
Self-concordant analysis of Frank-Wolfe algorithms
- Supplementary Material-

Pavel Dvurechensky 1 Petr Ostroukhov 2 Kamil Safin 2 Shimrit Shtern 3 Mathias Staudigl 4

Outline
The supplementary material of this paper is organized as
follows.

• Appendix A contains further details on self-concordant
(SC) functions.

• Appendix B is devoted to proof of Theorem 3.1 for
Variant 1 of Algorithm 2. Since this proof relies on
some standard estimates on self-concordant functions,
we include those auxiliary estimates as well.

• Appendix C is organized around the convergence proof
of Variant 2 of Algorithm 2, which is Theorem 3.4
in the main text. We also give some guidelines how
the parameters and initial values of the backtracking
subroutine are chosen.

• Appendix D contains the linear convergence proof un-
der the availability of the restricted local linear mini-
mization oracle (LLOO)

• Appendix E collects detailed evaluations of the numeri-
cal performances of the Algorithms constructed in this
paper in the context of the Portfolio optimization and
the Poisson inverse problem.

• Appendix F outlines the construction of the LLOO
for simplex constraints, following (Garber & Hazan,
2016).

A. Proofs of Section 2
We first introduce a classical result on SC functions, showing
its affine invariance.

Lemma A.1 (Nesterov (2018), Thm. 5.1.2). Let f ∈ FM
and A(x) = Ax + b : Rn → Rp a linear operator. Then
f̃ , f ◦ A ∈ FM .

When we apply Frank-Wolfe (FW) to the minimization
of a function f ∈ FM , the search direction at position x
is determined by the target state s(x) = s defined in (4).
If A : X̃ → X is a surjective linear re-parametrization
of the domain X , then the new optimization problem

minX̃ f̃(x̃) = f(Ax̃) is still within the frame of problem
(P). Furthermore, the updates produced by FW are not af-
fected by this re-parametrization since

〈∇f̃(x̃), ŝ〉 = 〈∇f(Ax̃), Aŝ〉 = 〈∇f(x), s〉

for x = Ax̃ ∈ X , s = Aŝ ∈ X .

Proposition A.2. Suppose there exists x ∈ dom f∩X such
that ‖∇f(x)‖∗x ≤ 2

M . Then (P) admits a unique solution.

Proof. For all x, y ∈ dom f we know that

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
4

M2
ω

(
M

2
‖y − x‖2x

)
≤ f(x)− ‖∇f(x)‖∗x · ‖y − x‖x

+
4

M2
ω

(
M

2
‖y − x‖2x

)
= f(x) +

(
2

M
− ‖∇f(x)‖∗x

)
‖y − x‖x

− 4

M2
ln

(
1 +

M

2
‖y − x‖x

)
.

Define the level set Lf (α) , {x|f(x) ≤ α} and pick
y ∈ Lf (f(x)). For such a point, we get

4

M2
ln

(
1 +

M

2
‖y − x‖x

)
≥
(

2

M
− ‖∇f(x)‖∗x

)
‖y − x‖x.

Consider the function t 7→ ϕ(t) , ln(1+t)
t for t > 0.

For t > 0 it is true that ϕ(t) < 1, and so we need that
‖∇f(x)‖∗x ≤ 2

M . Since limt→∞ ϕ(t) = 0, it follows that
Lf (f(x)) is bounded. By the Weierstrass theorem, exis-
tence of a solution follows (see e.g. (Bertsekas, 1999)). If
x∗ ∈ dom f ∩ X is a solution, we know that

f(x) ≥ f(x∗) +
4

M2
ω(
M

2
‖x− x∗‖x∗).

Hence, if x would be any alternative solution, we immedi-
ately conclude that x = x∗. �



SC analysis of FW algorithms

B. Proofs of convergence of Variant 1 of
Algorithm 2

This supplementary material contains all results needed to
establish the convergence of Version 1 of Algorithm 2. We
start with some basic estimates helping to proof the main
result about this numerical scheme.

B.1. Preliminary Results

We recall the basic inequalities for SC functions.

f(x̃) ≥ f(x) + 〈∇f(x), x̃− x〉+
4

M2
ω (d(x, x̃)) (1)

f(x̃) ≤ f(x) + 〈∇f(x), x̃− x〉+
4

M2
ω∗ (d(x, x̃)) (2)

We need a preliminary error bound around the unique solu-
tion.
Lemma B.1. For all x ∈ dom f we have:

4

M2
ω

(
M

2
‖x− x∗‖x∗

)
≤ f(x)− f(x∗).

Proof. If x ∈ dom f ∩ X , then eq. (1) shows

f(x) ≥ f(x∗) + 〈∇f(x∗), x− x∗〉+
4

M2
ω (d(x∗, x))

≥ f(x∗) +
4

M2
ω(d(x∗, x)).

