
Divide and Conquer: Leveraging Intermediate Feature Representations for
Quantized Training of Neural Networks

Ahmed T. Elthakeb 1 Prannoy Pilligundla 2 Fatemehsadat Mireshghallah 2

Alexander Cloninger 3 Hadi Esmaeilzadeh 2

Abstract
The deep layers of modern neural networks extract
a rather rich set of features as an input propagates
through the network, this paper sets out to harvest
these rich intermediate representations for quantiza-
tion with minimal accuracy loss while significantly
reducing the memory footprint and compute
intensity of the DNN. This paper utilizes knowledge
distillation through teacher-student paradigm (Hin-
ton et al., 2015) in a novel setting that exploits the
feature extraction capability of DNNs for higher-
accuracy quantization. As such, our algorithm
logically divides a pretrained full-precision DNN to
multiple sections, each of which exposes intermedi-
ate features to train a team of students independently
in the quantized domain. This divide and conquer
strategy, makes the training of each student section
possible in isolation, which offers additional speedup
through enabling parallelization, while all these inde-
pendently trained sections are later stitched together
to form the equivalent fully quantized network.

Experiments on various DNNs (AlexNet, LeNet,
MobileNet, ResNet-18, ResNet-20, SVHN and
VGG-11) show that, this approach—called DCQ
(Divide and Conquer Quantization)—on average,
improves the performance of a state-of-the-art
quantized training technique, DoReFa-Net (Zhou
et al., 2016) by 21.6% and 9.3% for binary and
ternary quantization, respectively. Additionally, we
show that incorporating DCQ to existing quantized
training methods leads to improved accuracies
as compared to previously reported by multiple
state-of-the-art quantized training methods.

1Department of Electrical and Computer Engineering, University of
California San Diego. 2Department of Computer Science, University
of California San Diego. 3Department of Mathematics, University
of California San Diego. Correspondence to: Ahmed T. Elthakeb
<elthakeb@ucsd.com>.

Proceedings of the 37th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the author(s).

Figure 1: Overview of Divide and Conquer Quantization.

1. Introduction
Today deep learning, with its superior performance, domi-
nates a wide range of real life inference tasks including im-
age recognition, voice assistants, and natural language process-
ing (Hauswald et al., 2015; Krizhevsky et al., 2012; LeCun et al.,
2015; 1989). However, the shear complexity of deep learning
models and the associated heavy compute and memory require-
ment appears as a major challenge as the demand for such
services rapidly scale. Quantization, which can reduce the com-
plexity of each operation as well as the overall storage require-
ments of the DNN, has proven to be a promising path forward.
Nevertheless, quantization requires carefully tailored training
and recovery algorithms (Courbariaux et al., 2015; Gupta et al.,
2015; Hubara et al., 2017a; Zhou et al., 2017; 2016) to even par-
tially overcome its losses in accuracy. In this paper, we set out to
devise an algorithm that enables quantization with much less ac-
curacy degradation. The key insight is that the intermediate lay-
ers of a deep network already extract a very rich set of features
and these intermediate representations can be used to train/teach
a quantized network more effectively. To that end, we define a
new approach towards knowledge distillation through teacher-
student paradigm (Hinton et al., 2015; Bucila et al., 2006) focus-
ing on teaching the knowledge of intermediate features to a cor-
responding quantized student. Knowledge distillation (Hinton
et al., 2015) is a generic approach to reduce a large model down
to a simpler or smaller distilled model. At a high level, a soft-
ened version of the final output is used to train a small model
(student) to mimic the behavior of the original large model

DCQ: Divide and Conquer for Quantization

(teacher). FITNETS (Romero et al., 2015) extends this idea and
takes hints from an intermediate layer of the teacher to pretrain
the first few layers of the student and then apply knowledge dis-
tillation to the entire student network. We, on the other hand, tap
into the multiple intermediate layers and apply knowledge distil-
lation through sectioning. The sectioning enables DCQ to train
each section of the students independently in isolation to deliver
a quantized counterpart for the teacher, which enables paral-
lelization. As such, DCQ offers additional speedup through par-
allelization on the algorithmic level and independent of improve-
ments in hardware accelerators. In fact, the hints as proposed
in FITNETS are complementary and can potentially be used in
our sectional knowledge distillation. The proposed algorithm,
DCQ, employs a divide and conquer approach that divides a
pretrained full-precision network into multiple sections, each
of which exposes a set of intermediate features. As Figure 1
illustrates, DCQ allocates a student section to each teacher
counterpart and independently trains them using the interme-
diate feature representations. DCQ calculates the loss of each
student section by comparing it with the output activations of
the corresponding teacher section of the full precision network.
Loss is optimized through a sectional multi-backpropagation
scheme using conventional gradient-based training as shown in
Figure 1. These trained student sections are then sewed back
together to form the corresponding quantized DNN.

We validate our method through experiments on a variety
of DNNs including AlexNet, LeNet, MobileNet, ResNet-18,
ResNet-20, SVHN and VGG-11 with binary and ternary
weights. Results show that DCQ, on average, improves the
performance of a state-of-the-art quantized training technique,
DoReFa-Net (Zhou et al., 2016) by 21.6% and 9.3% for binary
and ternary quantization, respectively, which further helps in
closing the accuracy gap between state-of-the-art quantized
training techniques and the full-precision runs. Additionally,
we show that our approach, DCQ, can improve performance
of existing knowledge-distillation based approaches (Mishra
et al., 2018) and multiple state-of-the-art quantized training
methods. These encouraging results suggest that leveraging
the inherent feature extraction ability of DNNs for knowledge
distillation can lead to significant improvement in their
efficiency, reducing their bitwidth in this particular case.

The contributions of this paper can be summarized as follows.

• Extending knowledge distillation. DCQ enables lever-
aging arbitrary number of intermediate layers relying on
the inherent hierarchical learning characteristic of deep
neural networks in contrast to only the output layer or hint
layer. As such, distillation learning and hint learning fall as
special cases of the proposed divide and conquer strategy.

• Enabling parallelization towards training quantized
networks. DCQ applies knowledge distillation through
sectioning. As such it trains each section of the
students independently in isolation to deliver a quantized

counterpart for the teacher, which can occur in parallel.

• Complementary to other methods. DCQ is a comple-
mentary method as it acts as an auxiliary approach to boost
performance of existing training techniques by applying
whatever the underlying training technique but in a stage-
wise fashion with defining a regression loss per stage.

• Theoretical analysis. We provide a theoretical analy-
sis/guarantee of the error upper bound across the network
through a chaining argument.

