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A Proofs and Derivations
In this section, we provide more detailled derivations and proofs for the claims in the paper.

A.1 Global Rates of a CTBN
A CTBN is (partially) defined via a set of conditional rates λn : Xn × Un → R≥0, unique to each process, each local state and
parent state. In the following, we show that the exit rate of the global process λ (x) decomposes into a sum of these local rates.

For this, we notice, that we can express the probabilities of transitioning within small time steps in terms of rates. For the
global process, the probability of changing in a small window h conditioned on all current states can be formulated as
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Subsequently, in the limit h→ 0 we recover λ (x) :

λ (x) = lim
h→0

1

h

(
N∑
n=1

λn (xn, un)h+ o (h)

)
=

N∑
n=1

λn (xn, un) .

A.2 Transition Probabilities of a CTSMC
Similarly to CTMC’s, we can also assign rates to the associated Markov process of a CTSMC. The CTSMCs transition-matrix
can, as in the case of CTMCs, be expanded in orders of h in terms of instantaneous transition rates employing information of
the clock

P (X (t+ h) = x′, T (t+ h) ∈ [0, 0 + h) |X (t) = x, T (t) ∈ [τ, τ + h))

= λ (x, τ ; x′)h+ o (h) .

Similarly we can express the probability that no state change occurs

P (X (t+ h) = x, T (t+ h) ∈ [τ + h, τ + 2h) |X (t) = x, T (t) ∈ [τ, τ + h))

= 1− λ (x, τ)h+ o (h) .

with λ (x, τ) =
∑
x′ 6=x λ (x, τ ; x′). Note, that the clock’s exit state, does not appear on the rhs’s of the equations, since the

clock transitions deterministically under knowledge of the state X (t), always satisfying the relation T (t+ h)−T (t) ≤ h for any
small time window h. The clock’s partially deterministic dynamics can be visualized as a straight line with slope 1 over time, as
long as no state change X (t) occurs. In case of a state change, however, the clock resets to zero. This explains the clocks exit
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state in the first equation, as during the time h a clock reset must have happened. Since the clocks reachable states are bound
by the time window h, the state of the clock must be found within [0, 0 + h) after h time. In the probability of no state change
occurring, the clock keeps rising and is therefore found to be within [τ + h, τ + 2h) after h time. Any multiple state changes
within h time become less probable and finally vanish, once h approaches zero, since they scale with o (h).

To obtain the transition probabilities for the state alone, we need to determine which state is to be chosen, if we know, that
a change has happened. Using basic rules of probability, this leads to

P (X (t+ h) = x′ |X (t+ h) 6= x, T (t+ h) ∈ [0, 0 + h) , X (t) = x, T (t) ∈ [τ, τ + h))

=
P (X (t+ h) = x′, X (t+ h) 6= x, T (t+ h) ∈ [0, 0 + h) | X (t) = x, T (t) ∈ [τ, τ + h))

P (X (t+ h) 6= x, T (t+ h) ∈ [0, 0 + h) | X (t) = x, T (t) ∈ [τ, τ + h))
(cond. probability)

=
P (X (t+ h) = x′, T (t+ h) ∈ [0, 0 + h) | X (t) = x, T (t) ∈ [τ, τ + h))

λ (x, τ)h+ o (h)

(
absorption

def. exit rate

)
=
λ (x, τ ; x′)h+ o (h)

λ (x, τ)h+ o (h)

(
def. transition rates

)
Taking the limit gives the transition probabilities from state x to x′ for a clock that shows T (t) = τ

lim
h→0

(
λ (x, τ ; x′)h+ o (h)

λ (x, τ)h+ o (h)

)
=
λ (x, τ ; x′)

λ (x, τ)

A.3 Survival Function and Transition Probabilities of the augmented CTBN
A.3.1 Conditional Transition Rates

Before we can proceed to work out characteristica of the global process of the augmented CTBN, we need to define the local
conditional transition rates λn (xn, τn, un; x′n). These arise naturally in the expressions derived for the global process under the
condition of transition asynchronicity and the restricted coupling induced by the graph G. We define the rates λn (xn, τn, un; x′n)
by

P (Xn (t+ h) = x′n, Tn (t+ h) ∈ [0, 0 + h) |Xn (t) = xn, Tn (t) ∈ [τn, τn + h) , Un (t) = un)

