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A. Understanding Selection Frequency

Understanding Selection Frequencies In Figure |8 we randomly sample images while varying selection frequency. Here,
the straightforwardness of identifying images correlates with increasing selection frequency (e.g. all the 36/36 selection
frequency images clearly identify with their corresponding class, while some of the 0/36 selection frequency images appear
to be mislabeled).
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Figure 8. Randomly drawn images from v1, varying selection frequency.
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B. Experimental Setup

Here, we provide more detail of the experimental setup. We first lay out the setup of our Mechanical Turk experiments
for remeasuring selection frequency (B.T), and highlight the subtle differences between our setup and that of Recht et al.
(2019b) (B.2). In Appendix [D we discuss our analysis of the original data and algorithm of [Recht et al.| (2019b) showing
the existence of bias in that setting.

B.1. Selection frequency remeasuring experiment

In Section 3] we replicate the ImageNet experiment to remeasure selection frequencies for the ImageNet v1 and v2 datasets.
We present annotators with a grids of 48 images along with an ImageNet class. The annotators are also provided with the
WordNet synsets for the ImageNet class being queried, along with a Wikipedia link and asked to selected all images
containing instances of that object (ignoring clutter as per the original dataset creation process). The 48 images in each
grid consist of: (a) 10 ImageNet v1 validation set images from that class, (b) 10 ImageNet v2 validation set images from
that class, (c) 22 related Flickr images scraped from Flickr (using the exact script and queries described in Recht et al.
(2019b)) and (c) 6 negative control images (three corresponding to randomly chosen labels, and 3 corresponding to the
“nearest” label to the true label in terms of WordNet path similarity).

We implemented our setup by modifying the code made publicly available by Recht et al. (2019b)|'”| A screenshot of our
interface appears in Figure[I0] Each such grid of images is shown to 40 annotators. For each image-class pair, we can then
compute the “selection frequency” based on how often it was selected by the annotators.

Deployment Details. There are a number of deployment details that could cause variations in results. We compensated
MTurk workers with $0.23 per assignment (i.e., each completed grid), which we calibrated to pay a rate of at least $9/hr
for most workers. To collect 40 separate MTurk annotations for each submitted grid of images, we obtained 10 annotations
on 4 different dates and times, all within the span of a single week. We placed qualification requirements on the workers
allowed to complete assignments. Specifically, we filtered for workers that (a) agree to view adult content (as some
ImageNet images have content like nudity or gore) and (b) have a larger than 95% assignment approval rate (as to ensure
the quality of the results).

Controls. All of the results presented in this work were run on a “clean” and “raw” version of our data, i.e., without and
with data cleaning respectively. We find that the inclusion of data cleaning makes the observed gap between v1 and v2
slightly larger but otherwise does not have a significant effect on results.

Our data cleaning process is as follows: a given batch is “flagged” if: (a) there are less than 6 selected images out of the
total 48, or (b) more than one of the negative controls was selected. We only omit data, however, from workers whose
batches were rejected at a rate of 30% or higher (e.g., if an annotator completed 30 batches, but more than 10 of them are
flagged to be low-quality, then all of the annotator’s data is omitted). Finally, to make computing of the statistics easier,
we evened out the number of annotators per image to equal the minimum number of remaining assignments per image,
which was 36 (compared to 40 originally) by randomly discarding annotations. In total, the entire process corresponds to
discarding 10% of the annotations.

B.2. Comparison to the original setup

Recht et al.| (2019b) measure the average selection frequency of v1 to be 0.71, whereas our experiment measures the
average v1 selection frequency to be 0.85. While our experiments were modeled closely after that of |[Recht et al.|(2019b)
(and in fact use the same core codebase to minimize discrepancies in task presentation/inferace), we made a few changes
to the setup to ensure high data quality. We hypothesize that these changes, discussed below, are what result in the
discrepancy between the measured average selection frequencies. However, since these changes are applied at the task
level and annotators are not told which dataset each image is sourced from, we find it unlikely that these changes would
affect annotations for one dataset more than the other. Furthermore, in Appendix E, we demonstrate that the bias identified
in this paper can be found even using the original data collected by Recht et al. (2019b).

