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A. Additional Preliminary Definitions
Combining the definitions of strong convexity in (8) and
Bergman divergence in (9) results in an important property
of the Bregman divergence associated with a σ-strongly
convex function, i.e.,

Dr(x, y) ≥ σ

2
‖ x− y ‖2 . (19)

We assume that the Bregman divergence satisfies the follow-
ing conditions (Bauschke & Borwein, 2001).

(a) (Separate Convexity) Let x and yk, k = 1, . . . ,K, be ar-
bitrary vectors in Rd. Then, the following inequality holds:

Dr

(
x,

K∑
k=1

µkyk

)
≤

K∑
k=1

µkDr(x, yk), (20)

where µk are non-negative constants with
∑
k µk = 1.

(b) (Lipschitz Continuity) The Bregman divergence is Lips-
chitz continuous of the following form:

|Dr(x, z)−Dr(y, z)| ≤M ‖ x− y ‖,∀x, y, z ∈ X ,
(21)

where M is a positive constant.

Many commonly used functions satisfy (20), e.g., Eu-
clidean distance and Kullback-Leibler divergence (refer to
(Bauschke & Borwein, 2001) for further discussion and
proof). Moreover, the condition in (21) is directly satisfied
with a proper choice of Lipschitz continuous function r(.)
on the compact set X .

B. Pseudocode of DABMD Algorithm
The psuedocode of DABMD operating over a heterogeneous
network is given in Algorithm 1. Lines 3 − 9 correspond
to the any-batch computation step, in which every node i
computes bi,t gradients during the fixed computation time
interval, denoted by Tr. Line 10 corresponds to the update
step, where nodes update their decisions using the mirror
descent method. Line 11 represents the consensus averag-
ing step, in which each node shares the local decision with
its neighbors. Upon receiving the messages of neighbor-
ing nodes, every node i updates its estimate of the global
minimizer yi,t+1.

C. Proof of Lemma 1
In the proof of Lemma 1, we make use of another technical
lemma. The following lemma presents an upper bound on
the deviation of the local decisions from their approximate
average.

Algorithm 1 DABMD algorithm
Input: initial points: {xi,0, yi,0}; step size αt; time hori-
zon T .
Output: sequence of decisions {xi,t, yi,t : 1 ≤ t ≤ T}.
1: for t = 1, 2, . . . , T do
2: Initialize bi,t = 0, gi,t = 0
3: T0 = current_time
4: while current_time− T0 ≤ Tr do
5: Receive input ωsi,t sampled i.i.d from Ω
6: Compute gradient: gi,t ← gi,t +∇f(yi,t, ω

s
i,t)

7: bi,t ← bi,t + 1
8: end while
9: Normalize gradients: gi,t ← 1

bi,t
gi,t

10: Update local decisions:
xi,t+1 = argmin

x∈X

{
〈x, gi,t〉+ 1

αt
Dr(x, yi,t)

}
11: Average decisions by consensus iteration

single consensus iteration:
yi,t+1 ←

∑n
j=1 P

t+1
ij xj,t+1

multiple consensus iteration:
yi,t+1 ←

∑n
j=1 [P t+1]

k
ijxj,t+1

12: end for

Lemma 7 If every node uses a σ-strongly convex regular-
ization function r(.), we have

‖ xi,t+1 − yi,t ‖≤
Lαt
σ
,∀i ∈ V,∀t ≥ 0.

Proof. By applying the first-order optimality condition to
the update (11), we get

〈x− xi,t+1, αtgi,t +∇r(xi,t+1)−∇r(yi,t)〉 ≥ 0,∀x ∈ X .
(22)

Then, setting x = yi,t in (22) yields

〈yi,t − xi,t+1, αtgi,t〉 (23)
≥ 〈xi,t+1 − yi,t,∇r(xi,t+1)−∇r(yi,t)〉.

Next, we exploit the strong convexity of regularizer r(.),
i.e.,

r(xi,t+1)− r(yi,t)−∇r(yi,t)T (xi,t+1 − yi,t)

≥ σ

2
‖ xi,t+1 − yi,t ‖2 .

