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Abstract

Dataset replication is a useful tool for assess-

ing whether improvements in test accuracy on a

specific benchmark correspond to improvements

in models’ ability to generalize reliably. In this

work, we present unintuitive yet significant ways

in which standard approaches to dataset replica-

tion introduce statistical bias, skewing the result-

ing observations. We study ImageNet-v2, a repli-

cation of the ImageNet dataset on which models

exhibit a significant (11-14%) drop in accuracy,

even after controlling for selection frequency, a

human-in-the-loop measure of data quality. We

show that after remeasuring selection frequencies

and correcting for statistical bias, only an esti-

mated 3.6%±1.5% of the original 11.7%±1.0%
accuracy drop remains unaccounted for. We con-

clude with concrete recommendations for recog-

nizing and avoiding bias in dataset replication.

Code for our study is publicly available1.

1. Introduction

The primary objective of supervised learning is to develop

models that generalize robustly to unseen data. Benchmark

test sets provide a proxy for out-of-sample performance,

but can outlive their usefulness. For example, evaluating on

benchmarks alone may steer us towards models that adap-

tively overfit (Reunanen, 2003; Rao et al., 2008; Dwork

et al., 2015) to the test set and do not generalize. Alter-

natively, we might select for models that are sensitive to in-

significant aspects of the dataset creation process and thus

do not generalize robustly (e.g., models that are sensitive to

the exact humans who annotated the test set).

To diagnose these issues, recent work has generated new,

previously “unseen” testbeds for standard datasets through
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a process known as dataset replication. Though not yet

widespread in machine learning, dataset replication is a

natural analogue to experimental replication studies in the

natural sciences (cf. (Bell, 1973)). These studies play an

important role in verifying empirical findings, and ensure

that results are neither affected by adaptive data analysis,

nor overly sensitive to experimental artifacts.

Recent dataset replication studies (Recht et al., 2019b;a;

Yadav & Bottou, 2019) have generally found little evidence

of adaptive overfitting: progress on the original benchmark

translates to roughly the same amount (or more) of progress

on newly constructed test sets. On the other hand, model

performance on the replicated test set tends to drop signifi-

cantly from the original one.

One of the most striking instances of this accuracy drop is

observed by Recht et al. (2019b), who performed a careful

replication of the ImageNet dataset and observe an 11-14%

gap between model accuracies on ImageNet and their new

test set, ImageNet-v2. The magnitude of this gap presents

an empirical mystery, and motivates us to understand what

factors cause such a large drop in accuracy.

In this paper, we identify a mechanism through which the

dataset replication process itself might lead to such a drop:

noisy readings during data collection can introduce statis-

tical bias. We show that re-calibrating the ImageNet-v2

dataset while correcting for this bias results in an accuracy

gap of 3.6%±1.5%, compared to the original 11.7%±1.0%
drop between ImageNet and ImageNet-v2.

Our explanation revolves around what we refer to as the

“statistic matching” step of dataset replication. Statistic

matching ensures that model performance on the original

test set and its replication are comparable by controlling

for variables that are known to (or hypothesized to) impact

model performance.2 Drawing a parallel to medicine, sup-

pose we wanted to replicate a study about the effect of a

certain drug on an age-linked disease. After gathering sub-

jects, we have to reweight or filter them so that the age

distribution matches that of the original study—otherwise,

the results of the studies are incomparable. This filter-

2In causal inference terms, statistic matching is an instance of
covariate balancing (Stuart, 2010; Imai & Ratkovic, 2013).

https://git.io/data-rep-analysis
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ing/reweighting step is analogous to statistic matching in

our context, with participant age as the relevant statistic.

To construct ImageNet-v2, Recht et al. (2019b) perform

statistic matching based on the “selection frequency" statis-

tic, which for a given image-label pair measures the rate

at which crowdsourced annotators select the pair as cor-

rectly labeled. As we discuss in the next section, selection

frequency is a well-motivated choice of matching statistic,

since (a) Deng et al. (2009) use a similar metric to gather

ImageNet images in the first place (Deng et al., 2009), and

(b) Recht et al. (2019b) have found that selection frequency

is highly predictive of model accuracy.

Why does a significant drop in accuracy persist even after

matching selection frequencies? In this paper, we show that

(inevitable) mean-zero noise in selection frequency read-

ings leads to bias in the selection frequencies of the repli-

cated dataset, which translates to a drop in model accura-

cies. Finite-sample reuse makes this bias difficult to detect.

The bias-inducing mechanism that we identify applies

whenever statistic matching is performed using noisy es-

timates. We characterize the mechanism theoretically in

Section 2. In Section 3, we remeasure selection frequencies

using Mechanical Turk and observe that as our mechanism

predicts, ImageNet-v2 images indeed have lower selection

frequency on average. After presenting a framework for

studying the effect of statistical bias on model accuracy

(Section 4), we use de-biasing techniques to estimate a

bias-corrected accuracy for ImageNet-v2 (Section 5) us-

ing the remeasured selection frequencies. In Section 7,

we discuss the implications of the identified mechanism for

ImageNet-based computer vision models specifically, and

for data replication studies more generally.