�

We next prove a restricted strong convexity property of SC
functions.
Lemma B.2. For all x ∈ S(x0) we have

f(x)− f(x∗) ≥ σf
6
‖x− x∗‖22. (3)

Proof. Lemma B.1 gives f(x)− f(x∗) ≥ 4
M2ω(d(x∗, x)).

Observe that for all t ∈ [0, 1]

ω(t) = t− ln(1 + t) =
∞∑
j=2

(−1)jtj

j
≥ t2

2
− t3

3
≥ t2

6
.

Coupled with the fact that x∗ ∈ S(x0) and the hypothesis
that x ∈ S(x0), we see that

f(x)− f∗ ≥ 1

6
‖x− x∗‖2x∗ ≥

σf
6
‖x− x∗‖22.

�

Also, we need the next classical fact for SC functions.
Lemma B.3. LetW(x, r) = {x′ ∈ Rn|M2 ‖x

′ − x‖x < r}
denote the Dikin ellipsoid with radius r around x. For all
x ∈ dom f we haveW(x, 1) ⊂ dom f .

Proof. See Nesterov (2018). �

B.2. Estimates for the Algorithm

For x ∈ dom f , define the target vector

s(x) = argmin
x∈X

〈∇f(x), x〉, (4)

and
Gap(x) = 〈∇f(x), x− s(x)〉. (5)

Moreover, for all x ∈ dom f , let us define

e(x) , d(x, s(x)) =
M

2
‖s(x)− x‖x. (6)

Given x ∈ X and t > 0, set x+t , x+ t(s(x)−x). Assume
that e(x) 6= 0. By construction,

d(x, x+t ) =
tM

2
‖s(x)− x‖x = te(x) < 1,

iff t < 1/e(x). Choosing t ∈ (0, 1/e(x)), we conclude
from (2)

f(x+t ) ≤ f(x) + 〈∇f(x), x+ − x〉+
4

M2
ω∗(te(x))

≤ f(x)− tGap(x) +
4

M2
ω∗(te(x))

This reveals the interesting observation that for minimizing
an SC-function, we can search for a step size αk which
minimizes the model function

ηx(t) , tGap(x)− 4

M2
ω∗(te(x)), (7)

defined for t ∈ (0, 1/e(x))

Proposition B.4. For x ∈ dom f ∩ X , the function t 7→
ηx(t) defined in (7) is concave and uniquely maximized at
the value

t(x) ,
Gap(x)

e(x)(Gap(x) + 4
M2 e(x))

≡ γ(x)

e(x)
. (8)

If α(x) , min{1, t(x)} is used as a step-size in Variant 1
of Algorithm 2, and define ∆(x) , ηx(α(x)), then

f(x+ α(x)(s(x)− x)) ≤ f(x)−∆(x). (9)

Proof. For x ∈ dom f ∩ X , define

ηx(t) , tGap(x)− 4

M2
ω∗(te(x)). (10)

We easily compute η′′x(t) = 4
M2

e(x)
(1−te(x))2 > 0. Hence, the

function is concave and uniquely maximized at

t(x) ,
Gap(x)

e(x)(Gap(x) + 4
M2 e(x))

≡ γ(x)

e(x)
. (11)



SC analysis of FW algorithms

Furthermore, one can easily check that ηx(0) = 0, and
ηx(t(x)) = 4

M2ω
(
M2

4
Gap(x)
e(x)

)
> 0, whenever e(x) > 0.

Hence, it follows that

ηx(t) > 0 ∀t ∈ (0, t(x)]. (12)

�

We now construct the step size sequence (αk)k≥0 by setting
αk = min{1, t(xk)} for all k ≥ 0. Convexity of X and the
fact that αke(xk) < 1 guarantees that (xk)k≥0 ⊂ dom f ∩
X . For the feasibility, we use Lemma B.3. Thus, at each
iteration, we reduce the objective function value by at least
the quantity ∆k ≡ ηxk(αk), so that f(xk+1) ≤ f(xk) −
∆k < f(xk).

Proposition B.5. The following assertions hold for Variant
1 of Algorithm 2:

(a)
(
f(xk)

)
k≥0 is non-increasing;

(b)
∑
k≥0 ∆k < ∞, and hence the sequence (∆k)k≥0

converges to 0;

(c) For all K ≥ 1 we have min0≤k<K ∆k ≤ 1
K (f(x0)−

f∗).

Proof. This proposition can be deduced from Proposition
5.2 in (Dvurechensky et al., 2019). We give a proof for the
sake of being self-contained. Evaluating eq. (9) along the
iterate sequence, and calling ∆k = ∆(xk), we get for all
k ≥ 0,

f(xk+1)− f(xk) ≤ −∆k.

Telescoping this expression shows that for all K ≥ 1,

f(xK)− f(x0) ≤ −
K−1∑
k=0

∆k.