Taking gradient with respect to xi,t+1 yields

∇r(xi,t+1)−∇r(yi,t) ≥ σ ‖ xi,t+1 − yi,t ‖ .

Combining the above with (23), and using the Lipschitzness
property, we obtain

αtL ‖ xi,t+1 − yi,t ‖≥ σ ‖ xi,t+1 − yi,t ‖2 . (24)
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Dividing (24) by σ ‖ xi,t+1− yi,t ‖ completes the proof. �

Now, we are ready to present an upperbound on the devia-
tion of the local decisions from the exact average. So, we
present the proof of Lemma 1.

Let ei,t = xi,t+1 − yi,t denote the error between the local
decision and local estimate between two consecutive time
slots. Then, the update (12) can be recursively written as

xi,t+1 = yi,t + ei,t =

n∑
j=1

P tijx
t
j + ei,t

=

n∑
j=1

Φ(t, 0)ijxj,0 +

t∑
s=1

n∑
j=1

Φ(t, s)ijej,s−1 + ei,t.

(25)

Averaging the above over the entire network yields

x̄t+1 =
1

n

n∑
i=1

xi,t+1 =
1

n

n∑
j=1

n∑
i=1

Φ(t, 0)ijxj,0

+
1

n

t∑
s=1

n∑
j=1

n∑
i=1

Φ(t, s)ijej,s−1 +
1

n

n∑
i=1

ei,t

=
1

n

n∑
j=1

xj,0 +
1

n

t+1∑
s=1

n∑
j=1

ej,s−1, (26)

where in the last line, we have used the fact that Φ(t, 0)
and Φ(t, s) are doubly stochastic matrices, and thus∑
i Φ(t, 0) =

∑
i Φ(t, s)ij = 1. By combining (25) and

(26), we obtain

‖ xi,t+1 − x̄t+1 ‖ ≤
n∑
j=1

‖ Φ(t, 0)ij −
1

n
‖‖ xj,0 ‖

+

t∑
s=1

n∑
j=1

‖ Φ(t, s)ij −
1

n
‖‖ ej,s−1 ‖

+
1

n

n∑
j=1

‖ ej,t ‖ + ‖ ei,t ‖ .

We next use the result of Lemma 7 and (13) to bound the
error and transition matrix errors, respectively. Noting that
all initial local decisions are zero vectors, we have

‖ xi,t+1−x̄t+1 ‖

≤
t∑

s=1

n∑
j=1

γΓt−s
Lαs−1

σ
+

1

n

n∑
j=1

αtL

σ
+
αtL

σ

≤
t∑

s=1

α0Ln

σ
γΓt−s +

2αtL

σ

≤ α0L

σ

(
2 +

nγ

1− Γ

)
. (27)

where α0 denotes the initial step size. To obtain the
right-hand side above we used the fact that {αt} is a non-
increasing sequence. �

D. Proof of Theorem 2
D.1. Key Lemmas

The following two lemmas pave the way for our regret
analysis provided in Theorem 2. Lemma 8 shows the impact
of the dynamic minimizers on the regret bound.

Lemma 8 For any non-increasing step size sequence {αt}
it holds that

n∑
i=1

T∑
t=1

(
1

αt
Dr(x

∗
t , yi,t)−

1

αt
Dr(x

∗
t , xi,t+1)

)

≤ 2nR2

αT+1
+

T∑
t=1

Mn ‖ x∗t+1 − x∗t ‖
αt+1

,

(28)

where R2 = supx,y∈XDr(x, y).