= λn (xn, τn, un; x′n)h+ o (h)

and the local conditional exit rate λn (xn, τn, un) by

∑
x′
n 6=xn

P (Xn (t+ h) = x′n, Tn (t+ h) ∈ [0, 0 + h) |Xn (t) = xn, Tn (t) ∈ [τn, τn + h) , Un (t) = un)

= P (Xn (t+ h) 6= xn, Tn (t+ h) ∈ [0, 0 + h) |Xn (t) = xn, Tn (t) ∈ [τn, τn + h) , Un (t) = un)

= λn (xn, τn, un)h+ o (h)

from which we can conclude, that λn (xn, τn, un) =
∑
x′
n 6=xn

λn (xn, τn, un; x′n) holds in the limit h→ 0.

A.3.2 Global Survival Time

In order to determine the global survival function and density of the augmented CTBN, we need to find an expression of the
global exit rate. Here, the procedure above from CTBN’s is helpful in combination with the definition of the transition rates
for CTSMC’s. The probability, that a state change of the global process occurs, meaning any of the processes change and the
respective clock resets, is

P

(⋃
n

Xn (t+ h) 6= xn, Tn (t+ h) ∈ [0, 0 + h)

∣∣∣∣ ⋂
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)

=

N∑
n=1

P
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Xn (t+ h) 6= xn, Tn (t+ h) ∈ [0, 0 + h)

∣∣∣∣ ⋂
m

Xm (t) = xm, Tm (t) ∈ [τn, τn + h)

)
(asynchronicity)

=

N∑
n=1

P (Xn (t+ h) 6= xn, Tn (t+ h) ∈ [0, 0 + h) |Xn (t) = xn, Tn (t) ∈ [τn, τn + h) , Un (t) = un) (conditional independence)

=

N∑
n=1

λn (xn, τn, un)h+ o (h) . (def. local exit rates)
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Since this covers any process in the network, we can take the limit to obtain

λ (x, τ ) = lim
h→0

1

h

(
N∑
n=1

λn (xn, τn, un)h+ o (h)

)
=

N∑
n=1

λn (xn, τn, un) .

Consequently, the complementary probability that no change occurs reads

P

(⋂
n

Xn (t+ h) = xn, Tn (t+ h) ∈ [τn + h, τn + 2h)

∣∣∣∣ ⋂
n

Xn (t) = xn, Tn (t) ∈ [τn, τn + h)

)

= 1− P

(⋃
n

Xn (t+ h) 6= xn, Tn (t+ h) ∈ [0, 0 + h)

∣∣∣∣ ⋂
n

Xn (t) = xn, Tn (t) ∈ [τn, τn + h)

)

= 1−
N∑
n=1

λn (xn, τn, un)h+ o (h) .

We now formulate the path integral corresponding to the global survival function. For this, we ask for the probability of all
processes keeping their state for K time windows of length h and then perform the continuous time limit. Using the shorthand
for this limit (E ≡ {h→ 0, K →∞, Kh = s}) we can write:

Λ (s | τ , x)

= lim
E

K∏
k=0

P

(⋂
n

Xn (t+ h) = xn, Tn (t+ h) ∈ [τ + (k + 1)h, τ + (k + 2)h)

∣∣∣∣ ⋂
n

Xn (t) = xn, Tn (t) ∈ [τn + kh, τn + (k + 1)h)

)

= lim
E

K∏
k=0

(
1−

∑
n

λn (xn, τn + kh, un)h

)
+ o (h) =

s∏
0

(
1−

∑
n

λn (xn, τn + σ, un) dσ

)
(Volterra product integral)

= exp

(
−
∫ s

0

dσ
∑
n

λn (xn, τn + σ, un)

)
= exp

(
−
∑
n

∫ s+τn

τn

dσ λn (xn, σ, un)

)

= exp

(
−
∑
n

∫ s+τn

0

dσ λn (xn, σ, un)

)
exp

(∑
n

∫ τn

0

dσ λn (xn, σ, un)

)

=
∏
n

Λn (s+ τn |xn, un)

Λn (τn |xn, un)
,

with having identified Λn (τn |xn, un) ≡ exp
(
−
∫ τn

0
dσ λn (xn, σ, un)

)
as the local survival functions. Noticing F (s | τ , x) =

1 − Λ (s | τ , x), we can further recover the density of the global survival time from the main paper. To do so, we differentiate
the global survival time c.d.f.

dF (s | τ , x)

ds
= −dΛ (s | τ , x)

ds

∝
∑
n

λn (xn, s+ τn, un) exp

(
−
∑
m

∫ s+τm

0

dσ λm (xm, σ, um)

)

=
∑
n

λn (xn, s+ τn, un)
∏
m

exp

(
−
∫ s+τm

0

dσ λm (xm, σ, um)

)

=
∑
n

dFn (s+ τn |xn, un)

ds

∏
m 6=n

Λm (s+ τm |xm, um) .