Worker pay and qualifications. In our experiment, we paid annotators 20 cents per set of 48 images completed—this was
informed by the average time taken to complete a batch, and was calibrated so that the task paid approximately 12 dollars
per hour. Conversely, the original experiment of Recht et al. (2019b) pay 10 cents per batch. Although worker pay usually

Uhttps://github.com/modestyachts/ImageNetV2
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has only a mild impact on worker reliability on MTurk (Mason & Watts, [2009; |Buhrmester et al.| [2011)), higher worker
pay has been recognized as a tool to boost participation rates (Buhrmester et al., [2011) and requester reputation for future
experiments (Paolacci et al., 2010).

Perhaps the most important modification made was our inclusion of worker qualifications, which only allow annotators
who have had 95% or more of previous tasks accepted to participate in our task. Prior work has shown that without these
worker qualifications, crowdsourced data tends to be of significantly worse quality. For example, |Peer et al.|(2013) report
that 2.6% of workers with the “95% accepted” qualification failed an “attention-check test,” compared to 33.9% of workers
without qualiﬁcation We should therefore expect a significant increase in annotation reliability (and so in turn some
discrepancy) from using worker qualifications.

Makeup of each batch. Another difference between the two experiments is that in our experiment, each batch of images
contains 10 images from ImageNet-v1, and 10 images from ImageNet-v2, in order to ensure that we could obtain 40
annotations for each v1 and v2 image while keeping to a reasonable budget constraint. The experiment of [Recht et al.
(2019b) uses only three images from ImageNet-v1 per batch (and a variable number of ImageNet-v2 images, since the
dataset was not yet realized). Thus, the grids presented in our experiment contain images that are on average more likely
(a priori) to be selected. This could in part contribute to the higher average selection frequency that we observe (though
again, we would expect this effect to apply to both datasets and thus preserve the observed selection frequency gap).

Randomization. Response-order bias is a well-documented phenomenon in literature on crowdsourcing (e.g. (Schuman
& Presser]| [1981)), although its effects in the domain of image selection are not well-understood yet. In our experiment,
we randomize the order of the images per batch per worker (i.e., we used JavaScript to randomize the image order on page
load) to mitigate the potential effects of this bias. In the prior experiment, however, the image order is deterministic, and
thus the study may have response-order effects.

Worker duplicates. Due to the mechanism by which images were distributed to assignments in the study of Recht et al.
(2019b), 5.6% of the annotations are duplicated (i.e., 5.6% of the [worker, image] pairs collected are non-unique), with
approximately 3% of the annotations being redundant (unlike the preceding number, this fraction does not count the
“original copy” of each non-unique pair). A histogram of the number of times a single worker labeled a single image is
shown in Figure[9] Since duplicate workers violate sample indpendence and can skew measured selection frequencies for
some images, in our study we ensure that no worker labels the same image more than once.

Data cleaning and controls. Our study also differs in having built-in mechanisms for data cleaning (as discussed in the
last section), allowing us to run all of our experiment on the “cleaned” and “raw” versions of our data. These results tend
to not be substantially different (for the cleaned data, the selection frequency gap we measure between v1 and v2 slightly
increases from 4.5% to 4.6%). Possible reasons for this similarity between cleaned and raw results include any of the
quality control protocols outlined in this section.
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Number of copies of the same (worker, batch) pair

Figure 9. A histogram showing the existence of duplicate (worker, batch) pairs present in the original collected data. Each point in the
histogram is a unique (worker, batch) pair, and the x axis corresponds to the number of times that pair is observed in the dataset.