Proof. We begin by adding and subtracting several terms as
follows:

1

αt
Dr(x

∗
t , yi,t)−

1

αt
Dr(x

∗
t , xi,t+1) =

+
1

αt
Dr(x

∗
t , yi,t)−

1

αt+1
Dr(x

∗
t+1, yi,t+1)

+
1

αt+1
Dr(x

∗
t+1, yi,t+1)− 1

αt+1
Dr(x

∗
t , yi,t+1)

+
1

αt+1
Dr(x

∗
t , yi,t+1)− 1

αt+1
Dr(x

∗
t , xi,t+1)

+
1

αt+1
Dr(x

∗
t , xi,t+1)− 1

αt
Dr(x

∗
t , xi,t+1).

(29)

We proceed by bounding every pair of terms on the right-
hand side of (29). The first pair telescopes when summed
over time t. For the second pair, by the Lipschitz condition
on the Bregman divergence (21), we have

1

αt+1
Dr(x

∗
t+1, yi,t+1)− 1

αt+1
Dr(x

∗
t , yi,t+1) (30)

≤
M ‖ x∗t+1 − x∗t ‖

αt+1
.

Furthermore, using the separate convexity of the Bregman
divergence given in (20), the third pair is bounded as fol-
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lows:

n∑
i=1

(
Dr(x

∗
t , yi,t+1)−Dr(x

∗
t , xi,t+1)

)
=

n∑
i=1

(
Dr(x

∗
t ,

n∑
j=1

P tijxj,t+1)−Dr(x
∗
t , xi,t+1)

)

≤
n∑
j=1

( n∑
i=1

P tij

)
Dr(x

∗
t , xj,t+1)

−
n∑
i=1

Dr(x
∗
t , xi,t+1) = 0, (31)

where the separate convexity of Bregman divergence and
the doubly stochastic property of P t are used in the last line.
Summing (29) over time and nodes, we obtain

n∑
i=1

T∑
t=1

(
1

αt
Dr(x

∗
t , yi,t)−

1

αt
Dr(x

∗
t , xi,t+1)

)

≤ nR2

α1
+

T∑
t=1

Mn ‖ x∗t+1 − x∗t ‖
αt+1

+ nR2
T∑
t=1

(
1

αt+1
− 1

αt

)

≤ 2nR2

αT+1
+

T∑
t=1

Mn ‖ x∗t+1 − x∗t ‖
αt+1

, (32)

where the fact that {αt} is a positive and non-increasing
sequence is used in the last line. �

Lemma 9 Let bmin = mini,t{bi,t} and bmax =
maxi,t{bi,t} be the minimum and maximum of the mini-
batch sizes across nodes and over time. The sequence yi,t
generated by (12) satisfies

n∑
i=1

T∑
t=1

E
[
fi,t(yi,t)− fi,t(x∗t )

]
≤

T∑
t=1

VbL
2n

2σbmin
αt +

T∑
t=1

MnbmaxE
[
‖ x∗t+1 − x∗t ‖

]
αT+1

+
2nbmaxR

2

αT+1
,

where Vb = E
[
b2i,t
]

and the expectation is taken with re-
spect to the variability in the minibatch sizes.

Proof. We start by adding and subtracting fi,t(yi,t) as fol-

lows:

fi,t(yi,t)− fi,t(x∗t ) =

bi,t∑
s=1

(
f(yi,t, ω

s
i,t)− f(x∗t , ω

s
i,t)
)

≤ bi,t〈gi,t, yi,t − x∗t 〉
= bi,t〈gi,t, yi,t − xi,t+1 + xi,t+1 − x∗t 〉
≤ bi,tL ‖ yi,t − xi,t+1 ‖ +bi,t〈gi,t, xi,t+1 − x∗t 〉, (33)

where we have used the convexity and Lipschitz continuity
of fi,t(.) in the last line of (33). Next, we bound the last
term of (33) as follows:

bi,t〈gi,t, xi,t+1 − x∗t 〉

≤ bi,t
αt

[
Dr(x

∗
t , yi,t)−Dr(x

∗
t , xi,t)−Dr(xi,t+1, yi,t)

]
≤ bi,t

αt

[
Dr(x

∗
t , yi,t)−Dr(x

∗
t , xi,t)

]
− σbmin

2αt
‖ yi,t − xi,t+1 ‖2, (34)

where we have used a simple algebra of Bregman diver-
gences (see (Beck & Teboulle, 2003)) to derive the first
inequality in (34). Also, the last line of (34) is obtained by
the strong convexity of r(.), as presented in (19).