2. Identifying Sources of Reproduction Bias

The goal of dataset replication is to create a new dataset

by reconstructing the pipeline that generated the original

test set as closely as possible. We expect (and intend) for

this process to introduce a distribution shift, partly by vary-

ing parameters that should be irrelevant to model perfor-

mance (e.g. the exact identity of the annotators used to

filter the dataset). To ensure that results are comparable

with original test sets, however, dataset replication studies

must control for distribution shifts in variables that impact

task performance. This is accomplished by subsampling or

reweighting the data so that each relevant variable’s distri-

butions under the replicated dataset and the original dataset

match. We refer to this process as statistic matching.

Our key observation is that standard approaches to statistic

matching can lead to bias in the final replicated dataset: we

illustrate this phenomenon in the context of the ImageNet-

v2 (v2) dataset replication (Recht et al., 2019b). Before

SF: 36% SF: 61% SF: 100%

Figure 1. The smallest, median, and largest selection frequency

images from v1 corresponding to the “throne” class (description:

the chair of state for a monarch, bishop, etc.; “the king sat on

his throne”—the “throne” class was randomly chosen). The im-

ages become easier to identify as the labeled class as selection fre-

quency increases; for additional context, we give a random sam-

pling of selection frequency/image pairs in Appendix B.

we identify the source of this bias in ImageNet-v2 con-

struction, we review the data collection process for both

ImageNet and ImageNet-v2.

ImageNet and selection frequency. ImageNet (Deng

et al., 2009; Russakovsky et al., 2015) (which we also refer

to as ImageNet-v1 or v1) is one of the most widely used

datasets in computer vision. To construct ImageNet, Deng

et al. (2009) first amassed a large candidate pool of image-

label pairs using image search engines such as Flickr. The

authors then asked annotators on Amazon Mechanical Turk

(MTurk) to select the candidate images that were correctly

labeled. Each image is shown to multiple annotators, and

an image’s selection frequency 3 is then defined as the frac-

tion of annotators that selected it.

Intuitively, images with low selection frequency are likely

either confusing or incorrectly labeled, while images with

high selection frequency are “easy” for humans to identify

as the proposed label (we show examples of selection fre-

quencies in Figure 1; further examples are in Appendix 8).

Therefore, Deng et al. (2009) include only images with

high selection frequency in the final ImageNet dataset4.

ImageNet-v2. ImageNet-v2 is a replication of ImageNet-

v1 that controls for selection frequency via statistic match-

ing. Following the protocol of Deng et al. (2009), Recht

et al. (2019b) collected a pool of candidate image-label

pairs, and estimated their selection frequencies via MTurk,

along with a subset of the v1 validation set. Recht et al.

(2019b) then estimated the distribution of ImageNet-v1 se-

lection frequencies for each class. They subsampled 10 im-

ages of each class from the candidate pool according to the

estimated class-specific distributions of v1.

For example, suppose 40% of “goldfish” images in

3Note that the term “selection frequency” was in fact coined
by Recht et al. (2019b), but it is also useful for describing the
initial setup of Russakovsky et al. (2015), who instead referred to
their process as “majority voting.”

4An image is included in the ImageNet test set if a “convincing
majority” (Russakovsky et al., 2015) of annotators select it.
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Figure 2. For an image x, the selection frequency s(x) ∈ [0, 1] of

an image, described in Section 2, captures how recognizable it is

to humans. A distribution over images induces a one-dimensional

distribution over selection frequencies pi(s), shown in solid or-

ange and blue for the Flickr and ImageNet-v1 data distributions

respectively. We consider a case where we are given, for a specific

image x, a noisy version of s(x) (ŝ(x)). We visualize the corre-

sponding distribution of the true selection frequency s(x) given

this noisy ŝ(x) = 0.7. As discussed in Section 2, even though

ŝ(x) is an unbiased estimate of s(x), the most likely value of

s(x) for a given noisy reading of ŝ(x) depends on the distribution

from which x is drawn. This is the driving phenomenon behind

the observed bias between ImageNet and ImageNet-v2.

ImageNet-v1 have selection frequency in the histogram

bucket [0.6, 0.8]—when constructing ImageNet-v2, Recht

et al. (2019b) would in turn sample 4 “goldfish” images

from the same histogram bucket in the candidate images.

Statistic matching should ensure that v1 and v2 are bal-

anced in terms of selection frequency, and partly justifies

the expectation that models perform similarly on both.

Sources of bias. We identify two places where the match-

ing strategy of Recht et al. (2019b) might introduce statis-

tical bias. One potential source of bias could arise from

binning the images into histograms—since there are rela-

tively few bins, within each bin the ImageNet images might

have different selection frequencies from the correspond-

ing Flickr images. (For example, the ImageNet-v1 images

in the s(x) ∈ [0., 0.2] bucket might actually have selec-

tion frequency 0.15, whereas the Flickr images in the same

bucket might have s(x) = 0.1.) However, this source of

error appears to have not had a pronounced effect (at least

on average), as Recht et al. (2019b) report that the aver-

age selection frequency of the ImageNet-v2 images actu-

ally matches that of the ImageNet-v1 test set.