Since ∆k > 0 , the sequence
(
f(xk)

)
k≥0 is monotonically

decreasing. We conclude that for all K ≥ 1,

K−1∑
k=0

∆k ≤ f(x0)− f(xK) ≤ f(x0)− f∗ (13)

and therefore,

min
1≤k≤K

∆k ≤
1

K
(f(x0)− f∗). (14)

Hence, limk→∞∆k = 0. �

We can bound the sequence (ek)k≥0, defined as ek , e(xk),
as

M
√
σf

2
‖sk − xk‖2 ≤ ek ≤

M
√
L∇f

2
‖sk − xk‖2. (15)

In order to derive convergence rates, we need to lower bound
the per-iteration decrease in the objective function. A de-
tailed analysis of the sequence (∆k)k≥0 reveals an explicit
lower bound on the per-iteration decrease which relates the
gap function to the sequence (∆k)k≥0.

Lemma B.6. For all k ≥ 0 we have

∆k ≥ min{aGap(xk), bGap(xk)2}, (16)

where a , min

{
1
2 ,

2(1−ln(2))
M
√
L∇f diam(X )

}
and b ,

1−ln(2)
L∇f diam(X )2 .

Proof. Let us start with an iteration k at which αk = t(xk).
In this case, we make progress according to

ηxk(t(xk)) =
Gap(xk)

e(xk)
γ(xk) +

4

M2
γ(xk)

+
4

M2
ln

(
(4/M2)e(xk)

Gap(xk) + (4/M2)e(xk)

)
.

Define y := (4/M2)e(xk)
Gap(xk)

. Rewriting the above display in
terms of this new variable, we arrive, after some elementary
algebra, at the expression

ηxk(t(xk)) =
Gap(xk)

e(xk)

[
1 + y ln

(
y

1 + y

)]
.

Consider the function φ : (0,∞) → (0,∞), given by
φ(t) , 1 + t ln

(
t

1+t

)
. When t ∈ (0, 1), since

φ′(t) = ln

(
t

1 + t

)
+ t

1 + t

t

(
1

1 + t
− t

(1 + t)2

)
= ln

(
t

1 + t

)
+ 1− t

1 + t

= ln

(
1− 1

1 + t

)
+

1

1 + t
< 0,

we conclude that φ(t) is decreasing for t ∈ (0, 1). Hence,
φ(t) ≥ φ(1) = 1 − ln 2, for all t ∈ (0, 1). On the other
hand, if t ≥ 1,

d

dt

(
φ(t)

1/t

)
=

d

dt
(tφ(t))

= 1 + 2t ln

(
t

1 + t

)
+

t

1 + t
≥ 0.

Hence, t 7→ φ(t)
1/t is an increasing function for t ≥ 1, and

thus φ(t) ≥ 1−ln 2
t , for all t ≥ 1. We conclude that

ηxk(t(xk)) ≥ Gap(xk)

e(xk)
(1− ln(2)) min

{
1,

Gap(xk)

(4/M2)e(xk)

}
.



SC analysis of FW algorithms

Now consider an iteration k in which αk = 1. The per-
iteration decrease of the objective function is explicitly given
by

ηxk(1) =

[
Gap(xk) +

4

M2
e(xk)

]
+

4

M2
ln(1− e(xk))

= Gap(xk)

[
1 + y +

y

e(xk)
ln(1− e(xk))

]
.

Since αk = 1, it is true that e(xk) < γ(xk) < 1, and there-
fore 1

e(xk)
ln(1 − e(xk)) > 1

γ(xk)
ln(1 − γ(xk)). Finally,

using the identity 1 + y = 1
γ(xk)

, we arrive at the lower
bound

ηxk(1) ≥ Gap(xk)

[
1 + y + y(1 + y) ln

(
y

1 + y

)]
≥ Gap(xk)

2
.

Summarizing all these computations, we see that for all
k ≥ 0, the per-iteration decrease is at least

∆k ≥

min

{
Gap(xk)

2
,

(1− ln(2))Gap(xk)

e(xk)
,

(1− ln(2))Gap(xk)2

(4/M2)e(xk)2

}
.

From eq. (15), we deduce that e(x) ≤ M
√
L∇f

2 diam(X ).

Hence, after setting a , min

{
1
2 ,

2(1−ln(2))
M
√
L∇f diam(X )

}
and

b , 1−ln(2)
L∇f diam(X )2 , we see that

∆k ≥ min{aGap(xk), bGap(xk)2}.

�

B.3. Proof of Theorem 3.6

With the help of the lower bound in Lemma B.6, we are now
able to establish the O(k−1) convergence rate in terms of
the approximation error hk , f(xk)− f∗.

By convexity, we have Gap(xk) ≥ hk. Therefore, the lower
bound for ∆k can be estimated as ∆k ≥ min{ahk, bh2k},
which implies

hk+1 ≤ hk −min{ahk, bh2k} ∀k ≥ 0. (17)

Given this recursion, we can identify two phases character-
izing the process (hk)k≥0. In Phase I, the approximation
error is at least a/b, and in Phase II the approximation error
falls below this value.

