Decision Trees for Decision-Making under the
Predict-then-Optimize Framework

Adam N. Elmachtoub! Jason Cheuk Nam Liang? Ryan McNellis ' 3

Abstract

We consider the use of decision trees for
decision-making problems under the predict-
then-optimize framework. That is, we would like
to first use a decision tree to predict unknown in-
put parameters of an optimization problem, and
then make decisions by solving the optimization
problem using the predicted parameters. A nat-
ural loss function in this framework is to mea-
sure the suboptimality of the decisions induced
by the predicted input parameters, as opposed
to measuring loss using input parameter predic-
tion error. This natural loss function is known in
the literature as the Smart Predict-then-Optimize
(SPO) loss, and we propose a tractable methodol-
ogy called SPO Trees (SPOTs) for training deci-
sion trees under this loss. SPOTs benefit from
the interpretability of decision trees, providing
an interpretable segmentation of contextual fea-
tures into groups with distinct optimal solutions
to the optimization problem of interest. We con-
duct several numerical experiments on synthetic
and real data including the prediction of travel
times for shortest path problems and predicting
click probabilities for news article recommen-
dation. We demonstrate on these datasets that
SPOTs simultaneously provide higher quality de-
cisions and significantly lower model complex-
ity than other machine learning approaches (e.g.,
CART) trained to minimize prediction error.

"Department of Industrial Engineering and Operations Re-
search and Data Science Institute, Columbia University, NY, USA
2Operations Research Center, Massachusetts Institute of Technol-
ogy, MA, USA *Amazon, NY, USA. Publication written prior to
Amazon employment. Correspondence to: Adam N. Elmachtoub
<adam@ieor.columbia.edu>, Jason Cheuk Nam Liang <jcn-
liang@mit.edu>, Ryan McNellis <rtm2130@columbia.edu, rm-
cnell@amazon.com>>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

1. Introduction

Many decision-making problems of interest to practition-
ers can be framed as optimization problems containing un-
certain input parameters to be estimated from data. For
example, personalized advertising requires estimation of
click/conversion probabilities as a function of user features,
portfolio optimization problems necessitate accurate pre-
dictions of asset returns, and delivery routing problems re-
quire forecasts of travel times. A convenient and widely-
utilized framework for addressing these problems is the
predict-then-optimize framework. Predict-then-optimize is
a two step approach which (i) first predicts any uncertain
input parameters using a machine learning (ML) model
trained on historical data, and (ii) then generates decisions
by solving the corresponding optimization problem using
the predicted parameters. Typically, the ML models in this
framework are trained using loss functions measuring pre-
diction error (e.g., mean squared error) without considering
the impact of the predictions on the downstream optimiza-
tion problem. However, for many practitioners, the primary
interest is in obtaining near-optimal decisions from the in-
put parameter estimates rather than minimizing prediction
error. In this work, we provide a methodology for training
decision trees, under the predict-then-optimize framework,
to minimize decision error rather than prediction error.

A natural idea is to integrate the prediction task with the op-
timization task, training the ML models using a loss func-
tion which directly measures the suboptimality of the deci-
sions induced by the predicted input parameters. Elmach-
toub & Grigas (2017) propose such a loss function for a
broad class of decision-making problems, which they re-
fer to as the Smart Predict-then-Optimize loss (SPO loss).
However, the authors note that training ML models using
SPO loss is likely infeasible due to the SPO loss function
being nonconvex and discontinuous (and therefore not dif-
ferentiable). The authors therefore propose a convex sur-
rogate loss function they refer to as SPO+ loss, which they
show is Fisher consistent with respect to SPO loss under
some assumptions. Wilder et al. (2019a) also note the non-
differentiability of SPO loss and modify the objective func-
tion of the nominal optimization problem to derive a differ-
entiable, surrogate loss function. Both works demonstrate

Decision Trees for Decision-Making under the Predict-then-Optimize Framework

empirically that training ML models using the surrogate
loss functions yields better decisions than models trained
to minimize prediction error. However, the surrogate loss
functions are not guaranteed to recover optimal decisions
with respect to SPO loss and merely serve as approxima-
tions for computational feasibility. A practical and general
methodology for training ML models using SPO loss di-
rectly has not yet been proposed.

In this work, we present algorithms for training decision
trees to minimize SPO loss, which we call SPO Trees
(SPOTs). Despite the nonconvexity and discontunity of the
SPO loss function, we show that the optimization problem
for training decision tree models with respect to SPO loss
can be greatly simplified through exploiting certain struc-
tural properties of decision trees. Therefore, to the best
of our knowledge, we provide the first tractable methodol-
ogy for training an ML model using SPO loss for a gen-
eral class of decision-making problems. Decision trees
are typically trained using “greedy” recursive partitioning
approaches to minimize prediction error such as the pop-
ular CART algorithm (Breiman et al., 1984); several re-
cent works have also proposed integer programming strate-
gies for training decision trees to optimality (Bertsimas &
Dunn, 2017; Giinliik et al., 2018; Verwer & Zhang, 2019;
Hu et al., 2019; Aghaei et al., 2020). We propose tractable
extensions of the greedy and integer programming method-
ologies from the literature to train decision trees using SPO
loss. We also provide methodology for training an ensem-
ble of SPO Trees to boost decision performance, which
we refer to as SPO Forests. We conduct several numer-
ical experiments on synthetic and real data demonstrat-
ing that SPOTs simultaneously find higher quality deci-
sions while exhibiting significantly lower model complex-
ity (i.e., depth) than other tree-building approaches trained
to only minimize prediction error (e.g., CART). Implemen-
tations of our algorithms and experiments may be found at
https://github.com/rtm2130/SPOTree.