Our analysis revolves around a second and more subtle

source of bias, however. This bias stems from the fact that

for any given image x, the selection frequency s(x) is never

measured exactly. Instead, we are only able to measure

ŝ(x), a finite-sample estimate of the statistic, attained by

averaging over a relatively small number of annotators.

To model the impact of this seemingly innocuous detail,

suppose that the selection frequencies s(x) of ImageNet

and Flickr images are distributed according to p1(s(x))
and pflickr(s(x)) respectively (or more briefly, p1(s) and

pflickr(s))—see Figure 2 for a visualization. Now, suppose

that for an image x, we get an unbiased noisy measurement

ŝ(x) = 0.75 of the selection frequency via crowdsourcing.

Then, even if ŝ(x) is an unbiased estimate of s(x), the most

likely value of s(x) for the image is not ŝ(x), but in fact de-

pends on the distribution from which x was drawn. Indeed,

for the (hypothetical) distributions shown in Figure 2, if x is

a Flickr image then it is more likely that s(x) < 0.75 and ŝ
is an overestimate, since a priori an image is likely to have a

low selection frequency (i.e., there is more pflickr(s) mass

below 0.75) and the noise is unbiased. Conversely, if x is

an ImageNet test set image in this same setting, it is more

likely that s(x) > 0.75. Therefore, if we use a Flickr image

with a noisy selection frequency 0.75 to “match” an Ima-

geNet image with the same noisy selection frequency, the

true selection frequency of the ImageNet image is actually

likely to be higher. We can make this explicit by writing

down the likelihood of s given ŝ = 0.75 (also plotted in

Figure 2):

pi(s|ŝ = 0.75) =
pi(s) · p(ŝ = 0.75|s)

pi(ŝ = 0.75)
∀ i ∈ {1, f lickr},

which depends on the prior pi(·) and therefore is not equal

for both values of i.

The distribution of candidate Flickr images is likely skewed

to have lower selection frequencies than v1—after all,

Deng et al. (2009) narrowed down Imagenet-v1 from a

large set of candidates based on quality. Therefore, one

would expect the underlying true selection frequencies of

the v1 images to be higher than (and in general, not equal

to) their matched ImageNet-v2 counterparts.

A simple model of the bias. To better understand the

source of the bias, consider a simple model in which

the ImageNet-v2 selection process is cast as a rejection

sampling procedure. Here, the densities p1(ŝ(x)) and

pflickr(ŝ(x)) are estimated from samples (analogous to

the histograms of Recht et al. (2019b))—then, for a given

Flickr image x, we “accept” x into the v2 dataset with

probability proportional to p1(ŝ(x))/pflickr(ŝ(x)) (anal-

ogous to the bin-wise sampling of Recht et al. (2019b)).

If selection frequency readings were not noisy, i.e. if

ŝ(x) = s(x), then the resulting density of selection fre-

quencies in the v2 dataset would be given by

pflickr(s(x)) ·
p1(s(x))

pflickr(s(x))
= p1(s(x)),
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Figure 3. Illustrations accompanying the simple theoretical

model, where we assume p1(s(x)) and pflickr(s(x)) are

Beta(α + 1, β) and Beta(α, β) (here α = β = 2). As more

samples are used to estimate s(x) for each image, the resulting

ImageNet-v2 distribution tends towards the v1 distribution, but

does not match it for any finite number of samples per image.

and the selection frequencies of v2 would be distributed in

the same way as those of v1, as intended. However, the

inevitable noisiness of the selection frequencies means that

in reality, the density of selection frequencies for v2 is

pflickr(s(x)) ·

∫

ŝ

p(ŝ|s)
p1(ŝ(x))

pflickr(ŝ(x))
.

Now as a toy example, suppose pflickr(s) and p1(s) are

given by beta distributions Beta(α, β) and Beta(α + 1, β)
respectively (c.f. Figure 2). Furthermore, suppose that

ŝ(x) is given by an average of n Bernoulli draws with suc-

cess probability s(x). Then, a series of calculations (shown

in Appendix C) reveals that the resulting v2 selection fre-

quency distribution is given by:

n

n+ β + α
· p1(s) +

α+ β

n+ α+ β
· pflickr(s). (1)

Note that as n → 0 (no filtering is done at all), the above ex-

pression evaluates to exactly pflickr(s), as expected. Then,

as the number of workers n tends to infinity (i.e. ŝ be-

comes less noisy), the distribution of ImageNet-v2 selec-

tion frequencies converges to the desired p1(s). For any

finite n, however, the resulting v2 distribution will be a

non-degenerate mixture between pflickr(s) and p1(s), and

therefore does not match the distribution of selection fre-

quencies p1(s) exactly. The results of this toy model (de-

picted in Figure 2) capture the bias that could be incurred

by the data replication pipeline of Recht et al. (2019b).

