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Abstract

A trade-off between accuracy and fairness is al-
most taken as a given in the existing literature
on fairness in machine learning. Yet, it is not
preordained that accuracy should decrease with
increased fairness. Novel to this work, we ex-
amine fair classification through the lens of mis-
matched hypothesis testing: trying to find a clas-
sifier that distinguishes between two ideal dis-
tributions when given two mismatched distribu-
tions that are biased. Using Chernoff informa-
tion, a tool in information theory, we theoreti-
cally demonstrate that, contrary to popular belief,
there always exist ideal distributions such that op-
timal fairness and accuracy (with respect to the
ideal distributions) are achieved simultaneously:
there is no trade-off. Moreover, the same clas-
sifier yields the lack of a trade-off with respect
to ideal distributions while yielding a trade-off
when accuracy is measured with respect to the
given (possibly biased) dataset. To complement
our main result, we formulate an optimization
to find ideal distributions and derive fundamen-
tal limits to explain why a trade-off exists on the
given biased dataset. We also derive conditions
under which active data collection can alleviate
the fairness-accuracy trade-off in the real world.
Our results lead us to contend that it is problem-
atic to measure accuracy with respect to data that
reflects bias, and instead, we should be consider-
ing accuracy with respect to ideal, unbiased data.

1. Introduction

This work addresses a fundamental question in the field
of algorithmic fairness (Calmon et al., 2017; Dwork et al.,
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2012; Agarwal et al., 2018; Hardt et al., 2016; Ghassami
et al., 2018; Kusner et al., 2017; Kilbertus et al., 2017;
Zemel et al., 2013):

Is there a trade-off between fairness and accuracy?

The existence of this trade-off has been pointed out in sev-
eral existing works (Menon & Williamson, 2018; Chen et al.,
2018; Zhao & Gordon, 2019) that also propose different
theoretical approaches to characterize it. Yet, it is not preor-
dained as to why such a trade-off should exist between fair-
ness and accuracy. For instance, Friedler et al. (2016) and
Yeom & Tschantz (2018) suggest that the observed features
in a machine learning model (e.g., test scores) are a possibly
noisy mapping from features in an abstract construct space
(e.g., true ability) where there is no such trade-off. Then,
why does correcting for biases worsen predictive accuracy
in the real world? We believe there is value in stepping back
and reposing the fundamental question.

In this work, our main assertion is that the trade-off be-
tween accuracy and fairness (in particular, equal opportu-
nity (Hardt et al., 2016)) in the real world is due to noisier
(and hence biased) mappings for the unprivileged group due
to historic differences in opportunity, representation, etc.,
making their positive and negative labels “less separable.”
To concretize this idea, we adopt a novel viewpoint on fair
classification: the perspective of mismatched hypothesis
testing. In mismatched hypothesis testing, the goal is to find
a classifier that distinguishes between two “ideal” distribu-
tions, but instead, one only has access to two mismatched
distributions that are biased. Our most important result is to
theoretically show that for a fair classifier with sub-optimal
accuracy on the given biased data distributions, there always
exist ideal distributions such that fairness and accuracy are
in accord when accuracy is measured with respect to the
ideal distributions. Through this perspective, there is no
trade-off between fairness and accuracy.

Our contributions in this work are as follows:

Concept of separability to quantify accuracy-fairness trade-
off in the real world: For a group of people in an ob-
served dataset, we quantify the “separability” into positive
and negative class labels using Chernoff information, an
information-theoretic approximation to the best exponent of
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the probability of error in binary classification. We demon-
strate (in Theorem 1) that if the Chernoff information of one
group is lower than that of the other in the observed dataset,
then modifying the best classifier using a group fairness
criterion compromises the error exponent (representative of
accuracy) of one or both the groups, explaining the accuracy-
fairness trade-off. Not only do these tools demonstrate the
existence of a trade-off (as also demonstrated in some exist-
ing works (Menon & Williamson, 2018; Chen et al., 2018)
using alternative formulations), but they also enable us to
approximately quantify the trade-off, e.g., how close can we
bring the probabilities of false negative for two groups in an
attempt to attain equal opportunity for a certain compromise
on accuracy (see Fig. 3 in Section 4). The existence of this
trade-off prompts us to contend that accuracy of a classifier
with respect to the existing (possibly biased) dataset is a
problematic measure of performance. Instead, one should
consider accuracy with respect to an ideal dataset that is an
unbiased representation of the population.

Ideal distributions where fairness and accuracy are in ac-
cord: Novel to this work, we examine the problem of fair
classification through the lens of mismatched hypothesis
testing. We show (in Theorem 2) that there exist ideal
distributions such that both fairness (in the sense of equal
opportunity on both the existing and the ideal distributions)
and accuracy (with respect to the ideal distributions) are in
accord. We also formulate an optimization to show how to
go about finding such ideal distributions in practice. The
ideal distributions provide a target to shift the given biased
distributions toward and to evaluate accuracy on. Their in-
terpretation can be two-fold: (i) plausible distributions in
the observed space resulting from an “unbiased” mapping
from the construct space; or (ii) candidate distributions in
the construct space itself (discussed further in Section 3.2).