Finally, by substituting (34) into (33), we get

fi,t(yi,t)− fi,t(x∗t )

≤ bi,tL ‖ yi,t − xi,t+1 ‖ −
σbmin

2αt
‖ yi,t − xi,t+1 ‖2

+
bi,t
αt

[
Dr(x

∗
t , yi,t)−Dr(x

∗
t , xi,t)

]
≤
b2i,tL

2αt

2σbmin
+
bmax

αt

[
Dr(x

∗
t , yi,t)−Dr(x

∗
t , xi,t)

]
,

(35)

where in the last line above we have used the fact that
cu − q u

2

2 ≤
c2

2q , with c = bi,tL and q = σbmin/αt. We
sum (35) across computing nodes and over time and take
expectation, and apply Lemma 8 to the last term to achieve
the result. �

D.2. Proof of the Theorem

Now, we are ready to present the proof of Theorem 2.

To bound the dynamic regret, we begin by adding and sub-
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tracting ft(x̄t) as follows:

ft(xi,t)− ft(x∗t )
= ft(xi,t)− ft(x̄t) + ft(x̄t)− ft(x∗t )

=

n∑
j=1

(
fj,t(xi,t)− fj,t(x̄t)

)
+

n∑
i=1

(
fi,t(x̄t)− fi,t(yi,t) + fi,t(yi,t)− fi,t(x∗t )

)
≤ L

n∑
j=1

bj,t ‖ xi,t − x̄t ‖ +L

n∑
i=1

bi,t ‖ yi,t − x̄t ‖

+

n∑
i=1

(
fi,t(yi,t)− fi,t(x∗t )

)
, (36)

where we have used the Lipschitz continuity of fi,t(.) to
derive the last inequality in (36). We next need to bound
the three terms in the last line of (36). The first term can be
bounded using the result of Lemma 1. The second term is
bounded as follows:

L

n∑
i=1

bi,t ‖ yi,t − x̄t ‖= L

n∑
i=1

bi,t ‖
n∑
j=1

P tijxj,t − x̄t ‖

≤ L
n∑
i=1

bi,t

n∑
j=1

P tij ‖ xj,t − x̄t ‖

≤ L2

σ
α0

(
2 +

nγ

1− Γ

) n∑
i=1

bi,t, (37)

where we have used the result of Lemma 1 and doubly
stochastic property of matrix P t to obtain the last line. Sub-
stituting (37) into (36), taking expectation and summing
over time, and combining that with the previous result in
Lemma 9 completes the proof. �

E. Proof of Lemma 4
We use the following result on consensus averaging, which
is presented in Lemma 1 of (Tsianos & Rabbat, 2016).

Let δ > 0 be a given scalar and λ2(P t) denote the second-
largest eigen value of the doubly stochastic matrix P t. If
the number of consensus iterations satisfies

k ≥
log( 1

δ 2
√
nmaxj ‖ y(0)

j,t − ȳt ‖)
1− λ2(P t)

, (38)

the following bound holds on the output after k consensus
iterations:

‖ y(k)
i,t − ȳt ‖≤ δ. (39)

Recall that the initial message y(0)
i,t is set to xi,t, and thus

the average ȳt = 1
n

∑n
i=1 y

(0)
i,t is equal to x̄t. Therefore, we

can replace ‖ y(0)
j,t − ȳt ‖ by ‖ xi,t − x̄t ‖, and rewrite (38)

as follows:

δ ≥
2
√
nmaxj ‖ y(0)

j,t − ȳt ‖

exp

[
k

(
1− λ2(P t)

)] . (40)

Similar to Lemma 1, using the updates (16), the following
bound can be established on the consensus error

‖ xi,t − x̄t ‖≤
α0L

σ

(
2 +

nγ(k)

1− Γ(k)

)
. (41)

where γ(k) and Γ(k) are corresponding parameters of weight
matrix [P t]k.