Note, that we do not need to take care of truncations since they are independent of s and behave like a constant during
differentiation. Reinserting the constant then gives the density of the global survival time

dF (s | τ , x)

ds
=
∑
n

dFn (s+ τn |xn, un)

ds

1

Λn (τn |xn, un)

∏
m6=n

Λm (s+ τm |xm, um)

Λm (τm |xm, um)
.
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A.3.3 Survival Time Parameterization

As we derived an expression of the global survival time in terms of local survival functions Λn (s |xn, un), we are now able to
parametrize the local rates of the augmented CTBN. Where in traditional CTBN’s, we only have to choose constant rates, in
our case, we can assign them arbitrary functions. In this work, choose a desired parametric local survival time distribution and
calculate the rates via the known relation

dΛn (s |xn, un)

ds
= −λn (xn, s, un) exp

(
−
∫ s

0

dσ λn (xn, σ, un)

)
= −λn (xn, s, un) Λn (s |xn, un)

λn (xn, s, un) = −dΛn (s |xn, un)

ds

1

Λn (s |xn, un)
.

To give an example, we could choose a Weibull distribution giving Λn (s |xn, un) = bksk−1 exp
(
−bsk

)
with parameters b

for the rate and k for the shape. Giving the above equation, we can then calculate λn (xn, s, un) = bksk−1. By assigning
individual tuples (b, k) to all combinations n, xn and un, we can construct CTBN’s with purely Weibull instead of exponential
distributions.

A.3.4 Transition Probabilities

Proceeding from here, we obtain the transition probabilities of the global process in terms of local rates, using a similar derivation
as for CTSMCs

P

(
Xn (t+ h) = x′n

∣∣∣∣ ⋃
m

Xm (t+ h) 6= xm, Tm (t+ h) ∈ [0, 0 + h) ,
⋂
m

Xm (t) = x, Tm (t) ∈ [τm, τm + h)

)

=
P (Xn (t+ h) = x′n,

⋃
mXm (t+ h) 6= xm, Tm (t+ h) ∈ [0, 0 + h) |

⋂
mXm (t) = x, Tm (t) ∈ [τm, τm + h))

P (
⋃
mXm (t+ h) 6= xm, Tm (t+ h) ∈ [0, 0 + h) |

⋂
mXm (t) = x, Tm (t) ∈ [τm, τm + h))

=
P (
⋃
mXn (t+ h) = x′n, Xm (t+ h) 6= xm, Tm (t+ h) ∈ [0, 0 + h) |

⋂
mXm (t) = x, Tm (t) ∈ [τm, τm + h))∑N

n=1 λn (xn, τn, un)h+ o (h)

(
distributiveness
global exit rate

)
=
P (Xn (t+ h) = x′n, Tn (t+ h) ∈ [0, 0 + h) |

⋂
mXm (t) = x, Tm (t) ∈ [τm, τm + h))∑N

n=1 λn (xn, τn, un)h+ o (h)

(
asynchronicity & absorption

)
=

λn (xn, τn, un; x′n)h+ o (h)∑N
n=1 λn (xn, τn, un)h+ o (h)

(
local transition rates

)
.

Finally, taking the limit gives us the instantaneous transition probabilities of the global process given the clocks state T (t) = τ

lim
h→0

(
λn (xn, τn, un; x′n)h+ o (h)∑N
n=1 λn (xn, τn, un)h+ o (h)

)
=
λn (xn, τn, un; x′n)

λ (x, τ )
.