We remark that the use of decision trees for decision-
making problems has seen increased attention in practice
and recent literature due to their interpretability (Kallus,
2017; Elmachtoub et al., 2017; Ciocan & Misié¢, 2018;
Bertsimas et al., 2019; Aghaei et al., 2019; Aouad et al.,
2019). Decision trees for decision-making are seen as inter-
pretable since their splits which map features to decisions
are easily visualized. One of our key findings is that SPOT's
end up being even more interpretable than trees trained to
minimize prediction error as they require significantly less
leaves to yield high-quality decisions. Finally, we note that
decision trees exhibit several desirable properties as esti-
mators. Namely, they are nonparametric, allowing them to
capture nonlinear relationships and interaction terms which
would have to be manually specified in other models such
as linear regression.

1.1. Literature Review

There have been several approaches proposed in the re-
cent literature for training decision tree models for optimal
decision-making. Bertsimas & Kallus (2019) show how to
properly leverage ML algorithms, including decision trees,
in order to yield asymptotically optimal decisions to a class
of stochastic optimization problems. However, their deci-
sion trees are trained in the same procedure as CART (but
applied differently) and thus do not take into consideration
the structure of the underlying decision-making problem.
There has also been several recent works on training deci-
sion trees for personalizing treatments among a finite set
of possible options. Kallus (2017) uses a loss function for
training their trees which maximizes the efficacy of the rec-
ommended treatments rather than minimizing prediction
error. Bertsimas et al. (2019) consider a similar treatment
recommendation problem, but their approach uses an ob-
jective function involving a weighted combination of pre-
diction and decision error. Our approach considers a more
general class of decision-making problems potentially in-
volving a large number of decisions represented by a gen-
eral feasible region. Aghaei et al. (2019) propose method-
ology for training decision trees for decision-making prob-
lems using a loss function which penalizes predictions that
discriminate on sensitive features such as race or gender.
However, their loss function does not consider the impact
of predictions on downstream decisions, instead seeking to
minimize prediction error.

We also summarize a few additional approaches proposed
in the literature which successfully apply other types of ML
models to decision-making problems. Kao et al. (2009)
propose a loss function for training linear regression mod-
els which minimizes a convex combination between the
prediction error and decision error. In addition to not con-
sidering decision tree models, their setting considers only
quadratic optimization problems with no constraints. Donti
etal. (2017) provide a more general methodology related to
this line of work that relies on differentiating the optimiza-
tion problem. Wilder et al. (2019b) consider the problem
of optimizing a function whose input is a graph structure
that is unknown but can be estimated through prediction.
Their end-to-end learning procedure involves constructing
a simpler optimization problem in continuous space as a
differentiable proxy for the more complex graph optimiza-
tion problem. Wilder et al. (2019a); Mandi et al. (2020)
consider training ML models using “decision-focused” loss
functions for various combinatorial optimization problems;
their methods do not attempt to minimize SPO loss di-
rectly but rather employ simpler surrogate loss functions.
Demirovic et al. (2019) propose methodology for training
linear regression models to directly minimize SPO loss, but
their approach is specialized for ranking optimization prob-
lems. By contrast, we propose methodology for training

https://github.com/rtm2130/SPOTree

Decision Trees for Decision-Making under the Predict-then-Optimize Framework

decision trees under SPO loss for a more general class of
optimization problems (which subsumes ranking problems
as a special case).

2. The Predict-then-Optimize Framework

In this section, we summarize the predict-then-optimize
framework and the SPO loss proposed in Elmachtoub &
Grigas (2017). We focus on a general class of decision-
making problems which can be described by an optimiza-
tion problem with known constraints and an unknown lin-
ear objective function (at the time of solving) which can
be predicted from feature data. Many relevant problems of
interest fall under this general structure, include predicting
travel times for shortest path problems, predicting demand
for inventory management problems, and predicting returns
for portfolio optimization.

We let S C R? denote the feasible region for the deci-
sions, where d is the dimension of the decision space. The
decision-making problem can then defined mathematically
as 2*(c) = minyes c’w, where ¢ € RY is a cost vector
of the optimization problem and w € R? is the vector of
decision variables. Let W*(c) = argmin, cg{c’w} de-
note the set of optimal decisions corresponding to z*(c),
and let w*(c) denote an arbitrary individual member of the
set W*(c). It is assumed that S is specified in such a way
that the computation of w*(c) and z*(c) are tractable for
any cost vector c; for example, commercial optimization
solvers are known to capably solve optimization problems
with linear, conic, and/or integer constraints.

In the predict-then-optimize framework, the true cost vec-
tor is not known at the time of solving w™*(-) for an optimal
decision, and thus a predicted cost vector ¢ is used instead.
Our predictions will rely on training a ML model from a
given dataset {(x1,¢1), (%2, c2), ..., (Xn,cn)}, where x €
RP denote a vector of p features available for predicting c.
The n feature-cost samples in the dataset are assumed to
be independently and identically distributed according to
an unknown joint distribution on x and c. Let ‘H denote a
hypothesis class of candidate ML models f : R? — R?
for predicting cost vectors from feature vectors, where
¢ = f(z) is interpreted as the predicted cost vector as-
sociated with feature vector = for model f. Finally, let
{(-,-) : R® x R? — R, denote the loss function used to
train the ML models, where £(¢, ¢) scores the loss incurred
by a prediction of ¢ when the true cost vector is ¢. Given
a specified hypothesis class H and loss function (-, -), the
ML models are trained through solving the following em-
pirical risk minimization problem:

%ZZL:I 0(f(x),¢) (D

In words, the trained ML model f* is the model in the hy-
pothesis class H which achieves the smallest average loss

[T =argmingcy

on the training data with respect to the given loss func-
tion £(-,-). When presented with a new feature vector z,
the model f* can be applied in predicting a cost vector
¢ = f*(x), and an optimal decision w*(¢) is then proposed
using the prediction ¢.