For fixed initial condition x0 ∈ dom f ∩ X , we can subdi-
vide the time domains according to Phases I and II as

K1(x0) , {k ≥ 0|hk >
a

b
}, (Phase I)

K2(x0) , {k ≥ 0|hk ≤
a

b
}, (Phase II).

Since (hk)k is monotonically decreasing and bounded from
below by the positive constant a/b on Phase I, the set
K1(x0) is at most finite. Let us set

T1(x0) , inf{k ≥ 0|hk ≤
a

b
}, (18)

the first time at which the process (hk) enters Phase II.
To get a worst-case estimate on this quantity, assume that
0 ∈ K1(x0), so that K1(x0) = {0, 1, . . . , T1(x0) − 1}.
Then, for all k = 1, . . . , T1(x0) − 1 we have a

b
< hk ≤

hk−1 −min{ahk−1, bh2k−1} = hk−1 − ahk−1. Note that
a ≤ 1/2, so we make progressions like a geometric series.
Hence, hk ≤ (1− a)kh0 for all k = 0, . . . , T1(x0)− 1. By
definition hT1(x0)−1 >

a
b

, so we get a
b
≤ h0(1−a)T1(x

0)−1

iff (T1(x0)− 1) ln(1− a) ≥ ln
(

a
h0b

)
. Hence,

T1(x0) ≤
⌈ ln

(
a
h0b

)
ln(1− a)

⌉
≤
⌈

1

a
ln

(
h0b

a

)⌉
. (19)

After these number of iterations, the process will enter Phase
II, at which hk ≤ a

b
holds. Therefore, hk ≥ hk+1 + bh2k, or

equivalently,

1

hk+1
≥ 1

hk
+ b

hk
hk+1

≥ 1

hk
+ b.

Pick N > T1(x0) an arbitrary integer. Summing this rela-
tion for k = T1(x0) up to k = N − 1, we arrive at

1

hN
≥ 1

hT1(x0)
+ b(N − T1(x0) + 1).

By definition hT1(x0) ≤ a
b
, so that for all N > T1(x0), we

see
1

hN
≥ b

a
+ b(N − T1(x0) + 1).

Consequently,

hN ≤
1

b
a

+ b(N − T1(x0) + 1)

≤ 1

b(N − T1(x0) + 1)

=
L∇f diam(X )2

(1− ln(2))(N − T1(x0) + 1)
.

Define the stopping time Nε(x0) , inf{k ≥ 0|hk ≤ ε}.
Then, by definition, it is true that hNε(x0)−1 > ε, and con-
sequently, evaluating the bound for hN at N = Nε(x

0)− 1,
we obtain the relation

ε ≤ L∇f diam(X )2

(1− ln(2))(Nε(x0)− T1(x0))
.

Combining with the estimate (19), and solving the previous
relation of Nε(x0) gives us

Nε(x
0) ≤

⌈
1

a
ln

(
h0b

a

)⌉
+
L∇f diam(X )2

(1− ln(2))ε
. (20)



SC analysis of FW algorithms

C. Proofs for Variant 2 of Algorithm 2
In this section we describe them main steps in the conver-
gence analysis of Variant 2 of Algorithm 2. In order to
ensure that the evaluation of the function step(f, v, x, g,L)
needs only finitely many iterations, we need to establish a
conceptual global descent lemma. Such a descent property
is established in the next Lemma, which corresponds to
Lemma 3.2 in the main text.

Lemma C.1. Assume that xk ∈ S(x0) for all k ≥ 0. For
all t ∈ [0, γk], it holds true that xk + t(sk − xk) ∈ S(xk),
and

‖∇f(xk + t(sk − xk))−∇f(xk)‖ ≤ L∇f t‖sk − xk‖2.

Proof. The descent property xk + t(sk − xk) ∈ S(xk) for
t ∈ [0, γk] follows directly from the definition of γk. By the
mean-value theorem, for all σ > 0 such that xk + t(sk −
xk) ∈ S(xk), we have

‖∇f(xk + t(sk − xk))−∇f(xk)‖2

= ‖
∫ t

0

∇2f(xk + τ(sk − xk)) dτ · (sk − xk)‖2

≤
∫ t

0

‖∇2f(xk + τ(sk − xk))(sk − xk)‖2 dτ

≤ L∇f t‖sk − xk‖2.

�

This implies a localized version of the descent Lemma,
which reads as

f(xk + t(sk − xk))− f(xk)

−〈∇f(xk), t(sk − xk)〉 ≤ L∇f t
2

2 ‖sk − xk‖2
(21)

for all t ∈ [0, γk]. Introducing the quadratic model

Q(xk, t, µ) , f(xk)− tGap(xk) +
t2µ

2
‖s(xk)− xk‖22,

(22)
this reads as

f(xk + t(sk − xk)) ≤ Q(xk, t, L∇f ). (23)

C.1. Initial parameters

The backtracking subroutine, Algorithm 3, needs to know
initial values for the Lipschitz estimate L−1. In Pedregosa
et al. (2020), it is recommended to use the following heuris-
tic: Choose ε = 10−3, or any other positive numbers smaller
than this. Then set

L−1 =
‖∇f(x0)−∇f(x0 + ε(s0 − x0))‖

ε‖s0 − x0‖

The function step depends on hyperparameters γu and γd.
It is recommended to use γd = 0.9 and γu = 2. This
method also needs an initial choice for the Lipschitz param-
eter µ between γdLk−1 and Lk−1. A choice that is reported
to work well is

µ = Clip[γdLk−1,Lk−1]

(
Gap(xk)2

2(f(xk)− f(xk−1))‖sk − xk‖22

)
.