3. Remeasuring Selection Frequencies

In this section, we measure the effect of the described

noise-induced bias on the true and observed selection fre-
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Figure 4. Selection frequency histograms for v1 and v2 based on

our selection frequency re-measurement experiment. Results in-

dicate that v2 seems to have lower selection frequency.

quencies of images in ǎnd v2. Using an annotation task

closely resembling those of the ImageNet-v2 and ImageNet

MTurk experiments, we collect new selection frequency

estimates for all of ImageNet-v2 and for a subset of Ima-

geNet. In these tasks, MTurk annotators were shown grids

of 48 images at a time, each corresponding to an ImageNet

class. Each grid contained a mixture of ImageNet, Flickr,

and in our case, ImageNet-v2 images of the corresponding

class (since ImageNet-v2 was not yet realized at the time

of the other experiments), as well as control images from

other classes. We describe the setup in more detail in Ap-

pendix B.1. Annotators were tasked with selecting all the

images in the grid containing an object from the class in

question. Each image was seen by 40 distinct annotators,

and assigned an observed selection frequency equal to the

fraction of these workers that selected it.

Histograms of observed selection frequencies for v1 and

v2 are shown in Figure 4. We find that the average selec-

tion frequencies of the v1 and v2 images were 85.2% ±
0.1% and 80.7% ± 0.1% respectively compared to 71%

and 73% reported by Recht et al. (2019b) 5. Thus, the

initial 2% gain in selection frequency measured by Recht

et al. (2019b) turns into a 5% drop6. Our model of dataset

replication bias predicts this discrepancy: once observed

selection frequencies are used for matching, they no longer

provide an unbiased estimate of true selection frequency.

Detecting bias using the original data. Our MTurk task

measures a significant selection frequency gap betweeen

v1 and v2 (~5%), but also measures average selection fre-

quencies for both datasets to be significantly higher than

reported by Recht et al. (2019b), suggesting differences

in experimental setup. Indeed, while the tasks themselves

were identical, we did make a few changes to the deploy-

ment setup of Recht et al. (2019b) to improve data qual-

595% bootstrapped CI.
6Our model in Section 2 predicts a distributional difference in

selection frequencies between v1 and v2; a gap between means
is sufficient but not necessary evidence for this difference.
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ity. These changes are outlined in Appendix B.2: exam-

ples include introducing worker screening qualifications7,

and using different proportions of images per grid. Since

the task interface remained constant and workers are not

able to distinguish between ImageNet-v1 and ImageNet-v2

images while labeling, we believe that the changes made

improve data quality across both datasets while negligibly

affecting the selection frequency gap between them.

Still, we can fully control for experimental differences by

analyzing the raw data of Recht et al. (2019b) directly, tak-

ing care to avoid bias from observed selection frequency

reuse. We defer the exact data analysis to Appendix D. Al-

though there are insufficient samples to properly estimate

the bias-adjusted accuracy with the original data, we show

that the observed results are consistent with a large accu-

racy correction (i.e., our 3.6% gap estimate is plausible).

These results suggest that statistic matching bias affects the

v2 dataset, even fully controlling for experimental setup.

In the coming sections, we quantify the effects of this bias

on model accuracies.

4. Understanding the Accuracy Gap

Our findings so far have suggested that statistic matching

bias results in a downwards bias in ImageNet-v2 true se-

lection frequencies. In this section, we quantify the impact

on this bias on ImageNet-v2 accuracy.

4.1. Notation and terminology

Here we overview the notation and terminology useful in

discussing the bias in ImageNet-v2 accuracy.

Selection frequencies. In Section 2 we defined the true se-

lection frequency s(x) for an image x as the (population)

rate at which crowd annotators select the image as correctly

labeled. The true selection frequency of an image is unob-

servable, and often approximated by the observed selection

frequency, ŝn(x) ∼
1
n

Binom (n, s(x)), which can be esti-

mated from an n-annotator MTurk experiment. When n is

clear from context, we will omit it and write ŝ(x).

Distributions. We use D1 and D2 to denote the distribu-

tions of v1 and v2 images respectively, and S1 and S2 for

the corresponding finite test sets. As in Section 2, we de-

note by pi(s) the probability density of true selection fre-

quencies for images drawn from Di. Similarly, we use

pi(ŝn(x)) to denote the probability mass function of the

observed selection frequency for dataset i.

7Worker qualification is a service provided by MTurk that only
allows “high-reputation” annotators (typically measured by his-
torical annotation quality on the platform) to complete a given
task. Qualifications have been shown to significantly impact data
quality: in (Peer et al., 2013), using qualifications lowered the
number of inattentive workers from 33% to less than 1%.

We let D2|s1 be the distribution of v2 images reweighted

to have the same selection frequency distribution as

v1. Formally, D2|s1 is the compound distribution

(x2 ∼ D2|s(x2) ∼ p1(s)). Sampling from D2|s1 corre-

sponds to first sampling a v1 image x1, then sampling an

image x2 from v2, conditioned on s(x2) = s(x1).