One common loss function is mean squared error (MSE)
loss, defined as £y;5E(¢,¢) = ||é — c||3. By compari-
son, SPO loss scores predicted costs not by their prediction
error but rather by the quality of the decisions that they in-
duce. Mathematically, SPO loss measures the excess cost
cTw*(¢) — z*(c) incurred from making the (potentially)
sub-optimal decision w*(¢) implied by prediction ¢ when
the true cost is ¢. Note that W*(¢) may contain more than
one optimal solution associated with ¢. Therefore, Elmach-
toub & Grigas (2017) define SPO loss with respect to the
worst-case decision from a predicted cost vector ¢, defined
mathematically below:

lspo(é,c) == max,ew= @ {cTw} —2%(c). (2)

The authors note that training ML models under SPO loss
directly is likely infeasible, as SPO loss is nonconvex and
discontinuous (and thus not differentiable) with respect to
a given prediction ¢. Therefore, the authors instead pro-
vide an algorithm for training linear models using a con-
vex surrogate loss function called SPO+ loss. Wilder et al.
(2019a) also note the nondifferentiability of SPO loss and
modify the objective function of the nominal optimization
problem to derive a differentiable, surrogate loss function.
In contrast to prior work, we provide multiple strategies for
training decision trees using the SPO loss function directly.
Our methodology is presented in Section 4.

3. Decision Trees for Decision-Making

In this work, we utilize decision trees under the predict-
then-optimize framework. To illustrate this concept, we
consider a simple shortest path problem in a graph with two
nodes and two candidate roads between them, each with
unknown travel times (edge costs) c; and co. We assume
that there are p = 3 features available for predicting edge
costs: x7 is a binary feature to indicate a weekday, x5 is
the current hour of the day, and z3 is a binary feature to
indicate snowfall. The goal is to choose the path with the
smallest cost given the observed features. An example of
a decision tree applied to this problem is provided in Fig-
ure 1, although we note the same logic applies to an arbi-
trarily sized shortest path graph. Decision trees partition
the feature space RP through successive splits on compo-
nents of the feature vector z. Each split takes the form of
a yes-or-no question with respect to a single component.
Continuous or ordinal features are split using inequalities,
and categorical features are split using equalities. The par-
titions of R? resulting from the decision tree splits are re-
ferred to as the leaves of the tree. Each leaf assigns a sin-

Decision Trees for Decision-Making under the Predict-then-Optimize Framework

l x =1 x3=1
l X, <7 l
¢:(1.2,0.7) ¢:(2.3,3.0) ¢:(1.5,1.1) || ¢:(4.2,5.3) ¢:(1.3,1.0)
w*(6):(0,1) w*(6):(1,0)| | w*(6): (0,1)| | w*(&): (1,0)| | w*(€):(0,1)

Figure 1. Decision tree for a shortest path problem with two
edges.

gle predicted cost vector ¢ and associated decision w*(¢)
to all feature vectors which map to that leaf. We define
the depth of a leaf as the number of splits taken to reach
that leaf. The depth of the tree is defined as the maximum
of the depths of its leaves. Decision trees are widely re-
garded as being very interpretable machine learning mod-
els, as the mapping from features to costs/decisions may be
easily visualized and analyzed for insights. For example, in
the decision tree of Figure 1, the second leaf from the left
corresponds to the splits zo < 10, 1 = 1, and x5 > 7,
which may be interpreted as the tree determining whether
it is currently morning rush hour (i.e., a weekday between
7am and 10am).

3.1. An Illustrative Example

We provide a simple example to illustrate the behavior of
decision trees trained using SPO loss versus MSE loss (i.e.,
SPOTs versus CARTs). We again consider the two edge
shortest path problem from before, although we now as-
sume there is only a single continuous feature x available
for predicting the travel times of the two edges. We gen-
erate a dataset of 10000 feature-cost pairs by (1) sampling
10000 feature values from a Uniform(0,1) distribution, and
(2) computing each feature’s associated edge cost by the
equations ¢; = 5z + 1.9 and ¢ = (5x + 0.4)? with no
noise for the sake of illustration. We then train a decision
tree to minimize SPO loss on this dataset, employing the
SPOT training methods detailed in the next section. For
sake of comparison, we also train a CART decision tree on
the same dataset. CARTS are trained to minimize predic-
tion error, specifically, mean-squared error in our experi-
ments.

The predictive and decision performance of the SPOT and
CART training algorithms are given in Figure 2. Figures
2a-2c visualize the cost predictions of the SPOT and CART
algorithms and compare them against the true unknown
edge costs. The two edge costs are equal at z = 0.28,
at which point the optimal decision switches from taking
edge 2 to taking edge 1. We therefore refer to the point
x = 0.28 as the optimal or true decision boundary, and is
referenced in the figures as a grey vertical line. We also in-
clude in the figures the decision boundaries implied by the
cost predictions of the SPOT and CART algorithms.

As shown in Figure 2a, the SPO Tree identifies the cor-

rect decision boundary with the single split “x < 0.28”.
This behavior is unsurprising, as any other individual split
would have resulted in a suboptimal SPO loss incurred on
the training set. Each leaf of the SPO tree yields a single
predicted cost vector, which is visualized by the flat predic-
tion lines in the regions “x < 0.28” and “z > 0.28” of the
figure.

Figures 2b and 2c show the cost vector predictions of the
CART algorithm. When trained to a depth of 1 (i.e., a sin-
gle split), CART results in a severely incorrect decision
boundary at z = 0. This occurs because CART splits at
x < 0.62, and in each of the resulting leaves from this
split edge 2 is predicted to have a higher cost than edge
1. Therefore the CART algorithm incorrectly predicts that
path 1 is always optimal, resulting in the decision boundary
of x = 0. The CART algorithm does not split on the op-
timal decision boundary because this is not the split which
minimizes cost prediction error on the training set. Con-
sequently, although the cost predictions of CART may be
more accurate, the implied shortest path decisions are sub-
optimal for a significant percentage (28%) of feature val-
ues.