C.2. Overhead of the backtracking

Evaluation of the sufficient decrease condition in Algorithm
3 requires two extra evaluations of the objective function.
If the condition is verified, then it is only evaluated at the
current and next iterate. Following Nesterov (2013) we have
the following estimate on the number of necessary function
evaluations during a single execution of the backtracking
procedure.

Proposition C.2. Let Nk be the number of function evalua-
tions of the sufficient decrease condition up to iteration k.
Then

Nk ≤(k + 1)

(
1− ln(γd)

ln(γu)

)
+

1

ln(γu)
max{0, ln

(
γuL∇f
L−1

)
}

Proof. Call mk ≥ 0 the number of function evaluations
needed in executing Algorithm 3 at stage k. Since the
algorithm multiples the current Lipschitz parameter Lk−1
by γu > 1 every time that the sufficient decrease condition
is not satisfied, we know that Lk ≥ γdLk−1γmk−1

u . Hence,

mk ≤ 1 + ln

(
Lk
Lk−1

)
1

ln(γu)
− ln(γd)

ln(γu)
.

Since Nk =
∑k
i=0mi, we conclude

Nk ≤ (k + 1)

(
1− ln(γd)

ln(γu)

)
+

1

ln(γu)
ln

(
Lk
L−1

)
.

By definition of the Lipschitz parameters, we see that Lk ≤
max{γuL∇f ,L−1}. Hence, we can bound ln

(
Lk

L−1

)
≤

max{0, ln
(
γuL∇f

L−1

)
}. �

Proposition C.2 implies that most of the backtracking sub-
routines terminate already after a single evaluation of the
objective function gradient. Indeed, if we choose hyperpa-
rameters as γd = 0.9 and γu = 2, then 1 − ln(γd)

ln(γu)
≤ 1.16

and so, asymptotically, no more than 16% of the iterates
will result in more than one gradient evaluation.



SC analysis of FW algorithms

C.3. Proof of Theorem 3.3

The proof of Theorem 3.4 needs the next auxiliary result
which we establish first.

Lemma C.3. We have for all t ∈ [0, 1]

f(xk+1) ≤ f(xk)− tGap(xk) +
t2Lk

2
‖sk − xk‖2.

Proof. Consider the following quadratic optimization prob-
lem

min
t∈[0,1]

{−tGap(xk) +
Lkt2

2
‖sk − xk‖2}.

This has the unique solution

αk = τk(Lk) = min

{
1,

Gap(xk)

Lk‖sk − xk‖2

}
.

It therefore follows,

−αk Gap(xk) +
α2
kLk
2
‖sk − xk‖2

≤ −tGap(xk) +
t2Lk

2
‖sk − xk‖2.

By definition of the backtracking procedure, Algorithm 3,
we conclude

f(xk+1) = f(xk + αk(sk − xk)) ≤ Q(xk, αk,Lk)

= f(xk)− αk Gap(xk) +
α2
kLk
2
‖sk − xk‖2

≤ f(xk)− tGap(xk) +
t2Lk

2
‖sk − xk‖2

for all t ∈ [0, 1]. �

Proof of Theorem 3.3. Define the Fenchel conjugate

f∗(u) , sup
z∈dom(f)

{〈z, u〉 − f(z)}. (24)

Since f is proper, closed and convex, so is the Fenchel conju-
gate f∗. Moreover, since f is smooth and convex on dom f ,
we know that f∗(u) = 〈∇f(z∗(u)), u〉 − f(z∗(u)), where
z∗(u) is the unique solution to the equation∇f(z∗(u)) = u.
By definition, we have f∗(∇f(xk)) ≥ 〈∇f(xk), xk〉 −
f(xk), and by convexity, we know that 〈∇f(xk), u〉 −
f(u) ≤ 〈∇f(xk), xk〉 − f(xk) for all u ∈ dom f . We
conclude, that

f∗(∇f(xk)) ≤ 〈∇f(xk), xk〉 − f(xk).

Hence, actually equality must hold between both sides, i.e.

f∗(∇f(xk)) = 〈∇f(xk), xk〉 − f(xk). (25)

Define the support function HX (c) , supx∈X 〈c, x〉, and

ψ(z) , −f∗(z)−HX (−z) ∀z ∈ dom f∗. (26)

We obtain the following series of equivalences:

Gap(xk) = 〈∇f(xk), xk − sk〉
= 〈∇f(xk), xk〉+ 〈−∇f(xk), sk〉
= 〈∇f(xk), xk〉+HX (−∇f(xk))

= f∗(∇f(xk)) + f(xk) +HX (−∇f(xk))

= f(xk)− ψ(∇f(xk)).