Accuracies. For a classifier c, let fc(x) be an indicator

variable of whether c correctly classifies x. Since our anal-

ysis applies to any fixed classifier c, we omit it and use

f(x). We then define AX as classifier accuracy on distri-

bution or test set X—for example, accuracy on v1 is given

by AD1
= Px1∼D1

(f(x1) = 1) = Ex1∼D1
[f(x1)] .

4.2. Breaking down the accuracy gap

The accuracy gap between the v1 and v2 test sets is given

by AS1
−AS2

. What fraction of this gap can be attributed to

bias in selection frequency? To answer this, we decompose

this accuracy gap into three elements whose contribution

can be studied separately:

(
AS1

−AD2|s1

)

︸ ︷︷ ︸

bias-corrected accuracy gap

+
(
AD2|s1 −AD2

)

︸ ︷︷ ︸

selection gap

+
(

AD2
−AS2

)

︸ ︷︷ ︸

finite sample gap ≈ 0

. (2)

Bias-corrected accuracy gap. The first term of (2), called

the bias-corrected accuracy gap, captures the portion of the

v1-v2 accuracy drop that cannot be explained by a differ-

ence in selection frequency, and instead might be explained

by benign distribution shift or adaptive overfitting.

Selection gap. The second term of (2) is accuracy gap that

can only be attributed to selection frequency, since it com-

pares accuracy on D2 to accuracy on a reweighted version

of D2. If there was no bias, and the distribution of selec-

tion frequencies for v1 and v2 matched exactly, then this

term would equal zero (D2|s1 would equal D2). Thus, the

selection gap translates the effect of discrepancy in true se-

lection frequency between v1 and v2 into a discrepancy

in accuracy. Since we measured v1 as having higher true

selection frequency, we expect the selection gap to be posi-

tive and thus explain a portion of the accuracy gap that was

previously attributed to distribution shift.

Finite-sample error. The final term refers to the finite-

sample error from using 10, 000 images as a proxy for

distributional accuracy. We believe that this term is

negligible, since (a) 95% bootstrapped confidence intervals

for the classifiers we evaluate are all at most 0.1%, and

(b) there can be no adaptive overfitting on S2 with respect

to D2. Thus, we drop this term from consideration and

instead use AD2
and AS2

interchangeably.

Computing selection-adjusted accuracy. We have shown
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how to decompose the v1-v2 accuracy gap into a com-

ponent explained by selection frequency (selection gap),

and a component unexplained by selection frequency (bias-

corrected accuracy gap). The challenge in computing this

decomposition is estimating AD2|s1 , the selection-adjusted

v2 accuracy. While the closed form of AD2|s1 is
∫

s

ED2
[f(x)|s(x) = s] · p1(s) ds,

we have no access to pi(s) for any value of i (we do not

even have direct access to s(x) for any image x). In the next

section, we explore methods for estimating AD2|s1 using

only the observed selection frequencies that we collected.

5. Quantifying the Bias

In the previous sections, we showed that statistic match-

ing based on noisy observed selection frequencies may lead

ImageNet-v2 images to have lower true selection frequen-

cies than expected. In Section 4 we related this discrepancy

in selection frequency to a corresponding discrepancy in

model accuracy between v1 and v2, which we called the

“selection gap.” In this section, we explore a series of meth-

ods for estimating this gap—we estimate that the selection

gap accounts for 8.1% of the 11.7% v1-v2 accuracy drop.

5.1. Naïve approach

We have introduced the selection-adjusted v2 accuracy,

AD2|s1 =

∫

s

ED2
[f(x)|s(x) = s] · p1(s) ds, (3)

which captures model accuracy on a version of ImageNet-

v2 reweighted to have the same true selection frequency

distribution of ImageNet-v1. Since we do not observe true

selection frequencies, we cannot evaluate AD2|s1 , and are

instead forced to estimate it. A natural way to do so is to

use observed selection frequencies in place of true ones,

leading to the following “naïve estimator:”

Â
n

D2|s1
=

n
∑

k=0

E2

[

f(x2)|ŝn(x2) =
k

n

]

· p1

(

ŝn(x1) =
k

n

)

. (4)

The naïve estimator is a computable8 but biased estimator

of the selection-adjusted accuracy. This follows from our

analysis in Section 2, since Ân
D2|s1

is just a mechanism for

statistic matching between ImageNet-v1 and ImageNet-v2

using observed selection frequencies in place of true selec-

tion frequencies. Thus, the selection-adjusted v2 accuracy

computed by the naïve estimator is likely to still underesti-

mate the true selection-adjusted accuracy AD2|s1 .

8This is true as long as we can reliably approximate the expec-
tations. Here we have 104 images and only 41 possible values of
ŝn(x); also, halving the number of images negligibly affects the
value of the estimator.

We can verify this bias empirically by varying the number

of annotators n used to calculate ŝn(x) for each image, and

visualizing the resulting trends in pi(ŝn(x)) (Figure 5a),

pi(f(x) = 1|s(x)) (Figure 5b), and Ân
D2|s1

(Figure 5c).