As shown in Figure 2c, when CART is permitted to uti-
lize more splits up to a tree depth of 4, it is able to nearly
recover the optimal decision boundary. Even though each
individual split taken by CART has less value for decision-
making, the splits in combination finely partition the fea-
ture space into small enough regions that the predicted cost
vectors are highly accurate within each region. There-
fore, when trained to a significant depth, CARTs — and
more generally, decision trees — potentially have a high
enough model complexity to achieve near perfect predic-
tions which translate into near perfect decisions. However,
in settings with limited training data, it is no longer possi-
ble to train decision trees to a suitably high depth, as a suf-
ficient number of training observations per leaf are required
to estimate the leaf cost predictions accurately. Therefore,
in these settings, maximizing the contribution of each deci-
sion tree split to optimal decision-making becomes a higher
priority. Moreover, lower depth decision trees are often
preferred for their interpretability and reduced risk of over-
fitting.

Figure 2d assesses the decisions from the SPOT and CART
algorithms when trained to different tree depths. The deci-
sions are scored on a held out set of data using the metric of
“normalized extra travel time”, defined as the cumulative
SPO loss normalized by the cumulative optimal decision
costs. >.i lspo(éi,)/ >y 2%(¢;). Unsurprisingly,
the SPO Tree achieves zero decision error at all training
depths since it correctly identified the decision boundary
at depth 1. By comparison, the CART algorithm exhibits
comparatively high decision error at depths 1-3 and only

Decision Trees for Decision-Making under the Predict-then-Optimize Framework

40 T 40 - 40 T
—— Edge 1 Cost (True) —— Edge 1 Cost (True) —— Edge 1 Cost (True) CART
351 == Edge 2 Cost (True) 351 == Edge 2 Cost (True) 351 == Edge 2 Cost (True) 8 — SPOT
----- Decision Boundary (True) ----- Decision Boundary (True) === Decision Boundary (True) ;\3
301 — Edge 1 Cost (SPOT) 30 Edge 1 Cost (CART) 30 Edge 1 Cost (CART) v
25 == Edge 2 Cost (SPOT) 25 Edge 2 Cost (CART) 25 Edge 2 Cost (CART) E 6
g ----- Decision Boundary (SPOT) g Decision Boundary (CART) g Decision Boundary (CART) E
] : ’ (6] : ‘.) : ” ©
0 20 : / 0 20 7 0 20 : 7 =
> : / o ’ (=) : 7 o 4
e H /7 el 7/ el . Z —
w15 ————— - ——— wis ’ DR L) : ; £
: / / : 7 w
: ’ ’ : b g
10 : R4 10 P 10 : 7 52
. 4 e H . o
: 7’ 7’ : / P4
5 ,/7 5 L. 5 5 4
—ppr-yen —- {7‘
0l =7 : 0l =~ : o] == : 0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 1 2 3 4 5
X X X Training Depth
(a) SPOT (Depth 1) (b) CART (Depth 1) (c) CART (Depth 4) (d) SPOT vs CART Loss

Figure 2. Predictive and decision performance of SPOT and CART decision trees. Figures (a)-(c) visualize the cost predictions of SPOT
(blue) and CART (orange) alongside the true cost values (grey). Figure (d) plots the normalized extra travel time of the algorithms as a

function of their trained tree depth.

begins to reach a decision error near zero at depth 4. There-
fore, the SPO Tree achieves high quality decisions while
also being significantly less complex than the CART tree
required for comparable decision quality. We show in Sec-
tion 5 that this behavior is consistently observed across a
range of synthetic and real datasets.

4. Methodology

We now propose several algorithms for training decision
trees using the SPO loss function, and we call the resulting
models SPO Trees (SPOTs). The objective of any decision
tree training algorithm is to partition the training observa-
tions into L leaves, R, ..., Ry := Ry.1, whose predictions
collectively minimize a given loss function:

ming, , er % Zlel (minél ZieRl L(éy, ci)) 3)

Above, the constraint Ry.;, € 7T indicates that the allo-
cation of observations to leaves must follow the structure
of a decision tree (i.e., determined through repeated splits
on the feature components). The CART algorithm greed-
ily selects tree splits which individually minimize this ob-
jective with respect to mean squared error prediction loss
(Breiman et al., 1984). More recently, integer program-
ming strategies have been proposed for optimally solv-
ing (3) with respect to classification loss (Bertsimas &
Dunn, 2017; Giinliik et al., 2018; Verwer & Zhang, 2019;
Hu et al., 2019; Aghaei et al., 2020). We next describe
tractable extensions of these greedy and integer program-
ming methodologies from the literature to train decision
trees using SPO loss, which has been shown to have favor-
able generalization bounds in several settings (El Balghiti
etal., 2019).

Elmachtoub & Grigas (2017) note that training machine
learning models under SPO loss is likely infeasible due to
the loss function being nonconvex and discontinuous in the

predicted cost vectors. However, we show that optimiza-
tion problem (3) for training decision trees under SPO loss
can be greatly simplified through Theorem 1, which states
that the average of the cost vectors corresponding to a leaf
node minimizes the SPO loss in that leaf node.

Theorem 1. Let ¢; = Ilel Zie R, Ci denote the average
cost of all observations within leaf . If ¢, has a unique min-
imizer in its corresponding decision problem, then ¢; mini-
mizes within-leaf SPO loss. More simply, if |[W*(¢;)| = 1,
then ¢, = arg miny, ZiGR[Lspo(dr, c).