2. DCQ: Divide and Conquer for Quantization

Overview. We take inspiration from knowledge distillation
and apply it to the context of quantization by proposing a novel
technique dubbed DCQ. The main intuition behind DCQ is
that a deeply quantized network can achieve accuracies similar
to full precision networks if intermediate layers of the quantized
network can retain the intermediate feature representations that
was learnt by the full precision network. To this end, DCQ
splits the quantized network and full precision network into
multiple small sections and trains each section individually by
means of partial backpropagation so that every section of the
quantized network learns and represents similar features as the
corresponding section in the full precision network. In other
words, DCQ divides the original classification problem into
multiple regression problems by matching the intermediate
feature (activation) maps. The following points summarizes
the practical significance and contribution of DCQ.

Weight and activation quantization. The proposed technique
is orthogonal to the quantity of interest for quantization, as
it’s basically applying whatever the underlying/used training
technique but in a stage-wise fashion with defining a new
regression loss per stage. In fact, the regression loss is defined
to match the respective activation maps for each stage. As
such, DCQ can be equally applied for weight and/or activation
quantization alike. Section 3.2 presents results for both weight
and activation quantization.

Integration to other methods. The proposed technique is a
complementary method as it acts as an auxiliary approach to
boost performance of existing training techniques by applying
whatever the underlying/used training technique but in a
stage-wise fashion with defining a new regression loss per stage.

Knowledge distillation utilization. DCQ extends the concept
of knowledge distillation to its limits by leveraging multiple
intermediate layers as opposed to limiting it to the output layer
only as in (Mishra & Marr, 2018), (Hinton et al., 2015) or the
output layer and hint layer as in (Romero et al., 2015).

Other performance benefits. DCQ enables per-network
training ”parallelization” by enabling training different
sections/stages in isolation (stage-wise fashion). Moreover,

DCQ: Divide and Conquer for Quantization

Full	Precision	Network
L	layers

Input: 𝑥

Intermediate
Activation Maps: 𝐴67

𝑛	layers
(Section One)

Partially	(one-section)	Quantized	Network
L	layers

Input: 𝑥

Quantized Intermediate
Activation Maps: 𝐴?7

𝐿 − 𝑛	layers
(Section Two)

𝐿 − 𝑛	layers
(Section Two)

𝑛	layers
(Section One)

(a) (b)

Figure 2: DCQ two stage split example

it applies the standard back propagation in a simpler settings
(small subnetworks) which enables both faster convergence
time and higher accuracy than existing conventional fine-tuning
methods in the quantized domain.

This section describes different steps and rationale of our
technique in more detail.

2.1. Matching Activations for Intermediate Layers

Figure 2 (a) shows a sketch representing a full precision net-
work of L layers, whereas Figure 2 (b) is a deeply quantized
version of the same network where first n layers are quantized
and the remaining L− n layers are at full precision. When
we pass the same input image x to both these networks, if the
output activations of layer n for full precision network, i.e., An

f ,
are equivalent to the output activations of layer n for the semi-
quantized network, An

q, then both the networks classify the input
to a same class because rest of the L−n layers are same for
both the networks and their input activations are same as well.
Therefore, if both these networks shown in Figure 2 (a) and (b),
have similar output activations for all the input images, then
the network with first n layers quantized has learnt to represent
similar features as the first n layers of the original network and
it will have the same classification accuracy as the full precision
network. We can extend this argument further and say that if we
quantize the remaining L−n layers of the network in Figure 2
(b) while keeping it’s output same as the corresponding L−n
layers of the full precision network, then we now have a deeply
quantized network with the same accuracy as the full precision
network. This is the underlying principle for our proposed quan-
tization technique DCQ. In the above example, the network
was split into two sections of n and L−n layers, instead DCQ
splits the original network into multiple sections and trains
those sections individually to output same activations as the
corresponding section in the full precision network. Following
subsections explain the DCQ methodology in more detail.

2.2. Splitting, Training and Merging

Splitting the full precision network. As described in Sec-
tion 2.1, DCQ splits the original network into multiple sections
and trains them in isolation and in parallel. Figure 3 shows an
overview of the entire process. As shown in the figure, after
splitting the full precision network into m sub sections, DCQ
quantizes and trains these subsections independently. After
training, DCQ puts them all together again to get the deeply

Figure 3: Divide and Conquer approach overview showing
SPLIT phase; dividing the teacher full precision network into
smaller subnetworks, and MERGE; by combining the training
results of each subnetwork to form a fully quantized network

quantized version of the entire original network. As discussed in
Section 2.1, because each of these sections is trained to capture
the same features as the full precision network, although these
sections are trained independently, they can be put together at
the end to give similar accuracy as the full precision network.

If the original network has L layers then m decides how many
layers will be part of each section (sections need not be equal
in terms of number of layers). In this work, we used a con-
figuration of two layers per every section and then decided m
according to the total number of layers in the network. Al-
though, for networks like ResNet which have logical splits in
terms of basic blocks, we split the network in a way that each
section corresponds to a basic block. We leave the task of decid-
ing the optimal number of sections (splits) and how many layers
per section for a given network to future work. However, we
provide some empirical analysis to this regard in Section 3.5.

Training the sub-networks. As Figure 3 illustrates, 1 we cre-
ate m sections in order to train each of the m sub-networks. For
each section i, the sub-network i (or subnet i for short) consists
of all the sections preceding it. Subnet 1 column in Figure 3 2
shows a subnet for section 1. To train this section, the output
activations of the quantized version of section 1 are compared
with the output activations of the full precision version of sec-
tion 1 and the loss is calculated accordingly. Section 2.3 gives
more details on how the loss is calculated for each subnet. Sim-
ilarly, Subnet 2 column 3 shows the subnet for section 2 and
it comprises of both section 1 and section 2. Output activations
of section 2 are used to calculate the loss in this case. Since sec-
tion 2 is being trained in this subnet, weights for section 1 are
frozen(not trainable) in this subnet and backpropagation based
on the loss only affects section 2. Similarly there are subnets for
sections 3 up to last section m and the last subnet m is basically
similar to the full precision network except that the section m is
quantized and all the other sections from 1 to m−1 are frozen.

Merging the sections. 4 After training all the sections, since
each of these sections has been trained independently to learn

DCQ: Divide and Conquer for Quantization

the same features as the corresponding section of the full pre-
cision network but with quantized weights, they can be put
together to form a fully trained quantized network. In every sub-
net, freezing all the sections except the one being trained is the
key in enabling merging of all the individual sections at the end.