Criterion to alleviate the accuracy-fairness trade-off in
the real world: Next, we also address another important
question, i.e., when can we alleviate the accuracy-fairness
trade-off in the real world that we must work in, specif-
ically through additional data collection. We derive an
information-theoretic criterion (in Theorem 3) under which
collecting more features improves separability, and hence,
accuracy in the real world, alleviating the trade-off. This
can also inform our choice of the ideal distributions. Our
analysis serves as a technical explanation for the success
of active fairness (Noriega-Campero et al., 2019; Bakker
et al., 2019; Chen et al., 2018) that uses additional features
to improve fairness.

Numerical example: We demonstrate how the analysis
works through an example (with analytical closed-forms).

Related Work: We note that several existing works, such
as Garg et al. (2019), Menon & Williamson (2018), Chen
et al. (2018), and Zhao & Gordon (2019), have also used in-

formation theory or Bayes risk to characterize the accuracy-
fairness trade-off. However, computing Bayes risk is not
straightforward. Indeed, even for Gaussians, one resorts to
Chernoff bounds to approximate the Q-function. Chernoff
information is an approximation for Bayes risk that has a
tractable geometric interpretation (see Fig. 2). This enables
us to numerically compute the accuracy-fairness trade-off
(Fig. 3), and also understand “how much” accuracy can be
improved by data collection, going beyond the assertion that
there is some improvement. To the best of our knowledge,
existing works have pointed out the existence of a trade-off
based on Bayes risk but have not provided a method to ex-
actly compute it, motivating us to introduce the additional
tool of Chernoff information to do so approximately. Fur-
thermore, this work goes beyond characterizing the trade-off
imposed by the given dataset. Our novelty lies in adopting
the perspective of mismatched detection and demonstrating
that there exist ideal distributions such that both fairness
and accuracy are in accord when accuracy is measured with
respect to the ideal distributions.

The recent works of Wick et al. (2019) and Sharma et al.
(2020) further elucidate the significance of Theorem 2 and
how it presents an insight that contradicts “the prevailing
wisdom,” i.e., there exists an ideal dataset for which fairness
and accuracy are in accord. In a sense, our work provides
a theoretical foundation that complements the empirical
results of Wick et al. (2019) and Sharma et al. (2020), clari-
fying when a trade-off exists and when it does not.

There are also several existing methods of pre-processing
data to generate a fair dataset (Calmon et al., 2018; Feld-
man et al., 2015; Zemel et al., 2013). Here, our goal is not
to propose another competing strategy of fairness through
pre-processing. Instead, our focus is to theoretically demon-
strate that there exists an ideal dataset such that a fair classi-
fier is also optimal in terms of accuracy, which has not been
formally shown before. We also focus on equal opportunity
rather than statistical parity (as in Calmon et al. (2018)).

Our tools share similarities with Varshney et al. (2018) (that
demonstrates how explainability can improve Chernoff in-
formation), as well as the theory of hypothesis testing in
general (Lee & Sung, 2012; Cover & Thomas, 2012). Our
contribution lies in using these tools in fair machine learn-
ing, where they have not been used to the best of our knowl-
edge (e.g., in the previous analyses of Menon & Williamson
(2018); Zhao & Gordon (2019); Chen et al. (2018)).

Remark 1 (Population Setting). In this work, we operate in
the population setting (motivated from Gretton et al. (2007);
Ravikumar et al. (2009); Scott et al. (2013)), i.e., the limit
as the number of samples goes to infinity, allowing use of
the probability distributions of the data. This allows us
to represent binary classifiers as likelihood ratio detectors
(also called Neyman-Pearson (NP) detectors) and quantify
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the fundamental limits on the accuracy-fairness trade-off.
Indeed, given any classifier, there always exists a likelihood
ratio detector which is at least as good (see NP Lemma in
Cover & Thomas (2012)).

2. Preliminaries

Setup: In this work, we focus on binary classification,
which arises commonly in practice in the fairness literature,
e.g., in deciding whether a candidate should be accepted
or rejected in applications such as hiring, lending, etc. We
let Z denote the protected attribute, e.g., gender, race, etc.
Without loss of generality, let Z = 0 be the unprivileged
group and Z = 1 be the privileged group.

Inspired by Yeom & Tschantz (2018) and Friedler et al.
(2016), we assume that there is an abstract construct space
where X, is the feature (e.g., true ability) and Y, is the true
label (i.e., takes value 0 or 1). The construct space is not
directly accessible to us. In the real world, we instead have
access to an observed space where X denotes the feature
vector and Y denotes the true label (i.e., takes value O or
1). For the sake of simplicity, we assume Y, = Y based
on Yeom & Tschantz (2018).! The observed features are
derived from features in the construct space as follows:
X = fy,z(X,) where fy z(-) is a possibly noisy mapping
that can depend on Y and Z.

Let the features in the given dataset in the observed space
have the following distributions: X |y —¢,z=0~P(z) and
X‘Y:l,Z:O’\‘Pl (.CE) Similarly, X‘Y=07Z=1NQ0(:Z?) and
X|y=1,z=1~Q1(x). For each group Z = z, we will be
denoting classifiers as T, (x) > 7, i.e., the prediction label
is 1 when T (x) > 7, and 0 otherwise.