' Attention-check tests are a series of three attention-check questions (ACQs). ACQs are questions with right/wrong answers unrelated
to the task meant to gauge an annotator’s attentiveness, e.g. “Have you ever had a fatal heart attack?”. In the |Peer et al. (2013) study,
16.4% of unqualified workers reported that they had suffered a fatal heart attack, compared to 0.4% of qualified workers.
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Which of these images contain at least one object of type

Lhasa or Lhasa apso
Definition: a breed of terrier having a long heavy coat raised in Tibet as watchdogs
If you are unsure about the object meaning, please also consult the following Wikipedia page(s): https://en.wikipedia.org/wiki/Lhasa_Apso
Task:

For each of the following images, check the box next to an image if it contains at least one object of type Lhasa or Lhasa apso.

Select an image if it contains the object regardless of occlusions, other objects, and clutter or text in the scene. Only select images
that are photographs (no drawings or paintings).

Please make accurate selections!

If it is impossible to complete a HIT due to missing data or other problems, please return the HIT. Blatantly incorrect answers might cause
the HIT to be rejected.

Figure 10. Screenshot of a sample grid to measure selection frequencies (Section [3). Annotators are given a grid of 48 images for a
specific label and asked to select all images that contain that label. The interface and instructions are based on Recht et al. (2019b).
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C. Theoretical Results

In this section we show the series of calculations used in Section 2] to attain the result in Equation[] i.e. the bias incurred
by a matching procedure in the toy model.

Recall that in our setup we have p ek (s) and pq(s) given by Beta(a, 5) and Beta(a + 1, ) respectively, and that §(x)
is given by first sampling s ~ p;(s) then sampling n Bernoulli trials with success probability s. We noted in Sectionthat
the distribution of s(z) induced by matching p ¢;;cxr(s) and p1 (s) based on samples of §(z) is given by:

Driickr(s(2)) - P(x is accepted|s(x)) = priickr(s(2)) - /p(é\s)]P’(x is accepted|5(x))

:pflickr(5($>)~/p(§‘3) p1(3(x))

5 Driickr(8(z))

Now, note that by construction, §(z) is distributed according to the beta-binomial distributio and thus (a) has support
{0,...,n}; and (b) induces the following closed-form probability mass function for pficrr(5) (p1(5) can be written
analogously, with o + 1 replacing «) :

<n>B(k+a,n—k+b’)

Priickr(3(z) = k) = I Bla. B) ;

where

and I is the Gamma function—for simplicity we will assume that «, 5 € N and so I'(z) = (x — 1)!. Thus, returning to the
full induced density:
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Now in general, note that
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Phttps://en.wikipedia.org/wiki/Beta-binomial_distribution


https://en.wikipedia.org/wiki/Beta-binomial_distribution

Identifying Statistical Bias in Dataset Replication

Applying this identity to the above and continuing to simplify:
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which matches precisely the result shown in Section 2}
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D. Analysis of Original Data

In Section [3] we remeasured selection frequencies using a new Mechanical Turk experiment. Here we set out to verify the
existence of the hypothesized bias in the original collected data.

We reimplemented the sampling component of the algorithm exactly as described in (Recht et al., |2019b)) and the corre-
sponding code release, using the pandas Python package. The source code is available in our code release, along with a
serialized version of the data collected by |Recht et al. (2019b As a sanity check, we verified that all of the results hold
using the exact code published by Recht et al. (2019b

D.1. Sampled dataset accuracy increases with more workers

We begin by showing that the accuracy we observe on ImageNet-v2 depends on the number of workers used to sample
the dataset. We gradually decrease the number of workers n used in computing observed selection frequencies to study
the effect of noise on statistic matching. We find that model accuracy on the resulting replicated dataset degrades as n
decreases. For example, the accuracy gap from v1 to the replication increases from 12% when n = 10, to 14% when
n = 5. This is consistent with our model of statistic matching bias: fewer annotators means noisier observed selection
frequencies §, (), which in turn amplifies the effect of the bias, driving down model accuracies.

Methodology. Specifically, we use the frequency-adjusted accuracy introduced in Section|5.1] to estimate model accuracy
on a version of the candidate pool reweighted to have the same selection frequency distribution as ImageNet-v1:

ADflickr|Sl = ZEmf“Ckrw'Df”c;m- |:f(xflickr) sn(xflick'r‘) = Tl:| " D1 (Sn(xl) = n> . (6)
k=0

This estimator is analogous to the ImageNet-v2 selection process of Recht et al.| (2019b), but operates by reweighting the
candidate pool rather than filtering it.