The results corroborate our analysis in Section 2 and our

findings from Section 3. Specifically, Figure 5 plots each

term in the definition of the naïve estimator,

Ân
D2|s1

︸ ︷︷ ︸

Fig. 5c

=

n∑

k=0

E2

[

f(x2)|ŝn(x2) =
k

n

]

︸ ︷︷ ︸

Fig. 5b

· p1

(

ŝn(x1) =
k

n

)

︸ ︷︷ ︸

Fig. 5a

,

and allows us to draw the following conclusions:

• Figure 5a shows that the distribution of observed v1

selection frequencies p1(ŝn(x)) becomes increasingly

skewed as more annotators are used to estimate selec-

tion frequencies (i.e. as bias decreases).

• Figure 5b plots selection frequency-conditinoed clas-

sifier accuracy, Ex2∼D2

[

f(x2)|ŝn(x2) =
k
n

]

as a

function of n. The plot indicates that when we use

observed selection frequency in place of true selection

frequency, we overestimate model accuracy on images

with low selection frequency and underestimate accu-

racy on images with high selection frequency.

• Combining these two sources of bias, Figure 5c shows

that as we reduce bias by increasing n, the selection-

adjusted v2 accuracy increases for every classifier.

It turns out that computing (4) using the 40 annotators

per image that we collected in Section 3 already produces

selection-adjusted v2 accuracies that are on average 6.0%

higher than the initially observed v2 accuracy. Thus, de-

spite still suffering from matching bias, the naïve reduces

the v1-v2 accuracy drop to 5.7%. In the following sec-

tions, we explore two different techniques for debiasing the

naïve estimator and explaining more of the accuracy gap.

5.2. Estimating bias with the statistical jackknife

As a first attempt at correcting for the previously identified

bias, we turn to a standard tool from classical statistics. The

jackknife (Quenouille, 1949; Tukey, 1958) is a nonpara-

metric method for reducing the bias of finite-sample esti-

mators. Here, we use it to estimate and correct for the bias

in finite-sample estimates of the adjusted accuracy AD2|s1 .

Jackknifing the naïve estimator. As a first approach,

we can apply the jackknife directly to the naïve estimator

(cf. (4)). For the jackknife-corrected estimate to be mean-

ingful, we have to show that the naïve estimator is a sta-

tistically consistent estimator of the true selection-adjusted
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Figure 5. A series of graphs, all demonstrating bias in estimators that condition on selection frequency. Left: The estimated population

density of selection frequencies, calculated naïvely from samples. For a given number of annotators per image n, the corresponding line

in the graph has equally spaced points of the form (k/n,
∑

1ŝ=k/n). Middle: Model accuracy of a ResNet-26 conditioned on selection

frequency; once again, we naïvely using empirical selection frequency in place of true selection frequency for conditioning. Just as in

the left-most graph, for a given n-annotator line, points at x = k/n in the graph correspond to the accuracy on images with observed

selection frequency k/n. Right: Adjusted v1 versus v2 accuracy plots, calculated for varying numbers of annotators per image (with

adjusted accuracy computed using the naïve estimator of Section 5.1). Each point in the plot corresponds to a trained model.

accuracy (i.e., that limn→∞ Ân
D2|s1

= AD2|s1 ). We prove

this property in Appendix E, under the assumption that we

can evaluate quantities of the form pi(ŝn(x) = s) exactly

(in practice this assumption seems acceptable since the em-

pirical variance of the estimator is small). Applying the

jackknife to the naïve estimator reduces the adjusted accu-

racy gap further, from 5.7% to 4.6%.

Considerations and limitations. For the jackknife to

perform reliably, we must have that (a) the leave-one-out

estimators have low enough variance, and (b) the bias is

an analytic function in 1/n that is dominated by the Θ( 1
n
)

term in its power series expansion. We address the first of

these concerns by plotting jackknife confidence intervals

(c.f. (Efron & Tibshirani, 1994)) for our estimates. Consid-

eration (b) carries a bit more weight: as shown in App. E.1,

the n-sample naïve estimator has a roughly linear relation-

ship in 1/n, but not a perfect one—in particular, the esti-

mator seems to increase at a rate slightly faster than 1/n,

suggesting that as a result, the jackknife still provides an

underestimate of the selection-adjusted accuracy. Another

potential source of error is finite-sample error in measuring

the expectations Ex2∼D2
[f(x2)|ŝn(x2)], but as previously

mentioned this is likely negligible due to the dataset size

and the invariance of the results to the number of images.

In the next section, we present another approach to estimat-

ing the selection-adjusted accuracy that relies on a different

set of assumptions: parametric modeling.