The proof is contained in Appendix A. Note that the op-
timal solution to the underlying decision problem has a
unique solution except in a few degenerate cases (e.g., the
supplied cost vector is the zero vector). To ensure that these
degenerate cases have measure 0, it is sufficient to assume
that the marginal distribution of ¢ given x is continuous and
positive on R%. Empirically, to guarantee uniqueness of an
optimal solution, one can simply add a small noise term to
every cost vector in the training set. Therefore, in what fol-
lows, we assume that W*(¢;) is a singleton for any feasible
c; and utilize Theorem 1 throughout. Theorem 1 expresses
that the cost vector which minimizes within-leaf SPO loss
may be expressed in closed form as the average of the cost
vectors belonging to the given leaf. We utilize this infor-
mation to greatly simply optimization problem (3):

. L . .
ming, , e7 % Yo (mlnél ZieRl Lspol(d, ci))

=Ming, eT % Zlel YieR, (Q‘TU]*(EI) - Z*(Ci)))

4.1. SPOT: Recursive Partitioning Approach

To obtain a quick and reliable solution to optimization
problem (4), we propose using recursive partitioning to
train SPO Trees with respect to the above objective func-
tion. CART employs the same procedure to find deci-

Decision Trees for Decision-Making under the Predict-then-Optimize Framework

sion trees which approximately minimize training set pre-
diction error. Define x;; as the j-th feature component
corresponding to the ¢-th training set observation. Begin-
ning with the entire training set, consider a decision tree
split (4, s) represented by a splitting feature component j
and split point s which partitions the observations into two
leaves: R1(j,s) = {i € [n] | z;; < s} and Ry(j,s) =
{i € [n] | ;; > s} if variable j is numeric, or R:(j,s) =
{i € [n] | x;; = s} and Ra(j,s) = {i € [n] | x;; # s}
if variable j is categorical. Here, we define [n] as short-
hand notation for the set {1,2,...,n}. The first split of the
decision tree is chosen by computing the pair (4, s) which
minimize the following optimization problem:

n;usn% (ZiGRl (J:s) (cfw*(@) — 2*(cs))
+ Y iemag (Fur@) == (@) . 6

In words, the training procedure “greedily” selects the sin-
gle split whose resulting decisions obtain the best SPO loss
on the training set. Problem (5) can be solved by computing
the objective function value associated with every feasible
split (7, s) and selecting the split with the lowest objective
value. Leveraging Theorem 1, a split’s objective value may
be determined by (1) partitioning the training observations
according to the split, (2) determining the average cost vec-
tors ¢; and ¢ and associated decisions w*(¢;) and w*(Cz)
in each leaf, (3) computing the SPO loss in each leaf re-
sulting from the decisions, and (4) adding the SPO losses
together and dividing by n. We observe empirically that the
computation of a split’s objective value is very fast due to
the decision oracle w*(-) only needing to be called once in
each partition. Checking all possible split points s associ-
ated with continuous feature components j may be compu-
tationally prohibitive, so instead we recommend the follow-
ing heuristic. All unique values of the continuous feature
observed in the training data are sorted, and the considera-
tion set of potential split points is determined through only
considering certain quantiles of the feature values.

After a first split is chosen, the greedy split selection ap-
proach is then recursively applied in the resulting leaves un-
til one of potentially several stopping criteria is met. Com-
mon stopping criteria to be specified by the practitioner in-
clude a maximum depth size for the tree and/or a minimum
number of training observations per leaf. The decision tree
pruning procedure from Breiman et al. (1984) (using SPO
loss as the pruning metric) may be further applied to reduce
model complexity and prevent overfitting.

4.2. SPOT: Integer Programming Approach

We also consider using integer programming to solve op-
timization problem (3) to optimality for training decision
trees using SPO loss. Here we leverage the simplified
form (4) of optimization problem (3) derived using The-

orem 1. We show that the optimization problem (4) may
be equivalently expressed as a mixed integer linear pro-
gram (MILP). MILPs are generally regarded as being com-
putationally feasible in many settings due to an incredi-
ble increase in the computational power and sophistication
of mixed-integer optimization solvers such as Gurobi and
CPLEX over the past decade. Let r;; denote a binary vari-
able which indicates whether training observation ¢ belongs
to leaf R;. Then,

. L _
Ming, e7 = 221 Yier, (6w (@) — 2% (c:))

. L _
=My T % Zl:l Z:‘L:l T3 (C'LTw*(Cl) -z (Cl)) .

Recall that the constraint 7.7, € 7 indicates that the allo-
cation of observations to leaf nodes must follow the struc-
ture of a decision tree (i.e., determined through repeated
splits on the feature components). There have been several
frameworks proposed in the literature for encoding deci-
sion trees using integer and linear constraints (Bertsimas &
Dunn, 2017; Giinliik et al., 2018; Verwer & Zhang, 2019;
Aghaei et al., 2020). We have chosen to apply the frame-
work proposed by Bertsimas & Dunn (2017), as it naturally
accommodates both continuous and categorical splits and
also automatically pools together leaf nodes which do not
contribute to minimizing the objective function (provided a
small regularization parameter is introduced). We provide
the complete formulation of 1.7, € T as integer and linear
constraints in Appendix C.

Define M; := max{max;escl w,0} and My :=
max{max; ,es —clw,0} as sufficiently large nonnega-
tive constants. We assume that the decision feasibility
constraint set S is bounded, guaranteeing that M; and
Ms are finite. Note that M; and M, may also be de-
fined in terms of z*(-) as max{max; —z*(—c¢;),0} and
max{max; —z*(¢;), 0}, respectively. Theorem 2 shows
that optimization problem (4) may be equivalently ex-
pressed as a mixed integer linear program (MILP) and
therefore can be tractably solved to optimality for a mod-
est number of integer variables. The proof of Theorem 2 is
shown in Appendix B.

Theorem 2. Assume that the decision feasibility con-
straints w € S consist of only linear and integer con-
straints and that S is bounded. Then, optimization problem
(4) may be equivalently expressed as the following MILP:

. L X

min L3 Y ya - Xl #Ne) (6

s.tooyg > ciTwl - My(1—ry), Vil
Y > —Mory, Vi, l,

leS, ’I“HET, Vi,l.