We plot this estimator in Figure varying n from 5 to 10. We find that the gap between the adjusted accuracy and
ImageNet accuracy shrinks as n grows, until shrinking to (and not plateauing at) 12.3% at n = 10. This behavior is
predicted by statistic matching bias, and suggests that in the infinite-annotator limit the ImageNet-v2 accuracy is higher.
(Ideally, we could estimate the infinite-annotator limit using the data of |Recht et al.|(2019b)), but 10 annotators is too few
to get a reliable estimate.)
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Figure 11. The frequency-adjusted accuracy gap between ImageNet-vl and ImageNet-v2, using a varying number of annotators to
estimate selection frequencies. The gap continually decreases, and does not plateau at 10 annotators. Bootstrapped 95% confidence
intervals are shown (shaded).

Bhttps://github.com/MadryLab/dataset-replication-analysis
14Since we only study the sampling component, we opt to rewrite a specialized script that has the benefit of being significantly shorter,
simpler, and faster.
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D.2. Measuring the selection frequency gap using held-out workers

Recall that most images in|Recht et al. (2019b)) have (at least) 10 annotations per image, and that to get an unbiased estimate
of the selection frequency we must “hold out” some annotations per image (e.g. we should not use the same annotations
for both matching and measuring selection frequencies). To that end, we split the annotations for each candidate image
into a “train” set and a “test” set. We then mimic the original v2 creation process using only the train set of annotations,
and use the remaining test annotations for each image to obtain a held-out measurement of selection frequency.

Since Recht et al.| (2019b) collect 10 annotations for most candidate images, and since the original buckets used in the
matching process are split by boundaries {0, 0.2,0.4,0.6,0.8,1}, we use 5 annotation for each image in the train set
and reserve the rest for independently measuring the held-out frequency.

The results of this experiment are given in Table [I| We repeat the experiment using both 5 and 10 annotators to estimate
ImageNet-v1 selection frequencies. In both cases, the average selection frequency of the in-sample images overestimates
the heldout (true) selection frequency by 2-3%, and the resulting replicated dataset has lower selection frequency than
ImageNet-v1.

Table 1. Average in-sample and heldout selection frequencies for the experiment described in llﬁ—the top (bottom) table presents the
result of using 10 (5) annotators per image to estimate ImageNet-v1 selection frequencies. We use five annotators per image to estimate
selection frqeuencies, then use the filtering algorithm of |[Recht et al.| (2019b) to get a replicated dataset meant to match the selection
frequency distribution of ImageNet-v1. The results show that (a) bias results in the average selection frequency of the new sample being
lower than that of ImageNet-v1, and that (b) the bias is undetectable without heldout samples.

ImageNet-vl Sampled replication

Average selection frequency 0.71 0.71
Heldout selection frequency 0.71 0.69

ImageNet-vl Sampled replication

Average selection frequency 0.71 0.73
Heldout selection frequency 0.71 0.70

Effect size. The difference in held-out mean selection frequencies between v1 and v2 here is smaller than the one we
observe in the newly collected data. However, as discussed in Section [3] the size of the average gap is not necessarily
predictive of the size of the accuracy correction. The latter depends on the distributional difference between true v1
and v2 selection frequencies, rather than on just their first moments. In particular, observing different mean selection
frequencies for v1 and v2 is a sufficient but not necessary condition for there to be an accuracy ga

Unfortunately, getting an accurate estimate of the gap on the original data seems impossible: first, there are insufficient
workers to reliably apply any of our techniques from Section [5] Furthermore, with & held-out workers, we can only
estimate the first £ moments of the true selection frequency distributions p;(s), even if we had infinitely many images. So
the problem seems largely underdetermined.