We note that ψ is concave, and a dual objective function to
f . Indeed, by the Fenchel-Young inequality, we know that
f(x) + f∗(y) ≥ 〈y, x〉 for all x ∈ dom f and y ∈ dom f∗.
From this inequality, we readily deduce that

min
x∈X

f(x) ≥ −f∗(y)−HX (−y).

Therefore,

f∗ , min
x∈X

f(x) = max
y∈dom f∗

ψ(y) , ψ∗. (27)

We know that for all t ∈ [0, 1],

f(xk+1) ≤ f(xk)− tGap(xk) +
t2Lk

2
‖sk − xk‖22

Let us introduce the auxiliary sequence y0 = ∇f(x0), and
yk+1 = (1 − ξk)yk + ξk∇f(xk) where ξk , 2

k+3 . We
observe that

f(xk)− ψ(yk) = f(xk)− f∗ + ψ∗ − ψ(yk)

≥ f(xk)− f∗.

Hence, defining the approximation error hk , f(xk)− f∗,
we see f(xk)− ψ(yk) ≥ hk for all k ≥ 0. Moreover, since
ψ is concave, we know that

ψ(yk+1) ≥ (1− ξk)ψ(yk) + ξkψ(∇f(xk)).

Consequently,

hk+1 ≤ f(xk+1)− ψ(yk+1)

≤ f(xk)− ξk Gap(xk) +
ξ2kLk

2
‖sk − xk‖22

− (1− ξk)ψ(yk)− ξkψ(∇f(xk))

= (1− ξk)[f(xk)− ψ(yk)] +
ξ2kLk

2
‖sk − xk‖22

≤ (1− ξk)[f(xk)− ψ(yk)] +
ξ2kLk

2
diam(X )2.

Define Ak , 1
2 (k+ 1)(k+ 2) for k ≥ 0. For this specifica-

tion, it is easy to check that

Ak+1(1− ξk) = Ak, and (28)

Ak+1
ξ2k
2
≤ 1. (29)



SC analysis of FW algorithms

Hence,

Ak+1[f(xk+1)− ψ(yk+1)] ≤ Ak+1(1− ξk)[f(xk)− ψ(yk)]

+Ak+1
ξ2k
2
Lk diam(X )2

≤ Ak[f(xk)− ψ(yk)]

+ Lk diam(X )2.

Summing from i = 0, . . . , k − 1, and calling

L̄k ,
1

k

k−1∑
i=0

Li,

this implies

f(xk)− ψ(yk) ≤ 1

Ak
[f(x0)− ψ(y0)] +

k diam(X )2

2Ak
L̄k

=
2

(k + 1)(k + 2)
[f(x0)− ψ(y0)] +

k diam(X )2

(k + 1)(k + 2)
L̄k

=
2Gap(x0)

(k + 1)(k + 2)
+

k diam(X )2

(k + 1)(k + 2)
L̄k

Since Lk ≤ L∇f , we get hk = O(k−1). �

D. Proof of Theorem 4.2
Let us define P(x0) ,

{
x ∈ X : f(x) ≤ f∗ + Gap(x0)

}
.

We prove this theorem by induction. For k = 0, we have the
given initial condition x0 ∈ dom f ∩ X . Since x0 ∈ P(x0)
trivially, we know from Lemma B.2 that

h0 ≥
σf
6
‖x0 − x∗‖22.

Set r0 ≥
√

6h0

σf
, this implies x∗ ∈ B(x0, r0). Since

s0 = A(x0, r0,∇f(x0)), the definition of the Local Linear
minimization oracle (LLOO) tells us

f(x∗)− f(x0) ≥ 〈∇f(x0), x∗ − x0〉
≥ 〈∇f(x0), s0 − x0〉 ≥ −Gap(x0),

where the first inequality is a consequence of the convexity
of f , whereas the last inequality follows by definition of the
dual gap function. Therefore, we have h0 ≤ Gap(x0). Set

r0 =
√

6Gap(x0)
σf

, and let α0 = min
{

Gap(x0)
4

M2 (e0)2
, 1
}

1
e0+1 <

1. Note that this choice of α0 guarantees that α0e
0 ≤

e0

e0+1 < 1. Hence, doing the update x1 = x0 +α0(s0− x0)

we know from convexity of X and Lemma B.3 that x1 ∈
dom f ∩ X .

Apply inequality (2) to conclude

f(x1) ≤ f(x0) + α0〈∇f(x0), s0 − x0〉+
4

M2
ω∗(α0e

0).

Since, ω∗(t) = −t− ln(1− t), it follows

ω∗(t) =

∞∑
j=2

tj

j
≤ t2

2

∞∑
j=0

tj =
t2

2(1− t)
∀t ∈ [0, 1).