A.4 Derivation of the Path Measure
After having obtained the probabilities belonging to the generative process, it is straight forward to give the path density for a
single interval. Assume, the associated Markov process of the global process is in state (x, τ ) at the beginning of the interval.
We keep x for a time exactly s and then, the n-th process transitions from its state xn to x′n. The density for this event is then

p (x′, τ ′ |x, τ , θ) =
λn (xn, τn + s, un; x′n)∑N
n=1 λn (xn, τn + s, un)

dF (s | τ , x)

ds

∝ λn (xn, τn + s, un; x′n)∑N
n=1 λn (xn, s+ τn, un)

∑
n

λn (xn, s+ τn, un)
∏
m

exp

(
−
∫ s+τm

0

dσ λm (xm, σ, um)

)

= λn (xn, τn + s, un; x′n) exp

(
−
∫ s+τn

0

dσ λn (xn, σ, un)

) ∏
m 6=n

Λm (s+ τm |xm, um) ,
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with

x′ = (x1, . . . , xn−1, x
′
n, xn+1, . . . , xN ) , (1)

τ ′ = (τ1 + s, . . . , τn−1 + s, 0, τn+1 + s, . . . , τN + s) .

If we further restrict ourselves to processes obeying time-direction independence, we can express the density in terms of
transition probabilities λn (xn, τn + s, un; x′n) = θn (x′n | xn, un) λn (xn, τn + s, un) and obtain after reinserting the constant
term representing the truncations

p (x′, τ ′ |x, τ , θ) = θn (x′n | xn, un)λn (xn, τn + s, un)
exp

(
−
∫ s+τn

0
dσ λn (xn, σ, un)

)
Λn (τn |xn, un)

∏
m 6=n

Λm (s+ τm |xm, um)

Λm (τm |xm, um)

= θn (x′n | xn, un)
dFn (s+ τn |xn, un)

ds

1

Λn (τn |xn, un)

∏
m 6=n

Λm (s+ τm |xm, um)

Λm (τm |xm, um)

We observe, that one part in this expression depends on x and x′ and one on x, τ and s. The first is the transition probability
associated with the embedded Markov chains of the single processes with time-direction independence. To infer those, we do not
need any timing information. On the other hand, to infer the second expression related to the survival times, we do need timing
information.

A.5 Likelihood in a Gamma augmented CTBN
In order to derive the likelihood function of a single survival time parameter tuple (αn, βn) associated with the n-th process, its
state x and parent state u in a Gamma augmented CTBN, we need to build the product of the respective censored, non-censored
and truncated factors of the global likelihood. First consider the sets X and T from the main text. The set X contains samples
of the global state at the beginning of each interval. On the other hand, T contains samples of all clock values at the beginning
of each interval. Let Xn ⊂ X and Tn ⊂ T be the subset of samples of states and clock values relevant to the n-th process.
This means, that Xn only contains the sample values from X corresponding to the n-th process and its parents. The Tn only
contains the sample values of the n-th clock from T. Further, there are no consecutive repetitions in Xn meaning, that one
element in Xn is not associated with two consecutive intervals. Since we assumed all parameter sets for individual x and u to be
independent, samples contained in Xn and Tn appear as constants and are normalized out when building the posterior density
for (αn, βn). We introduce the following sets: Sf ≡ {sf,1, sf,2, . . . } consists of all clock samples sf,m ∈ Tn at which the n-th
process transitions, Sc consists of all clock samples, where a parent has changed and St, which consists of the clock values at the
beginning of the intervals. Consider an element (x, u) ∈ Xn associated with the i-th interval and another element (x′, u′) ∈ Xn

associated with the (i+ 1)-th interval. If now x′ 6= x, then the clock sample s ∈ Tn associated with the (i+ 1)-th interval is an
element of Sf . Otherwise (x′ = x), s is an element of Sc. Additionally, st ∈ tn associated with the i-th interval is an element of
St in both cases.

Then, the likelihood is a product of terms of the Gamma p.d.f. βn
Γ(αn) (βnsf,m)

αn−1
exp (−βnsf,m) for each sf,m ∈ Sf , of the

Gamma survival function Γ(αn, βnsc,m)
Γ(αn) for each element in Sc, and the reciprocal Γ(αn)

Γ(αn, βnst,m) for each element in St. Building
the product, we then obtain for the posterior update of a full trajectory of the global process associated with the parameters
(αn, βn)

p (αn, βn | Xn, Tn)

∝ β|Sf |n

 |Sf |∏
m=1

βnsf,m

αn−1

exp

−βn |Sf |∑
m=1

sf,m


Γ (αn)

|St|∏|Sc|
m=1 Γ (αn, βnsc,m)

Γ (αn)
|Sf | Γ (αn)

|Sc|∏|St|
m=1 Γ (αn, βnst,m)

p (αn, βn)

with an arbitrary prior distribution p (αn, βn). The Weibull posterior update from the main text is constructed in a similar
way.