2.3. Loss Function for Training Sub Networks

All machine learning algorithms rely on minimizing a loss
function to achieve a certain objective. The parameters of
the network are trained by back-propagating the derivative
of the loss with respect to the parameters throughout the
network, and updating the parameters via stochastic gradient
descent. Broadly speaking, according to the particular task,
loss functions can be categorized into two types: Classification
Loss and Regression Loss. Fundamentally, classification is
about predicting a label (discrete valued output) and regression
is about predicting a quantity (continuous valued output). Since
DCQ aims to capture the intermediate features learnt by
the full precision network, loss needs to be calculated based
on the output activations of intermediate layers unlike the
traditional loss which is calculated using the output of the final
classification layer and the targets. As such, and in the context
of this paper focusing on classification tasks, DCQ divides
the original classification problem into multiple regression
problems by matching the intermediate feature (activation)
maps. In this study, we have examined three of the most
commonly used regression loss formulations. Namely:
(1) Mean Square Error (MSE): L = 1

n ∑
n
i=1(y

(i)− ŷ(i))2, (2)
Mean Absolute Error (MAE): L = 1

n ∑
n
i=1|y(i)−ŷ(i)|, and (3)

Huber Loss:

L =
1
n

n

∑
i=1

{
1
2(y

(i)−ŷ(i))2 , |y(i)−ŷ(i)|≤δ

δ(y(i)−ŷ(i))− 1
2δ , otherwise

where y is the target value, and ŷ is the predicted value, and the
summation is across all samples. For Huber loss, δ (delta) is
a hyperparameter which can be tuned. Huber loss approaches
MAE when δ ∼ 0 and MSE when δ ∼ ∞ (large numbers).
Section 3.5 provides experimental results for each of the above
loss formulations.

2.4. Overall Algorithm

Algorithm 1 outlines the step by step procedure for DCQ
putting together all the steps described in Sections 2.2 and
2.3. Since each iteration of the loop, shown in the algorithm,
is independent, all the sections can potentially be trained in
parallel leading to an overall reduction in training time.

3. Experimental Results
3.1. Experimental Setup

In this section, we evaluate the efficacy of our proposed
approach on various DNNs (AlexNet, LeNet, MobileNet,

Algorithm 1 Divide and Conquer for Quantization: Training Procedure

Input: Pretrained Full Precision Neural Network (NFP)
Output: Quantized Neural Network (NQ)

1: Split NFP into m sections: {N1,N2,...,Nm} ; . SPLIT phase
2: Each section Ni has a set of layers: {l1,l2,...,ln}
3: for Ni in {N1,N2,...,Nm} do
4: Create a subnet SNi for section Ni containing all the sections from N1 to Ni
5: Quantize all the layers in section Ni with the desired bitwidth to get Nq

i
6: Set all layers of section Ni as trainable, freeze all other remaining layers in the

subnetwork SNi
7: Calculate LOSSi using the output activations of section Ni of the full precision

network and the subnetwork SNi
8: Minimize {LOSSi} to train Nq

i to represent similar features as Ni

9: end for
10: NQ←merge{Nq

1 ,N
q
2 ,...,N

q
m} ; . MERGE phase

Table 1: Summary of results comparing DCQ (our appraoch)
to DoReFa-Net for different networks considering binary and
ternary weight quantization.

Benchmark LeNet
on MNIST

ResNet-20
on CIFAR10

SVHN-10
on SVHN

VGG-11
on CIFAR10

Weight
Quantization

Partitioning 2 Stages 4 Stages 2 Stages 3 Stages

Method Top-1 Accuracy (%)

FP (W32) Baseline 99.86 92.60 96.47 94.13

Binary (W1)
DoReFa 75.25 73.38 81.45 72.78

DoReFa + DCQ 99.28 90.52 93.21 87.48
Improvement 31.9% 23.3% 14.4% 20.2%

Ternary (W2)
DoReFa 90.91 85.24 89.56 81.98

DoReFa + DCQ 99.76 92.40 95.32 93.96
Improvement 9.7% 8.3% 6.4% 14.6%

Table 2: Summary of results comparing our approach (DCQ)
to state-of-the-art quantized training methods.

Bitwidth
Benchmark AlexNet ResNet-18 MobileNet-V2
Partitioning 3 Stages 3 Stages 3 Stages

Method Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
W32/A32 Full Precision 57.1 80.2 70.1 89.5 71.8 90.3

W4/A4

PACT 55.7 - 69.2 89.0 61.4 83.7
LQ-Nets - - 69.3 88.8 - -

DSQ - - 69.6 - 64.8 -
DoReFa 55.0 76.3 68.9 88.1 64.6 85.1

DoReFa + DCQ 56.2 79.2 69.9 89.2 66.2 87.3
Improvement 0.89% 0.43% 2.47%

W3/A3

PACT 55.6 - 68.1 88.2 - -
LQ-Nets - - 68.2 87.9 - -

DSQ - - 68.7 - - -
DoReFa 54.1 75.1 67.9 87.5 60.1 83.0

DoReFa + DCQ 55.8 77.2 69.2 89.9 62.2 88.7
Improvement 0.36% 0.72% 3.49%

ResNet-18, ResNet-20, SVHN and VGG-11) and different
datasets: CIFAR10, ImageNet, MNIST, and SVHN. We
compare our approach to conventional end-to-end training
approach. We consider DoReFa-Net (Zhou et al., 2016) as
our baseline but also show comparision with BWN (Rastegari
et al., 2016b) in Section 3.2, and Apprentice (Mishra &
Marr, 2018) , in addition to state-of-the-art quantized training
methods: PACT (Choi et al., 2018), LQ-Net (Zhang et al.,
2018), DSQ (Gong et al., 2019) in Section 3.3.

DCQ: Divide and Conquer for Quantization

Table 3: Comparing DCQ to a knowledge distillation based
quantization method, Apprentice.

Method
ResNet-20 on CIFAR10 ResNet-18 on ImageNet

Top-1 Accuracy (%)
W2/A32 W2/A32

Apprentice 92.00 66.60
DCQ 93.40 67.90

For all the experiments, we use an open source framework for
quantization, Distiller (Zmora et al., 2018). While reporting
accuracies in their paper, DoReFa-Net doesn’t quantize first
and last layers of the network whereas in our case, we quantize
all the layers including the first and last layers. Because of this
difference in quantization and using built-in implementation
of Distiller, the accuracies we report might not exactly match
the accuracies reported in their paper.

