/1911.09723
http://arxiv.org/abs/1806.06068
http://arxiv.org/abs/1806.06068


       

           
        

  

        
       

     
   

 

           
         

 

           
        

 

          
         

        
   

          
       

 

           
       

       
 

           
           

        
      

 

          
       

      
      

 

         
       

      

           
      

        
      

 

         
       

       
       

    
 

         
         

      
       

 

        
        

       
       

  

      
        
   

 

        
          

      
     

           
       
  

           
       

     
 

          
         

        
         

 

           
        

     

          
       

 

       
       

        
       

    
 

            
                  

Rigging the Lottery: Making All Tickets Winners 

Evci, U., Pedregosa, F., Gomez, A. N., and Elsen, E. The 
difficulty of training sparse neural networks. ArXiv, 2019. 
URL http://arxiv.org/abs/1906.10732. 

Frankle, J. and Carbin, M. The lottery ticket hypothe-
sis: Finding sparse, trainable neural networks. In In-
ternational Conference on Learning Representations, 
2019. URL https://openreview.net/forum? 
id=rJl-b3RcF7. 

Frankle, J., Dziugaite, G. K., Roy, D. M., and Carbin, M. 
The lottery ticket hypothesis at scale. ArXiv, 2019. URL 
http://arxiv.org/abs/1903.01611. 

Gale, T., Elsen, E., and Hooker, S. The state of sparsity 
in deep neural networks. ArXiv, 2019. URL http: 
//arxiv.org/abs/1902.09574. 

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P., and 
Wilson, A. G. Loss surfaces, mode connectivity, and fast 
ensembling of dnns. In Advances in Neural Information 
Processing Systems, 2018. 

Guo, Y., Yao, A., and Chen, Y. Dynamic network surgery 
for efficient DNNs. ArXiv, 2016. URL http://arxiv. 
org/abs/1608.04493. 

Han, S., Pool, J., Tran, J., and Dally, W. Learning both 
weights and connections for efficient neural network. 
In Advances in Neural Information Processing Systems, 
2015. 

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, 
M. A., and Dally, W. J. EIE: Efficient Inference Engine on 
compressed deep neural network. In Proceedings of the 
43rd International Symposium on Computer Architecture, 
2016a. 

Han, S., Mao, H., and Dally, W. J. Deep compression: 
Compressing deep neural network with pruning, trained 
quantization and huffman coding. In International Con-
ference on Learning Representations, 2016b. URL 
http://arxiv.org/abs/1510.00149. 

Hassibi, B. and Stork, D. Second order derivatives for 
network pruning: Optimal Brain Surgeon. In Advances 
in Neural Information Processing Systems, 1993. 

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep 
into rectifiers: Surpassing human-level performance on 
imagenet classification. In Proceedings of the 2015 IEEE 
International Conference on Computer Vision (ICCV), 
2015. 

Hong, C., Sukumaran-Rajam, A., Nisa, I., Singh, K., and 
Sadayappan, P. Adaptive sparse tiling for sparse ma-
trix multiplication. In Proceedings of the 24th Sym-
posium on Principles and Practice of Parallel Pro-

gramming, 2019. URL http://doi.acm.org/10. 
1145/3293883.3295712. 

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., 
Wang, W., Weyand, T., Andreetto, M., and Adam, H. 
Mobilenets: Efficient convolutional neural networks for 
mobile vision applications. ArXiv, 2017. URL http: 
//arxiv.org/abs/1704.04861. 

Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S., 
Casagrande, N., Lockhart, E., Stimberg, F., Oord, A., 
Dieleman, S., and Kavukcuoglu, K. Efficient neural au-
dio synthesis. In International Conference on Machine 
Learning, 2018. 

Krizhevsky, A. Learning multiple layers of fea-
tures from tiny images. In University of Toronto, 
2009. URL https://www.cs.toronto.edu/ 
˜kriz/learning-features-2009-TR.pdf. 

Kusupati, A., Ramanujan, V., Somani, R., Wortsman, M., 
Jain, P., Kakade, S., and Farhadi, A. Soft threshold weight 
reparameterization for learnable sparsity. In International 
Conference on Machine Learning, 2020. 

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal Brain 
Damage. In Advances in Neural Information Processing 
Systems, 1990. 

Lee, N., Ajanthan, T., and Torr, P. H. S. SNIP: Single-shot 
Network Pruning based on Connection Sensitivity. In 
International Conference on Learning Representations, 
2019. 

Liu, C., Bellec, G., Vogginger, B., Kappel, D., Partzsch, J., 
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