We can, however, show that original data is plausibly consistent with the 4% accuracy gap estimated using the new data (i.e.,
that such a gap is not ruled out). Specifically, in[D.1] the original accuracy difference between Flickr and ImageNet-v1 was
20.8%. When using five (ten) annotators per image, this gap shrunk to 14.0% (12.2%). In the newly collected data, the gaps
for the original distributions, 5-annotator adjustment, and 10-annotator adjustment are 11.7%, 8.5%, and 7.3% respectively
(again, by using the same reweighting scheme as Appendix [D.I). Therefore, accuracy adjustments incurred by using more
workers on the original data are significantly (about two times) larger than the corresponding accuracy adjustments on the
newly collected data, and so we expect to see a larger total correction than our estimated 8.1% correction.

SWe choose 5 annotations specifically since, as in the 10-annotation case, images fall into the same relative locations in each bin—
other choices of annotations per image are severely affected by binning effects.

16 As a concrete example, suppose that 50% of the annotators used were low-quality and did not complete the task (i.e., selected no
images)—this would artificially shrink the mean selection frequency gap by 50%, but would not affect the accuracy adjustment.
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D.3. Source selection frequencies determine sampled dataset accuracy

We next explore how the choice of source distribution impacts the resulting sampled dataset. We use a setup similar to that
of the last experiment, in which we use five workers for the selection process. Then, using four hold-out samples from
each image, we create a new candidate data pool called Flickr-E (Flickr-Easy) by including only the images which at least
two out of the four heldout workers selected.

We then perform 5-worker statistic matching, both from Flickr and from Flickr-E to ImageNet-v1. In the absence of bias,
the source distribution should not affect the accuracy of the resulting classifier. In contrast, we find that the dataset replica-
tion obtained from Flickr-v2 has comparable (within 0.2%) average selection frequency, but significantly higher accuracy
(by ~3%) than the replication obtained from the unfiltered candidate pool (62%). This discrepancy further corroborates the
hypothesis that ImageNet-v2 accuracies are impacted by the statistical bias that we identify in this work.
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E. Non-parametric Adjusted Accuracy Estimation

In Section we explore various methods of estimating the adjusted accuracy Ap,|s, from the observable § samples. Sec-
tion presents the naive estimator, computed by using § directly in place of s in the formula for Ap,|,,. In Section
we show that using the statistical jackknife, we can estimate and account for the bias in the naive estimator to better es-
timate the true adjusted accuracy. Here, we first justify the application of the jackknife in Section by proving the
consistency of the estimator and that bias is roughly linear in (and in fact underestimated by) 1/n.

E.1. Justifying the use of the statistical jackknife

Recall that in Section 5] the quantity of interest is the following adjusted accuracy:

Apgos = [ Eplf@lsta) = 5] mi(s) ds. @
S
In Section[5.T} we introduced the following naive estimator
. n . k‘ . k
Dalsy — ZE$2ND2 f(l‘2)|8n(.’132) = E *Pb1 Sn(xl) = ﬁ ) ®)
k=0

which evaluates to Ap,|,, if 3,(x) = s(x), and assuming the expectations above can be computed exactly.

Consistency of the naive estimator. In order for our application of the statistical jackknife to be valid, we must show
that the naive estimator is a consistent estimator of Ap, |, —that is, as n — oo, A%Q‘Sl — Ap,|s,. Note that since we
operate in the regime where the number of distinct images m greatly exceeds the number of annotators per image n, we
will assume that the expectations above can be computed exactly. Note that the estimator remains consistent even if this is
not the case, with the additional constraints that m — oo and m/n — oo, but this greatly complicates the proof and we
will show empirically that the estimator is robust to changes in m in the relevant regime.