Since α0e
0 ∈ [0, 1), for all k ≥ 0, we therefore arrive at the

estimate

h1 ≤ h0 + α0(f(x∗)− f(x0)) +
4

M2

α2
0(e0)2

2(1− α0e0)
.

By the above said, we know that 1 − α0e
0 ≥ 1

1+e0
, and

therefore,

h1 ≤ (1− α0)h0 +
2α2

0

M2
(e0)2(1 + e0)

≤ (1− α0)h0 +
2α2

0

M2
(e0)2(1 + e0)

≤ (1− α0)Gap(x0) +
2α2

0

M2
(e0)2(1 + e0)

Plugging in the chosen value of α0 we obtain that

h1 ≤ Gap(x0) + α0(−Gap(x0) +
2α0

M2
(e0)2(1 + e0))

≤ Gap(x0)(1− α0

2
)

Notice that by the definition of the LLOO we have that

e0 ≤
√
L∇f

M

2
‖x0 − s0‖

≤
√
L∇fM

2
min{ρr0,diam(X )}

which implies that

Gap(x0)
4
M2 (e0)2

≥ Gap(x0)

L∇fρ2r20
≥ σf

6L∇fρ2

where the last inequality follows from the definition of r0.

Thus, we have that

α0 ≥ min{ σf
6L∇fρ2

, 1} 1

1 +
√
L∇fM diam(X )/2

≡ ᾱ,

which implies that

h1 ≤ Gap(x0)(1− α0

2
)

≤ Gap(x0) exp(−α0

2
)

= Gap(x0)c1.

This verifies the claim for k = 0. Now proceed inductively.
Suppose that

hk ≤ Gap(x0)ck, ck , exp

(
−1

2

k−1∑
i=0

αi

)
. (30)



SC analysis of FW algorithms

Then xk ∈ P(x0), and Lemma B.2 tells us that

‖xk − x∗‖22 ≤
6hk
σf
≤ 6Gap(x0)

σf
ck = r20ck ≡ r2k.

Hence, x∗ ∈ B(xk, rk). Proceeding as for k = 0, let us
again make the educated guess that we can take a step size
αk < 1/ck. By the same argument as before, we obtain
sufficient decrease

hk+1 ≤ hk + αk〈∇f(xk), sk − xk〉+
4

M2

α2
k(ek)2

2(1− αkek)
.

Since sk = A(xk, rk,∇f(xk)), we know by definition
of the LLOO that 〈∇f(xk), x∗ − xk〉 ≥ 〈∇f(xk), sk −
xk〉 and ‖sk − xk‖2 ≤ ρrk. Consequently, setting αk =

min{ ck Gap(x0)
4

M2 (ek)2
, 1} 1

(1+ek)
we obtain that

hk+1 ≤ (1− αk)hk +
2

M2

α2
k(ek)2

1− αkek

≤ (1− αk)Gap(x0)ck +
2

M2
α2
k(ek)2(1 + ek)

≤ Gap(x0)ck(1− αk
2

)

where the second inequality follow from the fact that

αke
k ≤ ek

1 + ek
< 1, and

1− αkek ≥
1

1 + ek
.

as well as the upper bound on hk obtained by the induction
step. Finally by the definition of the LLOO we have that

ek ≤
√
L∇f

M

2
‖xk − sk‖

≤
√
L∇fM

2
min{ρrk,diam(X )},

which implies that

M2 Gap(x0)ck
4(ek)2

≥ Gap(x0)ck
L∇fρ2r2k

≥ σf
6Lρ2

where the last inequality follows from the definition of rk.
Thus, we have that

αk ≥ min{ σf
6L∇fρ2

, 1} 1

1 +
√
L∇f

M diam(X )
2

≡ ᾱ,

which implies that

hk+1 ≤ Gap(x0)ck(1− αk
2

)

≤ Gap(x0)ck exp
(
−αk

2

)
= Gap(x0)ck+1.

Since αk ≥ ᾱ for all k, we thus have shown that

hk ≤ Gap(x0) exp(−kᾱ/2). (31)

E. Numerical Experiments
We give extensive information about the numerical experi-
ments we have conducted in order to test the performance
of all three algorithms developed in this paper. In the nu-
merical experiments we tested the performance of Variant
1 (V1) and Variant 2 (V2) of Algorithm 2, and compared
them with the performance of Frank-Wolfe with standard
step-size of 2

k+2 (Standard), and step-size determined by
exact line-search (Line-S.). As a further benchmark, the
self-concordant Proximal-Newton (PN) of Tran-Dinh et al.
(2015), as implemented in the SCOPT package1, is included.
For the portfolio optimization problem, Algorithm 4 is also
implemented. All codes are written in Python 3, with pack-
ages for scientific computing NumPy 1.18.1 and SciPy 1.4.1.
The experiments were conducted on a PC with Intel Core
i5-7500 3.4GHzs, with a total of 16GB RAM.

