DCQ: Divide and Conquer for Quantization

A. Appendix
A.1. Lipschitz Constants

The Lipschitz constant describes: when input changes, how much does the output change correspondingly. For a function f: X —7Y,
if it satisfies

1f () = fle)ly <Ll —xallx, Vx10€X

for L >0, and norms ||-|[x and |||y on their respective spaces, then we call & Lipschitz continuous and L is the known as the
Lipschitz constant of 4.

For a one layer network, full precision network [y, has Lipschitz constant L, which satisfies
do
L<Cs||Wyp| for Co= =
This bound is immediate from the fact that V f7,(x) =6’ (Wypx)- [W.1 ... W.4], and L<max||V f7,(x)]].

A.2. Proofs and Additional Lemmas

Lemma 1. Let fy, be an m layer network, and each layer has Lipschitz constant L;. Assume that quantizing each layer leads
to a maximum pointwise error of 0;, and results in a quantized m layer network f,. Then for any two points x,y€X, f; satisfies

[1fa(0) = fa)lI< <HL/'> [x—y[[4-2Am.1,
=1
_ m—1 m
where Ay = 8n+ Y (Hj:i+1Lj) 0.

Proof of Lemmal|l| Let (])[y) be the quantized " layer of the network. From Section we know that

1047 (0) = 908 )| < Lillx—]|+28:.

Similarly, we know that feeding in the previous layer’s quantized output yields

1057065 (1) =0 0 8SV ()| < La |8 () — 08 ()| 4285
<L Li|jx—y||+2L6, +26;.

By chaining together the i layers inductively up to m, we complete the desired inequality. O

Proof of Theorem[l] We know that |\¢‘§”(x) — ¢ (x)||< 8y. This means ¢?) receives different inputs depending on whether ¢ (1)
was quantized or not, and thus requires the Lipschitz bound. Thus

1957 (95" ()~ 0P (6D ) < 1657 (08" () — 6 (9D () | +11987 (01 (x) — 9@ (6 ()|
< (L2047 () =0V () [+282) +6
§2L281 +3&7

where the second ineuqlity comes from Lemmam Chaining the argument for the /" layer inductively up to m, we arrive at the
desired inequality. O

Proof of Theorem[2] From the guarantee of Lemma|I] we know

(1 fqem) = fg ()| S LI Ce-1) =2 +-2A, 1.
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If we consider a full precision network [y, that classifies x; correctly with output margin r; > 0, then we must simply apply a
triangle inequality to attain

I fg Citm) = frp () || < |1 fg Ceim) — S (i) 1411 f (i) — o ()|
<L||(xi4+1) —xi||+2Am L +3AmL

Thus for 1) such that [|n]|< "= we will attain || £, (xi+1)— f, ()| <7

Since we also have that ||z||..< ||z]|> for any z € RX, this means that || f;(x;+ 1) — f7,(x;)||< 1. If ff, Classifies x; as class k,
this means that

ffp(x,-)k—ffp(x,-)j >2r;, V];ék
By the triangle inequality, we get

St M= fg (it m) = fo Gt — fo (xi+1) j 2 frp () frp(x0)
= (fg etk —Frp(i) — (fg (1) = Frp (i) 1)+ (Frp i) — frp (x2) )

> —ri—ri+2r;
>0.
Since this difference is strictly greater than 0, f classifies x+1) correctly. O

Proof of Theorem[3] Lety; ¢, be the estimated class of x; using f, and y; , be the estimated class of x; using f;. We use basic
probabilistic bounds (where the probability is a uniform distribution over the dataset) to arrive at

Pr@i.,q #Yi )

Pr(yi g #vi and 3 g # i) +Pr(Vig # i and 3 p = yi)
Pr(yi,pp 7 i) +Pr(Vi rp =i and ¥ 4 # i 1p)
erp+Pr(ipp=yi)Pr(Vig # i, fp Vi.rp =Vi)

€fp +(1 *efp)Pr(yi.,q #yi.,fp Bj\i,fp =)
=efp+(1—epp)(1=PrQig =i rplYi.fp=i))

€q

IAINCIA

All that remains is lower bounding the final conditional probability of matching. However, this can be done using Theorem 2}
We know that 3; ;=7 1, 50 long as || fy(x;)+ /7 (xi)||e< ri. From Theorem[2} a sufficient condition for this is for r;—5A,, 1> 0, as
r,-75Am‘L

this implies one can construct a neighborhood of positive radius ||n||< === such that || f; (x;+1)+ffp(xi)||< 7. In particular,

this implies || f; (x;)+ f7p(xi)||< ri by choosing 7 =0. This gives us

Pr(Yig =i pp i rp=yi) =Pr([lfq (i) +Fp ()| < ril3ipp = 1)
>Pr(38>0,9|[n|[< 8,1 fg (it1)+Frp (xi) le < rilyi pp =)

ri_SAm.,L ~
I Yi.fp=Yi

yi,fp:yi} .

\Y

Pr >0

= Ex,' ex |:1r,- >5Am,L

Combining these terms, we arrive at

eg<epp+(l—esp) (1 —Exex |:1ri>5Am¢L

?i,.fp:yi])

Vi.fp :yz} -

= efp +(1 _efp)EXiEX |:1ri§5Am,L
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