5.3. Estimating bias with a parametric model

We now explore a more fine-grained approach to estimating

the selection-adjusted accuracy of ImageNet-v2, namely

explicit parametric modeling. Recall that the adjusted ac-

curacy captures accuracy on ImageNet-v2 reweighted to

match ImageNet-v1 in terms of true selection frequency

distribution, and is given by:

AD2|s1 =

∫

s∈[0,1]

p2 (f(x2)|s(x2) = s) · p1(s) ds (5)

In Sections 5.1 we computed a biased estimate of AD2|s1

using observed selection frequencies ŝ in place of true se-

lection frequencies. Then, in 5.2 we corrected for bias in

the naïve estimator post-hoc using the statistical jackknife.

In constrast, the model-based approach tries to circumvent

this bias altogether: we parameterize functions of the true

selection frequency directly (i.e., p1(s) and p2(f(x) =
1|s(x) = s)), then fit parameters that maximize the like-

lihood of the observed data while taking into account

the noise model. For example, since the distribution of

ŝn(x) given s(x]) is the binomial distribution, we can write

(and optimize) a closed-form expression for the likelihood

of observing a given set of selection frequencies based

on a parameterized true selection frequency distribution

p1(s; θ). We estimate selection-adjusted accuracy in two

steps. First, we fit models for the true selection frequency

distributions p1(s) and p2(s). Then, we use our estimate

of p2(s) in conjunction with observed data to fit models

for p2(f(x)|s(x) = s). Finally, we recover estimates for

AD2|s1 by numerically computing the integral in AD2|s1

(c.f. (5)), plugging in the learned parametric estimates.

Fitting a model to pi(s(x)). We model the pi(s(x))
as members of a parameterized family of distribution

pi(s(x); θ) with true parameters θ⋆i . Then, for each dataset

i, we model the observed selection frequencies as sampled
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Figure 6. Accuracy on v1 versus v2 adjusted using the two techniques discussed in this section. On the left (respectively, right) we use

the jackknife (parametric model) of Section 5.2 (5.3) to estimate adjusted accuracies for v2. The graphs confirm that the “true” gap in

accuracy between v1 and v2 is indeed much smaller than the initially observed gap. Confidence intervals on the left are based on the

jackknife standard error, and confidence intervals on the right are based on 400-sample 95% bootstrap confidence intervals
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Figure 7. Our fit beta mixture models pi(s; θ̂) for “true” selec-

tion frequency, the noisy selection frequency distribution they in-

duce pi(ŝ; θ̂, and the observed selection frequency pi(ŝ). The fit

pi(s; θ̂) distributions place more density on higher selection fre-

quencies than naïvely estimating pi(s) from the observed pi(ŝ).

from a compound distribution, in which one first samples

s ∼ pi(·; θ
⋆
i ), then observes ŝ ∼ Binom (n, s) (where n is

the number of MTurk annotators).

To infer each θ⋆i , we use maximum likelihood estimation

on the observed samples over the compound distribution.

We opt to use mixtures of beta distributions as the family

pi(·; θ) over which to optimize9, and we use Expectation-

Maximization to find, for each dataset, the maximum like-

lihood mixture of k = 3 beta-binomial distributions for

the observed ŝn(x). We provide further detail (including

pseudocode) on the fitting process for pi(s(x); θ) in Ap-

pendix F. We plot the resulting fitted distributions pi(s(x))

in Figure 7. Our estimated pi(ŝ; θ̂i) distributions continue

the trend previously seen in Figure 5a, and show the ex-

tent to which our naïve 40-sample empirical estimates of

pi(s(x)) exhibit bias.

9A beta distribution composed with a binomial is a beta-
binomial distribution—the basis of beta-binomial regression.

Fitting a model to p2(f(x) = 1|s(x) = s). Next, we

consider accuracy conditioned on selection frequency:

g(s) = p2(f(x2) = 1|s(x2) = s).

While introducing the naïve estimator (Section 5.1), we

found that that estimating g(s) using observed selection

frequencies instead of true selection frequencies results in

bias (Figure 5b). Under the parametric approach, we in-

stead model g(s) as a member of a parametric class (i.e.,

g(s) = g(s;ω)), then account for noise in observed selec-

tion frequencies via the following identity:

p2(f(x2) = 1, ŝn(x2) = ŝ) =

∫

s∈[0,1]

g(s)·p(ŝ|s)·p2(s) ds.

We parameterize g as a cubic spline, and estimate the pa-

rameter by minimizing the squared error between the left

and right sides above using a quadratic program solver.

Results. Once we have estimated probability distribu-

tions pi(s(x); θi) and the conditional classification func-

tion g(s(x);ω), we can compute an estimate of AD2|s1 us-

ing Equation (5) and numerical integration. Figure 6b de-

picts various models’ v1 and v2 accuracies both with and

without the adjustment for selection frequency. Our esti-

mate for the frequency-adjusted gap in accuracy averaged

over all models is 3.6%±1.5%, around 30% of the original

11.7%± 1.0% gap in accuracy.

Beyond accuracy gap, Recht et al. (2019b) also studied the

linear relationship between v2 accuracy and v1 accuracy

while varying the classifier used—this is plotted by the blue

dots in Figure 6b. This relationship is linear for our ad-

justed accuracies as well (cf. Figure 6b), however the slope

we find is 1.01± 0.09 instead of 1.13± 0.05.