3.2. Binarization and Ternarization using DCQ

Table1 shows summary of results comparing plain DoReFa
to DoReFa + DCQ for different networks considering binary
{-1,1} and ternary{-1, 0, 1} weight quantization for various
networks: LeNet, ResNet-20, SVHN and VGG-11. As seen,
integrating DCQ into DoReFa outperforms the conventional
approach and achieves a consistent improvements across the
different networks with average 22.45% for binarization and
9.7% for ternarization.

Delving into the results, the reported improvements can be at-
tributed to the following reasons. First, deep multi-hidden-layer
neural networks are much more difficult to tackle as compared
to shallower ones. Furthermore, end-to-end backpropagation
can be inefficient (Jaderberg et al., 2017). Thus, adopting
such divide and conquer approach yields simpler subproblems
that are easier to optimize. Second, matching intermediate
learning objectives also guides the optimization as compared
to following a single global objective that indirectly specifies
learning objectives to the intermediate layers.

Comparison with BWN. BWN (Rastegari et al., 2016b)
proposes approximate convolutions using binary operations for
a set of networks. We show comparison on LeNet as it is the
only common benchmark between both the works. As Table 1
shows, our technique achieves an accuracy of 99.3%, which
is close to the accuracy of 99.2% reported by BWN. However,
BWN involves restructuring the original network architecture
whereas our implementation does not introduce any changes
to the architecture.

3.3. Comparison with Quantized Training Methods

Here, we provide comparison to multiple state-of-the-art
quantized training methods considering both weights and
activation quantization. Table 2 summarizes the results of

comparing to PACT, LQ-Net, DSQ, and DoReFa (the baseline)
for several networks (AlexNet, ResNet-18, MobileNet). As
seen, DCQ outperforms these previously reported accuracies
and achieves on average improvements of 0.98%, and 0.96%
for W4/A4 and W3/A3, respectively.

We also provide a comparison against knowledge distillation-
based method Apprentice (Mishra & Marr, 2018), a recent work
which also combines knowledge distillation with quantization.
Table 3 shows that our technique outperforms Apprentice for
both ResNet-20 on CIFAR10, and ResNet-18 on ImageNet
considering ternary weights quantization. The reported im-
provement can be attributed to the fact that DCQ combines the
conventional knowledge distillation approach, as in (Mishra &
Marr, 2018), in addition to its unique intermediate learning ap-
proach by regressing the quantized network intermediate feature
maps to the corresponding full precision ones in a stage wise
fashion. Moreover, the network architecture of the student net-
work in (Mishra & Marr, 2018) is typically different from that of
the teacher network as opposed to DCQ where same network
architecture is utilized for the student network but with quan-
tized weights. From one side, this saves a huge amount of effort
designing a student network architecture which might incur sig-
nificant hyperparameter tuning. On the other side, it enables a
direct finetuning instead of a complete training from scratch as
a result of preserving the original network architecture.

3.4. Analysis: DCQ vs Conventional Binary Kernels

This section provides an analysis of our obtained binary weight
kernels and sheds light on some interesting observations. We
start by posing the following questions: how are trained binary
weight kernels different from just direct binarization from the
original full precision weight kernels? and whether different
training algorithms can yield qualitatively different binary
weight kernels?

Figure 4 shows a visualization of a subset of weight kernels
from the second convolutional layer of LeNet and AlexNet.
(a) is the original full precision kernels, (b) direct binarization
of full precision kernels, and (c) binarization after training
(applying DCQ). In the figure, weights that are different
between the trained binary kernel and the directly binarized
kernel are highlighted with square rectangles across the three
visualizations. Spatially contrasting those highlighted altered
weights on the full precision kernels, it can be noticed that they
mostly share a common feature that is being low in magnitude
(shown as white squares in (a)). From statistical point of view,
Figure 4 (d) shows the original full precision weights histogram
(in blue) and overlaying the portion of the altered weights (in
light orange). We can observe the following. First, during
training, only very small percentage of the weights are actually
altered relative to the total number of weights. Specifically,
in this example, it is around 3.5% and 2.25% for LeNet and
AlexNet respectively, of the total weights got impacted by

DCQ: Divide and Conquer for Quantization

(a) Full Precision (b) Direct Quantization (c) DCQ

Accuracy = 99.1% Accuracy = 10.8% Accuracy = 98.8%

(d) Weights Distribution

Accuracy = 57.1% Accuracy = 40.5% Accuracy = 55.6%

Le
N

et
Al

ex
N

et

2.25 %

3.5 %

Figure 4: Visualization of a subset of weight kernels of the second convolutional layer of LeNet (top row), and AlexNet (bottom row),
highlighting the differences between different versions of binary weight kernels: (a) Full precision weight kernels, (b) binary weight
kernels upon direct binarization from full precision, (c) binary weight kernels obtained using our method DCQ, and (d) weights his-
togram of the convolutional layer highlighting the altered binary weights after training (using DCQ) relative to the original distribution

(b) ResNet-20(a) VGG-11

R
ow

I
D

C
Q

R
ow

 II
C

on
ve

nt
io

na
l

Layer Conv1

(c) AlexNet

Layer Conv1Layer Conv2 Layer Conv2 Layer Conv1 Layer Conv2

2.25 %

6.85 %

1.75 %

7.25 %

3.9 %

82.5 %

4.7 %

83.8 %

13.1 %

68.5 %

6.1 %

14.7 %

Figure 5: Weights histograms of the first two convolutional layers of three different DNNs: (a) VGG11, (b) ResNet-20, and (c)
AlexNet, highlighting the altered portion of the trained binary weights (depicted percentages indicate the exact portion in orange)
relative to the directly binarized weights. Original total weights histograms are shown in blue. Row I shows the results using
our method (DCQ), and Row II shows for the conventional end-to-end taining method.

training. Moreover, despite the marginal difference between the
binary kernels, they experience dramatic accuracy difference:
10.8% vs 98.1% for kernels in (b) and (c) respectively, for
LeNet, and 40.5% and 55.6% for AlexNet.

Now, to check whether this is a general trend and whether
different training algorithms has an impact on this, we extend
our statistical analysis to more networks. Figure 5 shows
weight histograms of the first two convolutional layers of
AlexNet, ResNet-20, and VGG-11. As seen in the figure,
first, for Figure 5 Row I (DCQ), the altered portion of binary
weights during training is consistently small in both number
and magnitude across different layers and different networks.
Second, contrasting that behavior using DCQ vs using the
conventional end-to-end quantized training, as shown in Figure
5 Row II (Conventinoal), we see that binary weight kernels
clearly encounter much more variations during the conventional

end-to-end training as compared to our approach, DCQ.