Empirically, we have noticed a significant computational
speed up in solving the MILP if it is warm started with

Decision Trees for Decision-Making under the Predict-then-Optimize Framework

the solution recovered from the greedy algorithm. Further-
more, since the greedy algorithm produces a feasible solu-
tion for the MILP, then the MILP is guaranteed to recover a
solution which is at least as optimal as the greedy solution,
even if the MILP solver is prematurely terminated. There-
fore, in settings where training the MILP to optimality is
computationally infeasible, we recommend warm-starting
the MILP algorithm with the greedy algorithm and using
the MILP as a “solution improvement tool”, allowing the
solver to continually improve the solution until being ter-
minated after it has exceeded a specified time limit. This
is the procedure we employ in our numerical experiments,
specifying a maximum time limit of 12 hours. Other strate-
gies we employ for improving the computation time of the
SPOT MILP approach as well as other implementation de-
tails (including regularization procedures to prevent over-
fitting) may be found in Appendix D.

4.3. SPO Forests

We also consider training an ensemble of SPO Trees, a
methodology which we call SPO Forests. SPO Forests are
constructed using (greedy) SPO Trees through the same
procedure as random forests are constructed using CARTS.
Random forests are known to have less variance than in-
dividual decision trees, at the price of sacrificing inter-
pretability (Friedman et al., 2001). To construct an SPO
Forest, B SPO Trees are trained on bootstrapped samples
of the training dataset, where B represents the number of
desired trees in the SPO Forest. To further reduce the cor-
relation between trees, we implement feature bagging, de-
fined as only considering a random subset of features when
deciding splits in the learning process. When presented
with a new feature vector ., the cost vectors predicted
by the SPO Trees are averaged, and the SPO Forest returns
the optimal decision associated with this average cost vec-
tor.

5. Experimental Results
5.1. Noisy Shortest Path:

We first study the empirical performance of SPO Trees
and SPO Forests on a synthetic dataset for the shortest
path problem studied in Elmachtoub & Grigas (2017). For
sake of comparison, we also train CART decision trees and
CART random forests on the same datasets using the loss
function of mean squared prediction error. The shortest
path problem considered is with respect to a 4 x 4 grid net-
work consisting of edges (“roads”) which are only directed
north and east. The driver starts at the southwest corner
of the grid, and the goal of the driver is to travel to the
northeast corner via the shortest path available. The costs
(“travel times”) associated with the 24 edges of the network
are unknown but can be predicted using five numerical fea-
tures. Datasets of n € {200, 10000} feature-cost pairs

are generated by (1) sampling n feature vectors 1, ..., x,
each from a Uniform(0,1)P distribution where p = 5,
(2) sampling matrix B € {0, 1}?*? by sampling each en-
try By, ; from Bernoulli(1,0.5), and (3) computing each
feature vector x;’s assoc;ated cost vector ¢; according to
Cik = (% (Bx;),, + 1) “ -k, where (Bx;); denotes the
kth component of Bzx;, deg is a fixed positive integer that
controls the amount of nonlinearity present in the mapping
from features to cost vectors, and sf are multiplicative i.i.d.
noise terms sampled from Uni form([1—&, 1+-&]) for some
parameter € > 0. We consider several combinations of the
parameters n, deg and €. For each combination of param-
eters, 10 datasets are generated with uniquely sampled B
matrices. The algorithms are tested on a set of 1000 ob-
servations generated using the same B as the training set.
Algorithmic performance on the test set is assessed with
respect to normalized extra travel time defined in Section
(3.1), which is equivalent to (normalized) SPO loss.

All trees and forests are trained using a minimum leaf size
of 20 observations. To prevent overfitting, SPOTs and
CART trees are pruned on a validation set consisting of
20% of the training data using the pruning algorithm from
Breiman et al. (1984). The forest algorithms are trained us-
ing B = 100 trees with no depth limit, and the number of
features f € {2,3,4,5} to use in feature bagging is tuned
using the validation set above.

We begin by considering the performance of the deci-
sion tree algorithms in an experimental setting with lim-
ited training data. We fix the number of training obser-
vations at n = 200 and vary the experimental parameters
deg € {2,10} and £ € {0,0.25}. We evaluate the per-
formance of SPOT and CART trees when trained to fixed
depths of 1, 2, and 3 on the training set. We also include
the performance of the SPOT and CART algorithms when
imposing no restrictions on their training depth (but still
employing the pruning algorithm to prevent overfitting).
Note that the SPOT MILP approach requires a fixed train-
ing depth and is therefore not included in the algorithms
with no depth restriction. Figure 3 visualizes the test-set
performance of the SPOT algorithms and benchmarks on
the shortest path problem with n = 200 observations for
all combinations of experimental parameters deg and €.

We observe that SPO Trees significantly outperform CART
in all settings of the experimental parameters. In particular,
the greedy SPOT algorithm achieves percentage improve-
ments in normalized extra travel time over the CART algo-
rithm of 26.7%, 26.8%, 23.1%, and 23.6% when both are
trained to depths of 1, 2, 3, and unrestricted depth, respec-
tively (with the above percentage improvements averaged
across the four combinations of deg and €). In general,
the SPO Trees trained to depth 1 often achieve a lower
SPO loss than the CART trees trained with unrestricted

Decision Trees for Decision-Making under the Predict-then-Optimize Framework

7 4
_ =3 CART 1T T I CART
X6 BN SPOT (Greedy) | & EEE SPOT (Greedy)
g [SPOT (MILP) gﬁ' 1 SPOT (MILP)
£ 3] BEE CART Forest E EEE CART Forest
T, EEE SPO Forest 3] EEE SPO Forest
P P
e F 44
© 31 o
5 5
Lﬁ. 2 é 3
£ £
21y 27
1 2 3 Unlimited 3 Unlimited
Training Depth Training Depth
(a)deg=2,€=0 (b) deg =2, =0.25
__ 40 T I3 CART _ 3 CART
X EEE SPOT (Greedy) §40_ EEE SPOT (Greedy)
g 1 SPOT (MILP) 2 1 SPOT (MILP)
i 301 BB CART Forest = BB CART Forest
E I SPO Forest § 30 I SPO Forest
© ©
F 20 =
s £ 201
x x
w w
€ 101 €
5 5 109
2 - =2
0- : : : ,
1 Unlimited Unlimited