In addition, if D is an n× n doubly stochastic matrix, the
second-largest eigen value is upper bounded by λ2(D) ≤
1− n−3 (Landau & Odlyzko, 1981). Therefore, for every
weight matrix P t, we can conclude that

1− λ2(P t) ≤ n−3. (42)

Finally, combining (40), (41), and (42), we can set δ =
2
√
nα0L

exp[kn−3]σ (2 + nγ(k)

1−Γ(k) ). This value of δ satisfies (38), and
hence, we get

‖ y(k)
i,t − x̄t ‖≤

2
√
nα0L

exp[kn−3]σ

(
2 +

nγ(k)

1− Γ(k)

)
. (43)

�

F. Proof of Theorem 5
To bound the dynamic regret, we begin by adding and sub-
tracting ft(x̄t) as follows:

ft(xi,t)− ft(x∗t )
= ft(xi,t)− ft(x̄t) + ft(x̄t)− ft(x∗t )

=

n∑
j=1

(
fj,t(xi,t)− fj,t(x̄t)

)
+

n∑
i=1

(
fi,t(x̄t)− fi,t(yi,t) + fi,t(yi,t)− fi,t(x∗t )

)
≤ L

n∑
j=1

bj,t ‖ xi,t − x̄t ‖ +L

n∑
i=1

bi,t ‖ yi,t − x̄t ‖

+

n∑
i=1

(
fi,t(yi,t)− fi,t(x∗t )

)
, (44)

where we have used the Lipschitz continuity of fi,t(.). The
first term on the right-hand side of (44) can be bounded by
(41). The second term can be bounded using the result of
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Figure 2. Performance comparison between DOMD and DABMD on MNIST dataset.
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Figure 3. Performance comparison between DOMD and DABMD on YouTube transcoding dataset.

Lemma 4. By substituting (41) into (44), taking expecta-
tion and summing over time, and combining that with the
previous result in Lemma 9, we obtain

E[RegdT ] ≤
T∑
t=1

bavgL
2α0n

σ

(
2 +

nγ(k)

1− Γ(k)

)(
1 +

2
√
n

exp[kn−3]

)

+

T∑
t=1

VbL
2αt

2σbmin
+

T∑
t=1

MnbavgE[‖ x∗t+1 − x∗t ‖]
αt

+
2nR2bavg

αT+1
. (45)

�

G. Additional Experiments
In this section, we present additional experiments regarding
the performance of DABMD. Here we investigate the perfor-
mance of DABMD with multiple consensus iterations using
MNIST and YouTube transcoding datasets (Deneke et al.,
2014). All system and experiment parameter settings are
the same as those presented in Section 6, unless otherwise
specified. In particular, we consider a time-varying network,
similar to the one used in Yuan et. al. in ICLR’20, shown
in Fig. 4. Note that the union graph of any two consecutive
rounds is strongly connected.

G.1. Logistic Regression

We consider the MNIST logistic regression problem, where
the computing nodes perform k iterations of consensus av-
eraging.
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Figure 4. The network switches sequentially in a round robin manner among (a), (b), (c), and (d).

Fig. 2 illustrates the performance of DABMD versus DOMD
on the MNIST logistic regression problem. We compare
the results for k = 1 and k = 5 consensus averaging iter-
ations. We observe that DABMD with k = 5 consensus
averaging iterations incures up to 5% lower accumulated
cost compared to the single consensus case. In addition, in
both cases DABMD outperforms DOMD.

G.2. Ridge Regression

W also study the ridge regression problem on YouTube
transcoding dataset under multiple consensus averaging set-
tings.

We compare the performance of DABMD with DOMD for
varying number of consensus iterations k in Fig. 3. We
observe that the performance of DABMD improves with
multiple consensus iterations, since computing nodes can
more accurately approximate the global minimizer.