Comparing the two training algorithms, DCQ yields minimal
changes in the right place to the binary weights as the entire
technique is based on matching the intermediate features
represented by weight kernels. Which, consequently, leads
to faster convergence behavior and higher solution quality
at the same time. Moreover, this opens up the possibility of
magnitude-constrained weight training where only weights
below a certain magnitude are set to be trainable which can
potentially improve the optimization process further.

3.5. Exploratory Studies

Impact of different loss formulations for intermediate
learning. As mentioned in section 2.3, we have examined three
of the most commonly used loss formulations. Namely: (1)
Mean Square Error (MSE); (2) Mean Absolute Error (MAE);

DCQ: Divide and Conquer for Quantization

Figure 6: Loss visualization of intermediate feature maps samples. Row(I): before DCQ training, Row(II): after DCQ training.
Columns show results for different loss formulations. Col(I) MAE, Col(II) MSE, and Col(III) Huber loss. The results are for
the second convolution layer in AlexNet with binary quantization.

Q
ua

nt
iz

ed

(b
ef

or
e

D
C

Q
 tr

ai
ni

ng
)

Q
ua

nt
iz

ed

(a
fte

r D
C

Q
 tr

ai
ni

ng
)

Fu
ll

pr
ec

is
io

n
(re

fe
re

nc
e)

Figure 7: Feature maps before and after DCQ training
compared to full precision maps. The results are for the second
convolution layer in AlexNet with binary quantization.

(3) Huber Loss. Figure 6 shows different samples of feature
maps losses (for the second convolution layer of AlexNet wtih
binary weights). Row(I) shows different samples of feature map
losses before DCQ training. Row(II) shows the losses for the
same samples after DCQ training (matching feature maps). Dif-
ferent columns show different loss formulations. Col(I): MSE
Loss; Col(II): MAE Loss; and Col(III): Huber Loss. As it can
be seen, the feature map losses (the amount of redness) signifi-
cantly decreases after DCQ training as a result of regressing the
quantized model intermediate feature maps to the full precision
counterparts. We can also notice that the behavior is consistent
across different regression losses. Nevertheless, based on our ex-
perimentation, among the considered formulations, MSE seems
to be the most effective during the intermediate learning process.
The trends are similar for the other networks. Figure 7 com-
pares visualizations of different samples of actual feature maps
before and after DCQ training with respect to the full precision
ones demonstrating the effectiveness of the proposed approach.
Lastly, divide and conquer is a very basic and universal engi-
neering principle that is commonly and widely applied across

30

40

50

60

70

80

90

100

0 10 20 30

Ac
cu
ra
cy
(%
)

Epochs

Four Stages
Two Stages
Single Stage
(end-to-end)

Figure 8: Impact of different splitting on the convergence
behavior for VGG-11 (ternary quantization).

a variety of fields. Here, we propose a procedure that extends
such effective principle to quantized training of neural networks.

Impact of the number of splitting points. As number of
splitting points increases, the large optimization problem gets
divided into smaller subproblems. Thus, on one side, it be-
comes easier to solve each subproblem separately. On the other
side, however, the complexity overhead increases as well. We
leave the optimal choice of how many stages a network should
be divided and how many layers per stage to future work. Here,
we provide one experimental example to give some intuition
about the impact of different splitting points. Figure 8 shows
the convergence behavior for different splittings of VGG-11:
four-stage and two-stage splitting as compared to single stage
(conventional knowledge distillation). As seen in the figure,
not only the convergence is faster as number of stages increases
but also it eventually converges to a higher final accuracy as
compared to lesser number of stages or no splitting at all.

3.6. Memory Analysis

Compared to DoReFa, DCQ only needs an extra set of weights
(divided across the nodes) which is same as the other conven-
tional knowledge distillation approaches. However, DCQ does
not impose any extra memory requirements on the activations.
Analysis follows. DoReFa maintains weights in full-precision
(FP) and quantizes them during inference, so, for a network N,
total memory taken by DoReFa is all the FP weights (Wf p) of N.
DCQ sections the network N, to subnets: S1,. . . ,Si,...,Sm, and
maps them to parallel nodes: C1,. . . ,Ci,...,Cm. Since DCQ has

DCQ: Divide and Conquer for Quantization

a FP version of the entire network, C1 is also responsible to run
the inference in the FP mode. Each Ci node only keeps a subset
of the FP weights (Wf p,i) corresponding to its subnet Si and
only trains that subnet. C1, which runs the whole network in FP,
sends each subnet S′is inputs and outputs to the corresponding
nodes (Cis). As such, all the Cis can operate in parallel since
they use knowledge distillation and only need to have their
respective Wf p,i. Memory usage in C1 node =Wf p +Wf p,1.
Memory usage in all other Ci nodes =Wf p,i. Overall memory
usage in the parallel system =Wf p+sum(Wf p,i)=2Wf p (same
as conventional knowledge distillation techniques)

4. Theoretical Analysis
One issue that arises as a result of the strategy of splitting into
sections and training each section separately is accumulation of
error residuals through sections which may impact the overall
performance of the proposed technique. Here, we theoretically
derive an upper bound on the total accumulated error across
the resulting subnetworks after splitting using a chaining
argument and utilizing Lipschitz continuity. A rigorous
analysis bounding the Lipschitz constant of a deep network can
be found in (Virmaux & Scaman, 2018) for arbitrary networks
and (Zou et al., 2019) for particular convolutional networks.

We provide a worst case upper bound on the error, but it is also
possible to establish probabilistic bounds on the error under the
assumption that the quantization error on the weights is uni-
formly random. In particular, one can directly apply the bounds
from (Sakr et al., 2017) to attain probabilistic bounds on the clas-
sification error even for our layer-wise quantization framework.

4.1. Upper Bounding Network-wide Error

Let’s consider a feed-forward full precision network with the
following function formulation.

f f p(x)=(φ (m)◦ φ
(m−1)◦...◦ φ

(1))(x)

where φ (i) is a given layer of the network. Also, for a given
layer, let the quantized layer be denoted φ

(i)
q . If we quantize

every layer, we will refer to the fully quantized network fq.

Assume the application of our quantization scheme leads to an
error in the output of size ‖φ (i)(x)−φ

(i)
q (x)‖<δ . This comes

from the quantization error guarantee of the used technique.
Unless otherwise stated, ‖·‖ refers to the 2-norm. Further,
assume that φ (i) has Lipschitz constant Li. Every one layer
network is always a Lipschitz function, where Li is always
bounded by the norm of the weights matrix (see Appendix A.1
for a full description). Under this model, we can use a simple
triangle inequality to get ‖φ (i)

q (x)−φ
(i)
q (y)‖< Li‖x−y‖+2δ .