A.6 Inference of Rayleigh augmented CTBN’s
Like we have shown, that the prior distribution for a whole CTBN can be given as a product of local prior distributions, the
Rayleigh CTBN has a conjugate prior in the form of a product of inverse Gamma distributions under its typical parametrization
φn (x, u) ≡ σn (x, u)

2. We can give this by
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p (φ) ∝
∏
n

∏
u∈Un

∏
x∈Xn

βn (x, u)
αn(x,u)

φn (x, u)
αn(x,u)+1

exp

(
−βn (x, u)

φn (x, u)

)
.

Because we can perform a normalization after multiplying with the likelihood, we can effectively ignore the constant factor
βn (x, u)

αn(x,u) and obtain for the posterior update

αn (x, u)→ αn (x, u) + |Sf |

βn (x, u)→ βn (x, u) +
1

2

 ∑
m∈Sf∩Sc

τ2
m −

∑
m∈St

τ2
m

 .

where we can immediately spot the sufficient statistics

Tβ (n, x, u) =
1

2

 ∑
m∈Sf∩Sc

τ2
m −

∑
m∈St

τ2
m


Tα (n, x, u) = |Sf | .

Again exploiting the normalization of the resulting expression, by comparison of the product of likelihood and prior with the
normalized inverse Gamma distribution, we can formulate the marginal likelihood for structure inference by

∫
Φ

dφ p (T |X, φ) p (φ | G) =
∏
n

∏
u∈Un

∏
x∈Xn

(∏
m∈Sf (n,x,u) τm

)
βn (x, u)

αn(x,u)
Γ (αn (x, u) + Tα (n, x, u))

Γ (αn (x, u)) (βn (x, u) + Tβ (n, x, u))
αn(x,u)+Tα(n, x,u)

which can be efficiently calculated using Stirling’s approximation of the gamma function.

B Configuration of GeneNetWeaver
In this section, we provide the exact settings for GeneNetWeaver from the GRN-scenario. As mentioned in the main text, we
chose the maximum time-resolution and simulated until 103 units of time. Further, since we perform inference on the latent
model directly, we chose an ODE-based simulation without additional noise. We chose "Time series as in DREAM4" and then
the following additional settings

Duration of each time series (t_max) 1 000
Number of measured points... 1 001
Perturbations for multifactorial... Generate new
Noise added after... (measurement error) None

The resulting time-series’ were then preprocessed like mentioned in the main text and the resulting trajectories were then
used to train the latent model with a Gamma survival time parametrization.

C Simulation Algorithm
The proposed algorithm for the simulation of the augmented CTBN corresponds to the Gillespie algrorithm for the augmented
CTBN and is given below. To draw from a minimum of truncated distributions, we draw from multiple truncated distributions
and store the minimum. Additionally, we can draw from the truncated distributions by a simple loop, continuously drawing
samples from the original distribution until the outcome is larger than the value of the truncation. In our experiments, no case
has occurred, where this lead to significant increases in runtime. However, care must be taken when single processes exhibit an
extreme dynamic range. This can potentially necessitate large amounts of draws after unfavorable parent changes.
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Algorithm 1: Gillespie algorithm for the augmented CTBN
Result: A sample trajectory of the augmented CTBN from 0 to T
Require θ, φ, x(0), τ (0) (clocks may be all zero);
Set c← 0;
Set t(0) ← 0;
while t < T do

Draw s from eq. (3) (main text);
Draw n and x′n from the categoricals in (5) (main text);
Set t(c+1) ← t(c) + s;
if t(c+1) > T then

break;
else

Update x(c+1) and τ (c+1) from x(c) and τ (c) according to (1) (here in appendix);
Set c← c+ 1;

end
return X =

{
x(0), x(1), . . . , x(c)

}
, T =

{
τ (0), τ (1), . . . , τ (c)

}
and t =

{
t(0), t(1), . . . , t(c)

}
;

end

X then contains the states x(m) in the time-window
[
t(m), t(m+1)

)
. T contains the clock values at τ (m) after transition to

the new state. Additionally, the value c contains the number of transitions occurred.
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