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A. Appendix
A.1. Lipschitz Constants

The Lipschitz constant describes: when input changes, how much does the output change correspondingly. For a function f :X→Y ,
if it satisfies

‖ f (x1)− f (x2)‖Y≤L‖x1−x2‖X , ∀ x1,x2∈X

for L≥ 0, and norms ‖·‖X and ‖·‖Y on their respective spaces, then we call h Lipschitz continuous and L is the known as the
Lipschitz constant of h.

For a one layer network, full precision network f f p has Lipschitz constant L, which satisfies

L≤Cσ‖Wf p‖ for Cσ =
dσ

dx
.

This bound is immediate from the fact that ∇ f f p(x)=σ ′(Wf px)·
[
W·,1 ... W·,d

]
, and L≤maxx‖∇ f f p(x)‖.

A.2. Proofs and Additional Lemmas

Lemma 1. Let f f p be an m layer network, and each layer has Lipschitz constant Li. Assume that quantizing each layer leads
to a maximum pointwise error of δi, and results in a quantized m layer network fq. Then for any two points x,y∈X, fq satisfies

‖ fq(x)− fq(y)‖<

(
m

∏
j=1

L j

)
‖x−y‖+2∆m,L,

where ∆m,L=δm+∑
m−1
i=1

(
∏

m
j=i+1L j

)
δi.

Proof of Lemma 1. Let φ
(i)
q be the quantized ith layer of the network. From Section A.1, we know that

‖φ (i)
q (x)−φ

(i)
q (y)‖<Li‖x−y‖+2δi.

Similarly, we know that feeding in the previous layer’s quantized output yields

‖φ (2)
q ◦φ (1)

q (x)−φ
(2)
q ◦φ (1)

q (y)‖≤L2‖φ (1)
q (x)−φ

(1)
q (y)‖+2δ2

≤L2L1‖x−y‖+2L2δ1+2δ2.

By chaining together the i layers inductively up to m, we complete the desired inequality.

Proof of Theorem 1. We know that ‖φ (1)
q (x)−φ (1)(x)‖<δ1. This means φ (2) receives different inputs depending on whether φ (1)

was quantized or not, and thus requires the Lipschitz bound. Thus

‖φ (2)
q ((φ

(1)
q (x))−φ

(2)(φ (1)(x))‖≤‖φ (2)
q (φ

(1)
q (x))−φ

(2)
q (φ (1)(x))‖+‖φ (2)

q (φ (1)(x))−φ
(2)(φ (1)(x))‖

≤
(

L2‖φ (1)
q (x)−φ

(1)(x)‖+2δ2

)
+δ2

≤2L2δ1+3δ2,

where the second ineuqlity comes from Lemma 1. Chaining the argument for the ith layer inductively up to m, we arrive at the
desired inequality.

Proof of Theorem 2. From the guarantee of Lemma 1, we know

‖ fq(x+η)− fq(x)‖≤L‖(x+η)−x‖+2∆m,L.
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If we consider a full precision network f f p that classifies xi correctly with output margin ri > 0, then we must simply apply a
triangle inequality to attain

‖ fq(xi+η)− f f p(xi)‖≤‖ fq(xi+η)− fq(xi)‖+‖ fq(xi)− f f p(xi)‖
≤L‖(xi+η)−xi‖+2∆m,L+3∆m,L.

Thus for η such that ‖η‖< ri−5∆m,L
L , we will attain ‖ fq(xi+η)− f f p(xi)‖<ri.

Since we also have that ‖z‖∞≤‖z‖2 for any z∈RK, this means that ‖ fq(xi+η)− f f p(xi)‖∞< ri. If f f p classifies xi as class k,
this means that

f f p(xi)k− f f p(xi) j≥2ri, ∀ j 6=k.

By the triangle inequality, we get

fq(xi+η)k− fq(xi+η) j= fq(xi+η)k− fq(xi+η) j± f f p(xi)k± f f p(xi) j

=( fq(xi+η)k− f f p(xi)k)−( fq(xi+η) j− f f p(xi) j)+( f f p(xi)k− f f p(xi) j)

>−ri−ri+2ri

≥0.

Since this difference is strictly greater than 0, fq classifies x+η correctly.

Proof of Theorem 3. Let ŷi, f p be the estimated class of xi using f f p and ŷi,q be the estimated class of xi using fq. We use basic
probabilistic bounds (where the probability is a uniform distribution over the dataset) to arrive at

eq=Pr(̂yi,q 6=yi)

=Pr(̂yi,q 6=yi and ŷi, f p 6=yi)+Pr(̂yi,q 6=yi and ŷi, f p=yi)

≤Pr(̂yi, f p 6=yi)+Pr(̂yi, f p=yi and ŷi,q 6= ŷi, f p)

≤e f p+Pr(̂yi, f p=yi)Pr(̂yi,q 6= ŷi, f p|̂yi, f p=yi)

≤e f p+(1−e f p)Pr(̂yi,q 6= ŷi, f p|̂yi, f p=yi)

=e f p+(1−e f p)(1−Pr(̂yi,q= ŷi, f p|̂yi, f p=yi))

All that remains is lower bounding the final conditional probability of matching. However, this can be done using Theorem 2.
We know that ŷi,q= ŷi, f p so long as ‖ fq(xi)+ f f p(xi)‖∞<ri. From Theorem 2, a sufficient condition for this is for ri−5∆m,L>0, as
this implies one can construct a neighborhood of positive radius ‖η‖< ri−5∆m,L

L such that ‖ fq(xi+η)+ f f p(xi)‖∞<ri. In particular,
this implies ‖ fq(xi)+ f f p(xi)‖∞<ri by choosing η=0. This gives us

Pr(̂yi,q= ŷi, f p|̂yi, f p=yi)=Pr(‖ fq(xi)+ f f p(xi)‖∞<ri|̂yi, f p=yi)

≥Pr(∃δ≥0,∀‖η‖<δ ,‖ fq(xi+η)+ f f p(xi)‖∞<ri|̂yi, f p=yi)

≥Pr
(

ri−5∆m,L

L
>0
∣∣∣̂yi, f p=yi

)
=Exi∈X

[
1ri>5∆m,L

∣∣∣̂yi, f p=yi

]
.

Combining these terms, we arrive at

eq≤e f p+(1−e f p)
(

1−Exi∈X

[
1ri>5∆m,L

∣∣∣̂yi, f p=yi

])
=e f p+(1−e f p)Exi∈X

[
1ri≤5∆m,L

∣∣∣̂yi, f p=yi

]
.
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