Using this fact, and chaining it together across multiple layers,
we are able to bound the pointwise error between the full
precision network and the quantized network.

Theorem 1. Let f f p be an m layer network, and each layer has
Lipschitz constant Li. Assume that quantizing each layer leads

to a maximum pointwise error of δi, and results in a quantized
m layer network fq. Then for a point x∈X, fq satisfies

‖ fq(x)− f f p(x)‖≤3∆m,L,

where ∆m,L=δm+∑
m−1
i=1

(
∏

m
j=i+1L j

)
δi.

The proof can be found in the Appendix A.2.

As the Lipschitz constant of the network is the product of its
individual layers’ Lipschitz constants, L can grow exponentially
if Li≥1. This is the common case for normal network training
(Cisse et al., 2017), and thus the perturbation will be amplified
for such a network. Therefore, to keep the Lipschitz constant
of the whole network small, we need to keep the Lipschitz
constant of each layer Li < 1. This is often done using
regularization or weight clipping (Szegedy et al., 2013; Bartlett
et al., 2017; Cisse et al., 2017; Gouk et al., 2018) to suppress
network’s accumulation of error. We call a network with
Li <1,∀i=1,..., L a non-expansive network. Experimentally,
Lipschitz constant of each layer is found empirically by taking
maxx,y‖φi(x)−φi(y)‖/‖φi−1(x)−φi−1(y)‖.
4.2. Lipschitz Constants in Classification Networks

The Lipschitz constant is traditionally defined for regression
problems where f can take arbitrary values on R, but it also
has implications for classification networks. For a classification
network, the input is labeled data (xi,yi) for yi coming from
one of K classes. Then the last regression layer output f (x)
is a function f : X → RK. This either directly predicts the
probability of classification, or is fed into a softmax layer
to normalize the probabilities. We will work with the f (x)
regression layer (prior to the softmax if there is one) for the
subsequent theory, and use the notation that a network classifies
xi as class k if and only if f (xi)k> f (xi) j for all j 6=k. This still
applies even if a softmax layer is added, as the softmax does
not alter the relative order of its inputs.

A common problem for classification networks is to determine
how much one can perturb the data point xi and maintain the
correct classification.

Definition 1. The output margin of a data point (xi,yi) is

ri :=
1
2

(
f (xi)k−max

j6=k
f (xi) j

)
+

for yi=k, and (x)+=max(x,0).

This is half the minimum amount one must change the network
output to change the classification of xi from class k to some
other class. This leads to the following theorem.

Theorem 2. Let f f p and fq be the full precision and quantized
m layer networks as in Section 4.1. Let L = ∏

m
i=1 Li be the

Lipschitz constant of f f p. Let (xi,yi) be a data point where f f p
correctly classifies xi with output margin ri>0. Then for any

DCQ: Divide and Conquer for Quantization

perturbation η such that

‖η‖<
ri−5∆m,L

L
,

fq will also classify xi+η correctly.

The proof can be found in the Appendix A.2.

This leads to a final method for bounding the probability of
misclassification across all data points for DCQ. The proof
can be seen as a byproduct of Theorem 2 where we count the
number of points for which it’s possible to perturb xi with a
nonzero η and maintain the correct classification.
Theorem 3. Let e f p be the classification error probability
of a full precision network f f p, and eq the classification error
probability of the DCQ quantized network fq. Then we can
bound the quantized classification error probability by

eq≤e f p+(1−e f p)Exi∈X

[
1ri≤5∆m,L

∣∣∣̂yi, f p=yi

]
,

where ri is the output margin of xi for f f p, and ŷi, f p is the
estimated class of xi using f f p.

The proof can be found in the Appendix A.2. We note that ri
can be easily checked for a given full precision network by ex-
amining the last regression layer across all points in the data set.

5. Related Work

Knowledge distillation. Knowledge distillation (Hinton et al.,
2015) is proposed to attain a smaller/shallower neural network
(student) from one or an ensemble of bigger deep networks
(teacher). The student network is trained on a softened ver-
sion of the final output of teacher(s) (Bucila et al., 2006). FIT-
NETS (Romero et al., 2015) extends knowledge distillation by
extracting a hint from the teacher to train even a deeper but thin-
ner student. The hint is an intermediate feature representation
of the teacher, that is used as a regularizer to pretrain the first
few layers of the deep and thin student network. After the pre-
training phase, the full knowledge distillation is used to finish
the training of the student. FITNETS (Romero et al., 2015) does
not explore hints from more than one intermediate layer of the
teacher. Furthermore, FITNETS applies the knowledge distilla-
tion pass over the entire student network at once. FITNETS are
a complementary approach to our sectional knowledge distilla-
tion and similar hints can be utilized for each section. Nonethe-
less, the following discusses the differences. In contrast to this
technique, DCQ (1) partitions the neural network to multiple
independent sections and (2) applies knowledge distillation to
each section in isolation and trains them independently, (3) not
utilizing the intermediate representations as hint for pretraining.
(4) After the sections are trained through knowledge distillation,
they are put together instead of applying another phase of train-
ing as done in FITNETS (Romero et al., 2015). (5) Moreover,
DCQ, exclusively, applies various regression losses in match-
ing the quantized network intermediate feature maps to the cor-
responding full precision ones in a stage wise fashion. (6) Last

but not least, the objective differ as the knowledge distillation
and FITNETS aim to compress the network while DCQ quan-
tizes it preserving the teacher’s original network architecture.

Other work (Yim et al., 2017) proposes an information metric,
in terms of inter-layer flow (the inner product of feature
maps), using which a teacher DNN can transfer the distilled
knowledge to other student DNNs.

Knowledge distillation is also used for training a lower bitwidth
student network from a full-precision teacher (Mishra & Marr,
2018; Polino et al., 2018; Wang et al., 2019). However, these
works do not partition the network as DCQ does and also do
not utilize teacher’s intermediate layers.

Other quantization techniques. Several techniques have
been proposed for quantizing DNNs: algorithmic-wise (Zhou
et al., 2016; Mishra et al., 2018; Zhu et al., 2017; Elthakeb
et al., 2018; 2020), and hardware-wise (Ghodrati et al., 2020;
Samragh et al., 2020).