Considerations and limitations. Error in parametric mod-

eling generally stems from two sources: finite-sample error

and model misspecification. These sources of error affect
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all parametric models, but we take various precautions to

mitigate their impact on our estimates. To assess our finite-

sample error, we give 95% bootstrapped confidence inter-

vals (details are in Appendix F), which are displayed as

error bars in Figure 6b. We also ensure that our results

are not sensitive to the number of annotators used to fit the

parametric models (cf. Appendix F). As with any model-

ing decision, our choices of model classes might not fully

capture the ground-truth, and thus may be a source of error.

We account for this as much as possible by demonstrating

the robustness of our results to varying the number of free

parameters (cf. Appendix F).

6. Related Work

Rapid improvements on standard datasets (e.g. (LeCun,

1998; Krizhevsky, 2009; Russakovsky et al., 2015; Zhou

et al., 2017) in computer vision) has drawn interest to

verifying and testing the robustness of progress thus far.

Previous work has characterized cross-dataset generaliza-

tion(Torralba & Efros, 2011), and explored the impact

of synthetic perturbations on generalization, such as ad-

versarial examples (Kurakin et al., 2016; Tsipras et al.,

2019; Ilyas et al., 2019; Su et al., 2018) or various other

corruption robustness measures (Hendrycks & Dietterich,

2019; Kang et al., 2019). Recently, a number of works

have emerged around evaluating performance on newly

reproduced test sets, including works focusing on Ima-

geNet (Recht et al., 2019b) and CIFAR (Recht et al.,

2019a). In our work, we study a source of statistical

bias that may affect such dataset replication. Similar phe-

nomena have been noted in the context of the natural sci-

ences (e.g., ecology (Greig-Smith, 1983)) and causal infer-

ence (Stipak & Hensler, 1982).

7. Discussion and Conclusions

Dataset replication pipelines can introduce unforeseen, of-

ten unintuitive statistical biases. In the case of ImageNet-

v2, even using unbiased estimates of image selection fre-

quency in the data generation pipeline results in a signifi-

cant statistical bias, and ultimately turns out to account for

a large portion of the observed accuracy drop. Our findings

give rise to the following considerations.

7.1. Remaining accuracy gap and unmodeled bias

Worker heterogeniety. Our study focuses on bias stem-

ming from the fact that for a given image x one never ob-

serves s(x) but rather ŝn(x) = Binom (n, s(x)). There is

another source of bias due to noise that we do not model

here, namely variance in the MTurk annotator population.

Specifically, some annotators are more likely in general to

select or reject independently of what image-label pair they

are being shown. This unmodeled variance likely translates

to unmodeled bias, suggesting that more of the gap might

be explained by taking worker heterogeniety into account.

Task shift bias. At the time of the original ImageNet ex-

periment, workers judged image-label pairs by some ab-

stract set of criteria C1. Suppose that at the time of

the ImageNet-v2 experiment several years later, annota-

tors judged image-label pairs based on an overlapping but

non-identical set of criteria C2. Ideally, we should not care

about differences between C1 and C2—indeed, one of the

goals of dataset replication is to test robustness to such be-

nign distribution shifts. The source of the bias lies in the

iterated nature of the filtering experiment. In particular,

after both the original experiment and the replication, im-

ages in ImageNet-v1 now meet both C1 and C2. On the

other hand, images in ImageNet-v2 only meet criteria C2,

and may be judged to have low selection frequency under

C1—we would thus expect models to perform better on

ImageNet-v1 images due to their increased qualifications.

Although this may contribute towards the remaining accu-

racy gap, this type of bias is difficult to study or correct for

without more knowledge of both experiments.

Other sources of error. The remaining error unexplained

by bias in data collection could come from one of the gap

sources listed in Section 4, i.e., finite sample error, or dis-

tribution shift and adaptive overfitting. Quantifying the po-

tential contribution of the individual terms in the remaining

gap will require more experimentation and future work.

7.2. Adaptive overfitting and distribution shift

Identifying sources of distribution shift. A longstand-

ing goal in computer vision is to develop models that are

less prone to failure under small distributional shifts. A

step in the journey towards this goal is precisely character-

izing the kinds of distribution shifts under which models

fail—examples include rotations and translations of nat-

ural images Engstrom et al. (2019), or corrupted natural

images (Hendrycks & Dietterich, 2019). Our findings im-

ply that the drop may be attributable to differences in se-

lection frequency distribution, corroborating observations

by Recht et al. (2019b) that models are sensitive to selec-

tion frequency. Differences in selection frequency distribu-

tion present another distribution shift to study in depth.

Detecting and avoiding bias in dataset replication. More

broadly, our analysis identifies statistical modeling of the

data collection pipeline as a useful tool for dataset replica-

tion. Indeed, characterizing the ImageNet and ImageNet-

v2 generative processes and isolating them in a a simple

theoretical model allowed for the discovery and correction

of a source of bias in the dataset replication process.
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