Note that in the “infinite m” regime, the variance of the naive estimator is 0. Thus, all of the error is due to bias in the
estimator. In the following, we assume that p; (s), p2(s), and p2(s|f = 1) are continuous differentiable densities bounded
away from zero and with bounded derivatives (|d" /dz" p;(x)| < C).

k 1
Di (§n(z) = n) = / p;i(s) - Binom (n,n, k, s) ds 9)
0
! n
0
1 Sk(l _ S)nfk ) .
ZA pi(s) - 1) Bt Ln—k+l) ds B(+, ) is the Euler beta function (11)
1 1
= n+1/0 pi(s) - Beta(s;k+1,n—k+1)ds (12)
1
R 1E@~Beta(~;k+1,n—k+1)[Pi(sﬂ (13)

Using a Taylor expansion of p;(s) around EsBeta(-h+1,n—k+1) [s], we can bound the above expression:

1
n+1

1 1 ” 1
it (w0 + gVarls B + 0 (7))
1 k+1 (k+1)(n—k+1) " 1
, (E o —
n+1pz<n+2> D22ty M EE)FO( T
Now, using the presumed boundedness of derivatives we can write:

pi (gn(x) - fl) - n (ﬁi;)‘ < (n(ﬁ)a(i 2)5(2 _133) P/ (E[s]) + 0 <n71/2> (14)

C= 2 e + 3 S0l

E |pi(E[s]) + (s — E[s])pi(E[s]) +




Identifying Statistical Bias in Dataset Replication

[Ap,js, = Ap, o, | = p2(f(x) = 1)

1 e (@ =1) ke1\ pGa@=tr@=1) (. .k
TESPS pJ; (%) p1 ( ) - 5 p1 (sn(x) = )

Now, note that the first term in the above is simply the error in the Riemmann sum approximation of the integral, which
vanishes as n — oo0. The second term is bounded by n times the error in each individual term of the sum, which we
bounded as O(n~2) in Equation (14).

Near-linearity of bias and likely underestimation. Recall that for the statistical jackknife to yield a reliable estimate of
the adjusted accuracy, the bias in the naive estimator must be analytic in %, and in particular should be dominated by a
O(%) term (as this corresponds to precisely the term accounted for by the jackknife). In Figure |12 we show that the bias
estimated by our jackknife procedure is indeed roughly linear in 1/n, but grows slightly faster than %, likely leading the
jackknife to provide an underestimate.
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Figure 12. We plot the jackknife adjusted accuracy estimators of 10 models. On the y axis is shown the value of the n-sample jackknife
estimate, with 1/n on the x axis. The fact that the plot is nearly linear suggests that our bias is indeed dominated by a O(1/n) term,
thus further justifying our use of the statistical jackknife in Section[5.2] Furthermore, the slightly accelerating slope as one moves left
on the plot indicates that any error in the jackknife estimate is likely to be an underestimation of bias, rather than an overestimation.
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F. Model Fitting

In this section, we describe our methods for parametric modeling.

F.1. Confidence Intervals

To construct 95% confidence intervals we perform 450 bootstrapped estimates (over the included images) of adjusted
accuracy for each classifier. We then plot the 2.5% and 97.5% percentiles from the bootstrap estimates as the confidence
intervals for each classifier.

F.2. Varying Annotators

We plot the results of varying the number of annotators in Figure[T3]
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Figure 13. Replicating the v1 vs v2 accuracy plot using different numbers of annotators. We obtain similar results even as we decrease
the number of annotators by less than half.
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F.3. Varying Model Expressiveness

We plot the results of varying the number of parameters (here, by changing the number of beta distributions in our mixture)

in Figure
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Figure 14. Replicating the v1 vs v2 accuracy plot using different numbers of parameters. We obtain similar results even as we increase
the number of parameters by more than four-fold.

F.4. EM Algorithm for Mixture Fitting

To fit the parameters of the beta-binomial mixture model we apply the Expectation-Maximization algorithm, optimizing
over mixture coefficients {m;}, as well as parameters of each mixture element {(«;,5;)}. Our application of the EM
algorithm is rather canonical—first, we compute membership probabilities p§- for each example j with respect to each
mixture element ¢, then minimize the weighted log-likelihood with respect to the mixture probabilities. Pseudocode is
given in Algorithm[T]
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Algorithm 1 Our instantiation of the EM algorithm

Input: A set of size n of empirical selection probabilities {3}, the observed rate at which each image was selected,
number of mixture components k.
Start with random guesses for all parameters:

«;, B, ™ < random

for each training iteration do
1. Calculate membership probabilities for each observed element:

1 [ A; iy 1740 . .
pl = k7r p(s Oi Bi, 40) Vj€|[n],i€ k]
ZT:l Ty 'p(S;OéT7BT'a4O)

where p(+; a, 8, 40) is likelihood under the beta-binomial distribution with 40 samples.
2. As is standard in EM, update the parameters by minimizing the expected log-likelihood, weighted by the member-
ship probabilities—i.e. update

j=1
where £(-) = — log(p(+)) is the negative log-likelihood, and

Z?: 1 pé‘

- =
>t Z?:l pj

T, =

end for
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G. Full Model Results

In Appendix Table 2} we detail the set of models we use in our evaluation along with their corresponding Top-1 accuracies
on ImageNet-vl and -v2 validation sets. We use open-source pre-trained implementations from https://github.
com/rwightman/pytorch—image—-models for all architectures.

Model vl v2

tf_mobilenetv3_small_minimal 100 63.070% 48.270%
dlad6_c 64.950% 51.330%
tf _mobilenetv3_small 075 65.490% 50.800%
dlad6x_c 66.130% 52.200%
tf_mobilenetv3_small_100 67.500% 53.960%
dla60x_c 68.170% 55.660%
resnetl8 70.420% 56.850%
gluon_resnetl8_vlb 71.280% 57.610%
seresnetl8 71.840% 58.200%
tf_mobilenetv3_large_minimal_100 71910% 57.870%
hrnet_wl8_small 72.860% 58.120%
tv_resnet34 73.080%  60.060%
spnasnet_100 73.760% 61.040%
tf_mobilenetv3_large_075 73.850% 59.430%
gluon_resnet34_vlb 74.470% 61.630%
mnasnet_100 74.620% 61.020%
densenetl121 74.650% 61.810%
dla34 74.680% 61.510%
seresnet34 74.820%  62.330%
resnet34 74.990% 62.240%
hrnet_wl8_small_v2 75.000% 61.540%
fbnetc_100 75.080% 61.240%
resnet26 75.270%  62.730%
semnasnet_100 75.690% 62.360%
tf_mobilenetv3_large_100 75.710% 61.400%
mobilenetv3_rw 75.740% 61.870%
tv_resnet50 75.820%  62.600%
dpn68 76.020% 63.000%
tf mixnet_ s 76.210% 62.040%
tf _efficientnet_b0 76.240% 63.050%
densenet169 76.370%  63.450%
hrnet_wl8 76.500% 64.560%
mixnet_s 76.570% 62.840%
dla60 76.800% 64.610%
efficientnet_ b0 76.820% 64.050%
seresnext26_32x4d 76.980% 64.050%
resnet26d 77.020% 63.970%
resnet101 77.090%  65.020%
tf _mixnet_m 77.120% 63.540%
tf_efficientnet_b0_ap 77.130% 64.290%
tf _efficientnet_cc_b0_4e 77.190% 64.110%
tf_efficientnet_es 77.200% 64.360%
inception_v3 77.240%  65.090%
densenetl61l 77.240%  64.790%
densenet201 77.280% 64.480%
res2net50_48w_2s 77.420% 64.260%

gluon_resnet50_vlb 77.530% 65.130%


https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
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adv_inception_v3
mixnet_m
gluon_resnet50_vlc
dpn68b
tf_efficientnet_cc_b0_8e
resnetl52
tv_resnext50_32x4d
dla60_res2next
hrnet_w30
seresnet50
res2net50_26w_4s
seresnetl101

dla60x

res2next50
tf_inception_v3
dlal02

hrnet_wi44

dlale9
wide_resnetl101_2
wide_resnet50_2
tf_efficientnet_bl
res2net50_14w_8s
hrnet_w32
dla60_res2net

tf mixnet_ 1
hrnet_wi40
efficientnet_bl
tf_efficientnet_em
resnext50_32x4d
dlal02x