DoReFa-Net (Zhou et al., 2016) uses straight through
estimator (Bengio et al., 2013) for quantization and extends it
for any arbitrary k bit quantization. DoReFa-Net also proposes
a method to train a CNNs with low bitwidth weights and ac-
tivations, low bitwidth parameter gradients using deterministic
quantization of weights, activations and stochastic quantization
of activations. TTQ (Zhu et al., 2017) proposes a method
to reduce the weights to ternary values by adding scaling
coefficients to each layer. These scaling coefficients are learnt
during training and during deployment, weights are directly
quantized to ternary bitwidths and these scaling coefficients are
used to scale the weights during inference. PACT (Choi et al.,
2018) proposes a technique for quantizing activations using
an activation clipping parameter which is optimized during
training. There have also been a lot of efforts (Rastegari et al.,
2016a; Li & Liu, 2016; Hubara et al., 2017b) to binarize neural
networks at the cost of some accuracy loss.

However, these inspiring efforts do not introduce sectioning
nor they leverage knowledge distillation in the context of either
quantization or binarizing the neural networks.

6. Conclusion
Quantization offers a promising path forward to reduce the
compute complexity and memory footprint of deep neural
networks. This paper sets out to tackle the main challenge
in quantization, recovering as much accuracy as possible. To
that end, we developed a sectional multi-backpropagation
algorithm that leverages multiple instances of knowledge
distillation and intermediate feature representations to teach a
quantized student through divide and conquer. This algorithm,
DCQ, achieves significantly higher accuracy compared to
the state-of-the-art quantization methods by exploring a new
sectional approach towards knowledge distillation.

DCQ: Divide and Conquer for Quantization

Acknowledgements
This work was in part supported by National Science
Foundation (NSF) awards CN#1703812, ECCS#1609823,
CCF#1553192, DMS#2012266, DMS#1819222, Semicon-
ductor Research Corporation (SRC) contract #2019-SD-2884,
Russel Sage Foundation award #2196, Air Force Office of
Scientific Research (AFOSR) Young Investigator Program
(YIP) award #FA9550-17-1-0274, National Institute of Health
(NIH) award #R01EB028350, Air Force Research Laboratory
(AFRL) and Defense Advanced Research Project Agency
(DARPA) under agreement number #FA8650-20-2-7009
and #HR0011-18-C-0020, and gifts from Microsoft, Google,
Qualcomm, Xilinx. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
Microsoft, Google, Qualcomm, Xilinx, SRC, Sage Foundation,
NSF, AFSOR, NIH, AFRL, DARPA or the U.S. Government.

References
Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. Spectrally-

normalized margin bounds for neural networks. In Advances
in Neural Information Processing Systems, pp. 6240–6249,
2017.

Bengio, Y., Léonard, N., and Courville, A. C. Estimating
or propagating gradients through stochastic neurons for
conditional computation. CoRR, abs/1308.3432, 2013. URL
http://arxiv.org/abs/1308.3432.

Bucila, C., Caruana, R., and Niculescu-Mizil, A. Model
compression. In Eliassi-Rad, T., Ungar, L. H., Craven,
M., and Gunopulos, D. (eds.), Proceedings of the Twelfth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Philadelphia, PA, USA,
August 20-23, 2006, pp. 535–541. ACM, 2006. ISBN
1-59593-339-5. doi: 10.1145/1150402.1150464. URL
https://doi.org/10.1145/1150402.1150464.

Choi, J., Wang, Z., Venkataramani, S., Chuang, P. I.-J.,
Srinivasan, V., and Gopalakrishnan, K. Pact: Parameterized
clipping activation for quantized neural networks. CoRR,
abs/1805.06085, 2018.

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and Usunier,
N. Parseval networks: Improving robustness to adversarial
examples. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 854–863.
JMLR. org, 2017.

Courbariaux, M., Bengio, Y., and David, J. Binaryconnect:
Training deep neural networks with binary weights during

propagations. In Cortes, C., Lawrence, N. D., Lee, D. D.,
Sugiyama, M., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, pp. 3123–3131, 2015.

Elthakeb, A. T., Pilligundla, P., Mireshghallah, F., Yazdan-
bakhsh, A., and Esmaeilzadeh, H. ReLeQ: A reinforcement
learning approach for deep quantization of neural networks.
Advances in Neural Information Processing Systems
(NeurIPS) Workshop on Machine Learning for Systems,
2018. URL https://arxiv.org/abs/1811.01704.

Elthakeb, A. T., Pilligundla, P., Mireshghallah, F., Elgindi,
T., Deledalle, C.-A., and Esmaeilzadeh, H. WaveQ:
Gradient-based deep quantization of neural networks
through sinusoidal adaptive regularization. arXiv preprint
arXiv:2003.00146, 2020.

Ghodrati, S., Sharma, H., Young, C., Kim, N. S., and
Esmaeilzadeh, H. Bit-parallel vector composability for
neural acceleration. arXiv preprint arXiv:2004.05333, 2020.

Gong, R., Liu, X., Jiang, S., Li, T., Hu, P., Lin, J.,
Yu, F., and Yan, J. Differentiable soft quantiza-
tion: Bridging full-precision and low-bit neural
networks. CoRR, abs/1908.05033, 2019. URL
http://arxiv.org/abs/1908.05033.

Gouk, H., Frank, E., Pfahringer, B., and Cree, M. Regulari-
sation of neural networks by enforcing lipschitz continuity.
arXiv preprint arXiv:1804.04368, 2018.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan,
P. Deep learning with limited numerical precision.
In Bach, F. R. and Blei, D. M. (eds.), Proceedings
of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Pro-
ceedings, pp. 1737–1746. JMLR.org, 2015. URL
http://jmlr.org/proceedings/papers/v37/gupta15.html.

Hauswald, J., Laurenzano, M., Zhang, Y., Li, C., Rovinski,
A., Khurana, A., Dreslinski, R. G., Mudge, T. N., Petrucci,
V., Tang, L., and Mars, J. Sirius: An open end-to-end voice
and vision personal assistant and its implications for future
warehouse scale computers. In ASPLOS, 2015.

Hinton, G. E., Vinyals, O., and Dean, J. Distilling the
knowledge in a neural network. CoRR, abs/1503.02531,
2015. URL http://arxiv.org/abs/1503.02531.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Quantized neural networks: Training neural
networks with low precision weights and activations.
Journal of Machine Learning Research, 18:187:1–187:30,
2017a. URL http://jmlr.org/papers/v18/16-456.html.

http://arxiv.org/abs/1308.3432
https://doi.org/10.1145/1150402.1150464
https://arxiv.org/abs/1811.01704
http://arxiv.org/abs/1908.05033
http://jmlr.org/proceedings/papers/v37/gupta15.html
http://arxiv.org/abs/1503.02531
http://jmlr.org/papers/v18/16-456.html

DCQ: Divide and Conquer for Quantization

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Quantized Neural Networks: Training Neural
Networks with Low Precision Weights and Activations. J.
Mach. Learn. Res., 2017b.

Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals,
O., Graves, A., Silver, D., and Kavukcuoglu, K. De-
coupled neural interfaces using synthetic gradients. In
Precup, D. and Teh, Y. W. (eds.), Proceedings of the
34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 1627–1635. PMLR, 2017. URL
http://proceedings.mlr.press/v70/jaderberg17a.html.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Bartlett, P. L., Pereira, F. C. N., Burges, C. J. C.,
Bottou, L., and Weinberger, K. Q. (eds.), Advances in
Neural Information Processing Systems 25: 26th Annual
Conference on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States., pp. 1106–1114, 2012.

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W. E., and Jackel, L. D. Backpropagation
applied to handwritten zip code recognition. Neural
Computation, 1:541–551, 1989.

LeCun, Y., Bengio, Y., and Hinton, G. E. Deep learning. Na-
ture, 521(7553):436–444, 2015. doi: 10.1038/nature14539.
URL https://doi.org/10.1038/nature14539.

Li, F. and Liu, B. Ternary Weight Networks. CoRR,
abs/1605.04711, 2016.

Mishra, A. and Marr, D. Apprentice: Using Knowledge
Distillation Techniques To Improve Low-Precision Network
Accuracy. In International Conference on Learning
Representations, 2018.

Mishra, A. K., Nurvitadhi, E., Cook, J. J., and Marr, D. WRPN:
Wide Reduced-Precision Networks. In ICLR, 2018.

Polino, A., Pascanu, R., and Alistarh, D. Model compression
via distillation and quantization. In 6th International
Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Con-
ference Track Proceedings. OpenReview.net, 2018. URL
https://openreview.net/forum?id=S1XolQbRW.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A.
XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks. In ECCV, 2016a.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A.
XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks. In European Conference
on Computer Vision, pp. 525–542, 2016b.

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C.,
and Bengio, Y. Fitnets: Hints for thin deep nets. In Bengio,
Y. and LeCun, Y. (eds.), 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6550.

Sakr, C., Kim, Y., and Shanbhag, N. Analytical guarantees
on numerical precision of deep neural networks. In
Precup, D. and Teh, Y. W. (eds.), Proceedings of the
34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Re-
search, pp. 3007–3016, International Convention Centre,
Sydney, Australia, 06–11 Aug 2017. PMLR. URL
http://proceedings.mlr.press/v70/sakr17a.html.

Samragh, M., javaheripi, m., and Koushanfar, F. Encodeep:
Realizing bit-flexible encoding for deep neural networks.
ACM Transactions on Embedded Computing Systems
(TECS), 2020.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Virmaux, A. and Scaman, K. Lipschitz regularity of deep
neural networks: analysis and efficient estimation. In
Advances in Neural Information Processing Systems, pp.
3835–3844, 2018.

Wang, J., Bao, W., Sun, L., Zhu, X., Cao, B., and Yu, P. S.
Private model compression via knowledge distillation. In
The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications
of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019., pp. 1190–1197.
AAAI Press, 2019. ISBN 978-1-57735-809-1. URL
https://aaai.org/ojs/index.php/AAAI/article/view/3913.

Yim, J., Joo, D., Bae, J., and Kim, J. A gift from knowledge
distillation: Fast optimization, network minimization and
transfer learning. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, July 21-26, 2017, pp. 7130–7138. IEEE Computer So-
ciety, 2017. ISBN 978-1-5386-0457-1. doi: 10.1109/CVPR.
2017.754. URL https://doi.org/10.1109/CVPR.2017.754.

Zhang, D., Yang, J., Ye, D., and Hua, G. Lq-nets: Learned
quantization for highly accurate and compact deep neural
networks. In Ferrari, V., Hebert, M., Sminchisescu, C., and
Weiss, Y. (eds.), Computer Vision - ECCV 2018 - 15th Euro-
pean Conference, Munich, Germany, September 8-14, 2018,
Proceedings, Part VIII, volume 11212 of Lecture Notes
in Computer Science, pp. 373–390. Springer, 2018. ISBN

http://proceedings.mlr.press/v70/jaderberg17a.html
https://doi.org/10.1038/nature14539
https://openreview.net/forum?id=S1XolQbRW
http://arxiv.org/abs/1412.6550
http://proceedings.mlr.press/v70/sakr17a.html
https://aaai.org/ojs/index.php/AAAI/article/view/3913
https://doi.org/10.1109/CVPR.2017.754

DCQ: Divide and Conquer for Quantization

978-3-030-01236-6. doi: 10.1007/978-3-030-01237-3\ 23.
URL https://doi.org/10.1007/978-3-030-01237-3 23.

Zhou, A., Yao, A., Guo, Y., Xu, L., and Chen, Y. Incremental
network quantization: Towards lossless cnns with low-
precision weights. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.
URL https://openreview.net/forum?id=HyQJ-mclg.

Zhou, S., Ni, Z., Zhou, X., Wen, H., Wu, Y., and Zou, Y.
Dorefa-net: Training low bitwidth convolutional neural net-
works with low bitwidth gradients. CoRR, abs/1606.06160,
2016. URL http://arxiv.org/abs/1606.06160.

Zhu, C., Han, S., Mao, H., and Dally, W. J. Trained Ternary
Quantization. In ICLR, 2017.

Zmora, N., Jacob, G., and Novik, G. Neural network
distiller, June 2018. URL https://doi.org/10.5281/zenodo.
1297430.

Zou, D., Balan, R., and Singh, M. On lipschitz bounds of
general convolutional neural networks. IEEE Transactions
on Information Theory, 2019.

https://doi.org/10.1007/978-3-030-01237-3_23
https://openreview.net/forum?id=HyQJ-mclg
http://arxiv.org/abs/1606.06160
https://doi.org/10.5281/zenodo.1297430
https://doi.org/10.5281/zenodo.1297430

	Introduction
	DCQ: Divide and Conquer for Quantization
	Matching Activations for Intermediate Layers
	Splitting, Training and Merging
	Loss Function for Training Sub Networks
	Overall Algorithm

	Experimental Results
	Experimental Setup
	 Binarization and Ternarization using DCQ
	Comparison with Quantized Training Methods
	Analysis: DCQ vs Conventional Binary Kernels
	Exploratory Studies
	Memory Analysis

	Theoretical Analysis
	Upper Bounding Network-wide Error
	Lipschitz Constants in Classification Networks

	Related Work
	Conclusion