In both experiments the Frank-Wolfe based methods have
been terminated after 50,000 iterations. Because of its
higher computational complexity, we decided to stop PN
after 1,000 iterations. Each algorithm was terminated early
if the optimality gap in a given iteration was lower than
1e − 10. LLOO was only implemented for the portfolio
selection problem, using the local linear oracle given in
(Garber & Hazan, 2016) for the simplex, as described in
Appendix F in the supplementary materials.

E.1. Results on the Portfolio Optimization problem

For the Portfolio Optimization problem we used synthetic
data, as in Section 6.4 in (Sun & Tran-Dinh, 2018). The de-
tails of the data generating process are as follows. We gener-
ate matrix R with given price ratios as: R := ones(n, p) +
N(0, 0.1), which allows the closing price to vary about
10% between two consecutive periods. We used different
sizes of matrix R: (n, p) = (1000, 800), (1000, 1200), and
(1000, 1500) with 4 samples for each size. Hence, there are
totally 12 datasets. The detailed results for 9 out of these 12
datasets is reported in Figure E.1.

E.2. Results on the Poisson Inverse problem

For the Poisson inverse problem we used the datasets a1a-
a9a from the LIBSVM library (Chang & Lin, 2011). The
results on each individual data set are displayed in Figure
E.2.

F. Constructing an LLOO for Simplex
Constraints

In this section we outline a construction of an LLOO in case
where the polytope is the unit simplex X ≡ ∆n = {x ∈

1https://www.epfl.ch/labs/lions/
technology/scopt/

https://www.epfl.ch/labs/lions/technology/scopt/
https://www.epfl.ch/labs/lions/technology/scopt/


SC analysis of FW algorithms



SC analysis of FW algorithms



SC analysis of FW algorithms

Rn|x ≥ 0,
∑n
i=1 xi = 1}. This construction is given in

(Garber & Hazan, 2016).

Lemma F.1. Given a point x ∈ ∆n, a radius r > 0, and a
linear objective c ∈ Rn, consider the optimization problem

min{〈c, y〉| ‖x− y‖1 ≤ d} (32)

for some d > 0. Let us denote by p∗ an optimal solution to
problem (32) when we set d =

√
nr. Then p∗ is the output

of an LLOO with parameter ρ =
√
n for X = ∆n. That is,

for all y ∈ ∆n ∩B(x, r)

〈p∗, c〉 ≤ 〈y, c〉 and ‖x− p∗‖ ≤
√
nr. (33)

Algorithm 1 implements an LLOO for the unit simplex. In
this algorithm we use the Kronecker delta δi,j = 1 if j = i
and 0 otherwise.

Algorithm 1 LLOO for the simplex
Input: x ∈ ∆n, radius r > 0, cost vector c ∈ Rn.
Set d =

√
nr

m = min{d/2, 1}
i∗ = argmin1≤i≤n ci
p+ = m[δi∗,1; . . . ; δi∗,n]>.
p− = 0n ∈ Rn
Let i1, . . . , in be a permutation over {1, . . . , n} such that
ci1 ≥ ci2 ≥ . . . ≥ cin .
Set k = min{`|

∑`
j=1 xij ≥ m}

For all 1 ≤ j ≤ k − 1 set (p−)ij = xij
pik = m−

∑k−1
j=1 xij

Update p = x+ p+ − p−.

References
Bertsekas, D. Nonlinear Programming. Athena Scientific,

1999.

Dvurechensky, P., Staudigl, M., and Uribe, C. A. General-
ized self-concordant Hessian-Barrier algorithms. arXiv
preprint arXiv:1911.01522, 2019.

Chang, C.-C. and Lin, C.-J. LIBSVM: A library for support
vector machines. ACM Trans. Intell. Syst. Technol., 2(3),
2011.

Garber, D. and Hazan, E. A linearly convergent variant of
the conditional gradient algorithm under strong convexity,
with applications to online and stochastic optimization.
SIAM Journal on Optimization, 26(3):1493–1528, 2016.

Nesterov, Y. Gradient methods for minimizing composite
functions. Mathematical Programming, 2013, 140(1),
125-161.

Nesterov, Y. Lectures on Convex Optimization, volume 137
of Springer Optimization and Its Applications. Springer
International Publishing, 2018a.

Pedregosa, Fabian and Negiar, Geoffrey and Askari, Armin
and Jaggi, Martin Linearly Convergent Frank-Wolfe with
Backtracking Line-Search Proceedings of the 23rd Inter-
national Conference on Artificial Intelligence and Statis-
tics (AISTATS), 2020.

Polyak, B. T. Introduction to Optimization. Optimization
Software, 1987.

Tran-Dinh, Q., Kyrillidis, A., and Cevher, V. Composite
self-concordant minimization. The Journal of Machine
Learning Research, 16(1):371–416, 2015.

Sun, T. and Tran-Dinh, Q. Generalized self-concordant func-
tions: a recipe for newton-type methods. Mathematical
Programming, 2018.