seresnetl1l52
hrnet_w48
gluon_inception_v3
res2net50_26w_6s
mixnet_ 1

resnet50

hrnet_w64
res2net50_26w_8s
xception
gluon_resnetl01_vlb
gluon_resnet50_vls
gluon_resnet50_vld
tf_efficientnet_bl_ap
tf_efficientnet_cc_bl_8e
dlal02x2
seresnext50_32x4d
resnextl101_32x8d
gluon_resnext50_32x4d
gluon_resnetl01l_vlc
resnext50d_32x4d
tf_efficientnet_b2
res2netl1l01_26w_4s
dpn98

dpnl07

77.680%
77.710%
77.710%
77.720%
77.740%
77.760%
77.790%
77.980%
78.010%
78.020%
78.050%
78.070%
78.160%
78.180%
78.220%
78.290%
78.300%
78.380%
78.430%
78.430%
78.530%
78.540%
78.600%
78.610%
78.610%
78.670%
78.690%
78.710%
78.790%
78.810%
78.850%
78.860%
78.880%
78.890%
78.890%
79.000%
79.090%
79.100%
79.110%
79.110%
79.140%
79.200%
79.330%
79.360%
79.400%
79.420%
79.490%
79.630%
79.660%
79.700%
79.730%
79.740%
79.830%
79.950%

65.380%
64.090%
65.180%
64.830%
64.410%
66.410%
65.130%
65.820%
65.860%
65.160%
64.590%
66.150%
66.090%
65.370%
65.480%
65.710%
67.130%
66.450%
65.460%
65.750%
65.620%
65.180%
65.620%
65.550%
65.750%
66.600%
66.300%
65.560%
66.530%
66.140%
66.540%
66.320%
66.110%
66.200%
66.180%
65.770%
67.650%
66.710%
66.320%
66.300%
66.220%
66.740%
66.290%
65.890%
67.830%
66.790%
66.660%
67.610%
66.870%
67.700%
67.320%
66.750%
67.550%
67.490%
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dpnl31l
gluon_resnetl52_vlb
gluon_xception65

ens_adv_inception_resnet_v2

efficientnet_b2
gluon_seresnext50_32x4d
inception_v4
gluon_resnetlb52_vlc
gluon_resnetl01l_vls
mixnet_x1
tf_efficientnet_el
seresnextl101_32x4d
gluon_resnext101_32x4d
dpn92
tf_efficientnet_b2_ap
inception_resnet_v2
gluon_resnext101_64x4d
gluon_resnetl52_vld
gluon_resnetl01l_vld
gluon_seresnext101_32x4d
gluon_resnetl52_vls
gluon_seresnext101_64x4d
tf_efficientnet_b3
gluon_senetl154
senet154
tf_efficientnet_b3_ap
nasnetalarge
pnasnetbSlarge
tf_efficientnet_b4
tf_efficientnet_Db5
tf_efficientnet_b4_ap
tf_efficientnet_b5_ap
tf_efficientnet_b6
tf_efficientnet_b6_ap
tf_efficientnet_b7_ap

80.020%
80.030%
80.070%
80.080%
80.080%
80.100%
80.170%
80.230%
80.320%
80.340%
80.550%
80.570%
80.580%
80.600%
80.680%
80.840%
80.860%
80.870%
81.020%
81.060%
81.470%
81.700%
81.810%
81.900%
82.100%
82.130%
82.780%
83.210%
83.350%
84.030%
84.210%
84.260%
84.510%
85.000%
85.460%

67.580%
67.610%
68.000%
68.630%
67.490%
67.800%
68.490%
67.660%
68.020%
68.000%
67.190%
69.050%
67.510%
66.750%
67.380%
68.750%
69.050%
68.730%
67.960%
68.890%
68.980%
69.040%
69.360%
69.930%
70.020%
69.920%
71.660%
71.970%
71.920%
72.200%
72.130%
73.520%
72.940%
74.570%
75.110%

Table 2: Models used in our analysis with the corresponding Top-1 on

the ImageNet v1 and v2 validation sets.
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