Training Depth
(¢)deg =10,€=0

Training Depth
(d) deg = 10, & = 0.25

Figure 3. Test set normalized extra travel times on 10 different shortest path datasets of size n = 200.

depth. Therefore, the SPO Trees lead to better decisions
than CART while also being more concise and therefore
more interpretable. The failure of CART to achieve com-
petitive decision performance can be explained by its focus
on prediction (rather than decision) error coupled with the
limited amount of training data. Recall that a minimum
of 20 training observations are required to be mapped to
each leaf of the decision trees — this constraint is imposed
to ensure that the costs within each leaf are estimated with
sufficient accuracy. Even with no depth limit, we observe
empirically that the CART trees cannot be trained past a
depth of 4 without the minimum leaf size criterion being
satisfied. Therefore, in small data settings, the number of
splits which decision trees may utilize are limited, and thus
it becomes imperative to maximize the contribution of each
split towards decision quality. A comparison of the ran-
dom forest algorithms mirrors these findings — forests of
SPO Trees consistently outperform forests of CART trees
by 20.5% averaged across the four parameter settings, no-
tably also achieving less variance in performance (i.e., box-
plot width) than CART trees. The SPO Tree MILP ap-
proach offers additional improvements in decision quality
when compared to the SPOT greedy approach, outperform-
ing even the random forest algorithms in some cases.

We also investigate the decision performance of the algo-

rithms on the shortest path problem when trained on larger
datasets of n = 10000 observations. Due to space con-
straints, these results are presented in Appendix E. Not
surprisingly, we find that there is less of a difference in
decision performance between the SPO methods and the
methods trained to minimize prediction error, as the abun-
dance of data allows nonparametric methods such as CART
to achieve highly accurate predictions and therefore near-
optimal decisions. Nevertheless, we show that SPO Trees
achieve comparable accuracy in these settings while also
being significantly more concise and therefore more in-
terpretable. Specifically, we show that when considering
larger training depths, CART Trees require at least twice
the number of leaves as SPO Trees to achieve comparable
decision accuracy (see Figure 6 in Appendix E).

5.2. News Article Recommendation:

We also examine the performance of the SPO Trees and
benchmark algorithms on a real dataset. In particular,
we consider a news article recommendation problem con-
structed from the publicly-available Yahoo! Front Page To-
day Module dataset (Yahoo! Webscope, 2009). In the prob-
lem we construct, a news aggregation service recommends
an article belonging to one of d article types to arriving
users with the objective of maximizing the probability of
each user clicking on the recommended article. User click

Decision Trees for Decision-Making under the Predict-then-Optimize Framework

probabilities for different article types are unknown to the
news aggregator but can be estimated using contextual fea-
tures that characterize user preferences. Given article click
probability estimates p € R for an individual user (i.e.,
the “costs” ¢ for this decision problem), the news aggrega-
tor solves the following article recommendation problem:

z*(p) = max pTw st alw<b,, Vme{l...M},
w =
e’ w=1

where wy, represents the probability that the news aggre-
gator recommends article k to the user for k € {1,...,d},
and a,, € R% b, € Rform € {1... M} are the corre-
sponding constraints represent certain restrictions on article
recommendations (e.g. ensuring that all article types have
some non-zero probability of being recommended). The
restrictions could naturally involve budgetary constraints —
for example, Facebook intends to pay certain news pub-
lishers as much as $3 million per year to display their news
headlines and article previews to visiting users (Mullin &
Patel, 2019).

The Yahoo! Front Page dataset contains 45,811,883 inter-
action records between users and news articles from May
1, 2009 to May 10, 2009. We used records from May 1-5
for training data and from May 6-10 as test data; 50% of
the training set records were additionally held out to con-
struct a validation set for parameter tuning. The users and
displayed articles are each characterized by five continu-
ous features, which were constructed using a conjoint anal-
ysis with a bilinear model; see Chu et al. (2009) for more
details. We clustered the articles into d = 6 categories,
and we clustered the historical users into 10000 clusters.
Each user cluster was used to construct a feature-cost pair
(z,p) for the predict-then-optimize problem, in which we
(1) computed the average user feature vector for that cluster
(), and (2) computed the average click probability for each
article type within that cluster (p). After filtering out clus-
ters with an insufficient number of interaction records, we
were left with 5130, 5105, and 8768 feature-cost pairs in
the training, validation, and test sets, respectively. We also
define sample weights for the feature-cost pairs as the num-
ber of interaction records associated with each pair, and we
utilize these sample weights in training and testing the algo-
rithms. The full details of our preprocessing methodology
are given in Appendix F.

The tree and forest algorithms are trained using a mini-
mum leaf size of 10000 interaction records (computed us-
ing the sample weights), and the SPOT and CART algo-
rithms are additionally pruned using the held-out valida-
tion set. The forest algorithms are trained using B = 50
trees with no depth limit, and the number of features f €
{2,3,4,5} to use in feature bagging is tuned on the valida-
tion set. The empirical runtimes of our algorithms are dis-
cussed in Appendix F. We generate M = 5 decision fea-

0.040
@
wn -
2 0.0391
(7]
a.
g
© 0.0381
a
$ =3 CART
© 0.037 B SPOT (Greedy)
o 1 SPOT (MILP)
< EEE CART Forest
0.0361 - EEE SPO Forest
2 4 6 Unlimited

Training Depth

Figure 4. Test set average click probabilities on 9 different con-
straint sets.

sibility constraints by sampling each element of a,, from
an Fxponential(1l) distribution and setting b,, = 1 for
m € {1, ...,5}. Figure 4 visualizes the test set performance
of the algorithms on 9 different constraint sets generated
using the above procedure. Test set performance is defined
as the average test set click probabilities of an algorithm’s
recommended articles, where the average is weighted over
test set instances according to the sample weights (equiv-
alent to measuring SPO loss). As in the previous section,
we find that SPO Trees of very shallow depth outperform
CART trees of unrestricted depth. Specifically, a greedy
SPO Tree of depth 2 achieves percentage improvements in
average click probability of 4.3%, 1.6%, 0.05%, and 0.17%
over CART trained to depths of 2, 4, 6, and unrestricted
depth, respectively. The MILP SPOT approach appears to
perform similarly to the greedy approach. The CART For-
est and SPO Forest methods also perform similarly, but sur-
prisingly achieve slightly lower click probabilities than an
individual SPO Tree, which may be due to the forest meth-
ods overfitting on the training set.

6. Conclusion

We propose tractable methodologies for training deci-
sion trees under SPO loss within the predict-then-optimize
framework. Our results demonstrate that SPOTs capably
produce trees that simultaneously provide higher quality
decisions and lower model complexity than de facto tree-
building methods designed to minimize prediction error.

Acknowledgments

Elmachtoub and McNellis were partially supported by NSF
grant CMMI-1763000.

References

Aghaei, S., Azizi, M. J., and Vayanos, P. Learning optimal
and fair decision trees for non-discriminative decision-
making. arXiv preprint arXiv:1903.10598, 2019.

Decision Trees for Decision-Making under the Predict-then-Optimize Framework

Aghaei, S., Gomez, A., and Vayanos, P. Learning opti-
mal classification trees: Strong max-flow formulations.
arXiv preprint arXiv:2002.09142, 2020.

Aouad, A., Elmachtoub, A. N., Ferreira, K. J., and Mc-
Nellis, R. Market segmentation trees. arXiv preprint
arXiv:1906.01174, 2019.

Bertsimas, D. and Dunn, J. Optimal classification trees.
Machine Learning, 106(7):1039-1082, 2017.

Bertsimas, D. and Kallus, N. From predictive to prescrip-
tive analytics. Management Science, 2019.

Bertsimas, D., Dunn, J., and Mundru, N. Optimal prescrip-
tive trees. INFORMS Journal on Optimization, pp. ijoo—
2018, 2019.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A.
Classification and regression trees, chapter 10, pp. 279—
294. CRC press, 1984.

Chu, W., Park, S.-T., Beaupre, T., Motgi, N., Phadke, A.,
Chakraborty, S., and Zachariah, J. A case study of
behavior-driven conjoint analysis on yahoo! front page
today module. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 1097-1104, 2009.

Ciocan, D. F. and MiSié, V. V. Interpretable optimal stop-
ping. arXiv preprint arXiv:1812.07211, 2018.

Demirovic, E., Stuckey, P. J., Bailey, J., Chan, J., Leckie,
C., Ramamohanarao, K., and Guns, T. Predict+ opti-
mise with ranking objectives: Exhaustively learning lin-
ear functions. IJCAI-19, pp. 1078-1085, 2019.

Donti, P., Amos, B., and Kolter, J. Z. Task-based end-to-
end model learning in stochastic optimization. In Ad-
vances in Neural Information Processing Systems, pp.

5484-5494, 2017.

El Balghiti, O., Elmachtoub, A. N., Grigas, P., and Tewari,
A. Generalization bounds in the predict-then-optimize
framework. In Advances in Neural Information Process-
ing Systems, pp. 14389-14398, 2019.

Elmachtoub, A. N. and Grigas, P. Smart “predict, then op-
timize”. arXiv preprint arXiv:1710.08005, 2017.

Elmachtoub, A. N., McNellis, R., Oh, S., and Petrik, M. A
practical method for solving contextual bandit problems
using decision trees. In UAI, 2017.

Friedman, J., Hastie, T., and Tibshirani, R. The elements of
statistical learning, volume 1. Springer series in statis-
tics Springer, Berlin, 2001.

Giinliik, O., Kalagnanam, J., Menickelly, M., and Schein-
berg, K. Optimal decision trees for categorical data via
integer programming. arXiv preprint arXiv:1612.03225,
2018.

Hu, X., Rudin, C., and Seltzer, M. Optimal sparse deci-
sion trees. In Advances in Neural Information Process-
ing Systems, pp. 7265-7273, 2019.

Kallus, N. Recursive partitioning for personalization using
observational data. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pp.
1789-1798. IMLR. org, 2017.

Kao, Y.-h., Roy, B. V., and Yan, X. Directed regression.
In Advances in Neural Information Processing Systems,
pp- 889-897, 2009.

Mandi, J., Demirovié, E., Stuckey, P., and Guns, T. Smart
predict-and-optimize for hard combinatorial optimiza-
tion problems. Proceedings of the AAAI Conference on
Artificial Intelligence, 2020.

Mullin, B. and Patel, S. Facebook offers news outlets mil-
lions of dollars a year to license content. The Wall Street
Journal, 2019.

Verwer, S. and Zhang, Y. Learning optimal classification
trees using a binary linear program formulation. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pp. 1625-1632, 2019.

Wilder, B., Dilkina, B., and Tambe, M. Melding the data-
decisions pipeline: Decision-focused learning for com-
binatorial optimization. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pp. 1658—
1665, 2019a.

Wilder, B., Ewing, E., Dilkina, B., and Tambe, M. End to
end learning and optimization on graphs. In Advances in
Neural Information Processing Systems, pp. 4674—4685,
2019b.

Yahoo! Webscope. Yahoo! webscope dataset ydata-
frontpage-todaymodule-clicks-v1_0, 2009. URL
http://research.yahoo.com/Academic_
Relations. Last accessed 1 Oct 2019.

http://research.yahoo.com/Academic_Relations
http://research.yahoo.com/Academic_Relations