Remark 2 (Decoupled Classifiers). While such models may
exhibit disparate treatment (explicit use of Z), the intent
is to better mitigate disparate impact using the protected
attribute explicitly in the decision making (along the spirit
of fair affirmative action (Dwork et al., 2012; 2018)). Fur-
thermore, a classifier that does not use Z becomes a special
case of our classifier if T, and T, are same for both groups.

Next, we state two basic assumptions: (A1) Absolute Con-
tinvity: Py(z), P1(z), Qo(x) and Q1 (x) are greater than
0 everywhere in range of x. This ensures that likelihood
ratio detectors such as log %Ei; > 79 and Kullback-Leibler
(KL) divergences between any two of these distributions
are well-defined. (A2) Distinct Hypotheses: D(FPyl|F1),
D(P1||Py), D(Qo]|Q1) and D(Q1]]Qo) are strictly greater
than 0, where D(+||-) is the KL divergence.

IThis is consistent with the “What You See Is What You Get”
worldview in Yeom & Tschantz (2018) where label bias can be
ignored and our chosen measure of fairness, i.e., equal opportunity
is justified as a measure of fairness.

We let Prp 1, (7.) be the probability of false positive
(wrongful acceptance of negative class labels; also called
false positive rate (FPR)) over the group Z = 2z,
ie., Prp 1, (72) = Pr(T,(X) > 7,|Y =0,Z = 2). Sim-
ilarly, Ppn,r,(7,) is the probability of false negative
(wrongful rejection of positive class labels; also called
false negative rate (FNR)), given by: Ppnr1.(T2) =
Pr(T,(X) < 7,|Y = 1,Z = z). The overall probability of
error of a group is given by: P. 1, (7.) = moPrp,1, (72) +
m1Pen 1, (75), where 7y and 7y are the prior probabilities
of Y =0and Y = 1 given Z = z. For the sake of simplic-
ity, we consider the case where my = m; = % given Z = z,
and also equal priors on all groups Z = z. We include
a discussion on how to extend our results for the case of
unequal priors in Appendix E. Equal priors also correspond
to the balanced accuracy measure (Brodersen et al., 2010)
which is often favored over ordinary accuracy.

A well-known definition of fairness is equalized odds (Hardt
et al., 2016), which states that an algorithm is fair if it has
equal probabilities of false positive (wrongful acceptance
of true negative class labels) and false negative (wrongful
acceptance of true positive class labels) for the two groups,
i.e., Z = 0 and 1. A relaxed variant of this measure, widely
used in the literature, is equal opportunity, which enforces
only equal false negative rate (or equivalently, equal true
positive rate) for the two groups. In this work, we focus
primarly on equal opportunity, although the arguments can
be extended to other measures of fairness as well, e.g., sta-
tistical parity (Agarwal et al., 2018).

We assume that in the construct space, there is no trade-off
between accuracy and equal opportunity, i.e., the Bayes
optimal (Cover & Thomas, 2012) classifiers for the groups
Z = 0 and Z = 1 also satisfy equal opportunity (equal
probabilities of false negative). In this work, our objective
is to explain the accuracy-fairness trade-off in the observed
space and attempt to find ideal distributions with respect
to which there is no trade-off. We now provide a brief
background on error exponents of a classifier to help follow
the rest of the paper.

Background on Error Exponents of a Classifier: The
error exponents of the FPR and FNR are given by
—log Ppp 1, (7.) and —log Ppn 7, (7,). Often, we may
not be able to obtain a closed-form expression for the exact
error probabilities or their exponents, but the exponents are
approximated using a well-known lower bound called the
Chernoff bound (see Lemma 1; proof in Appendix A.1), that
is known to be pretty tight (see Remark 3 and also Motwani
& Raghavan (1995); Berend & Kontorovich (2015)).

Definition 1. The Chernoff exponents of Prp 1, (T,) and
Pen 1, (72) are defined as:

Eyp,1,(12) = sup(ur, — Ag(u)), and
u>0
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Figure 1. Let Py(z)~N(1,1) and P;(x)~N(4,1). For a likelihood ratio detector T'(z)=log ﬁ;ﬁﬁ?

generating functions as follows: Ao(u) = Ju(u — 1) and A1 (u) = u(u + 1) (derived in Appendix A.3). Note that, Ao (u) is strictly
convex with zeros at u=0 and u=1, and A (u)=Ao(u + 1). We obtain Erp r(7) and Ern,7(7) as the negative of the y-intercepts for
tangents to Ao(u) and A1 (u) respectively with slope 7. As we vary the slope of the tangent (7), there is a trade-off between Erp 1 (7) and
Epn,7(7) until they both become equal at 7 = 0 (third figure from left). The value of the exponent at 7=0 (negative of the y-intercepts
for tangents with O-slope) is defined as the Chernoff Information, given by: C(Po, P1):=FErp,7(0)=FErn,r(0), which is equal to 9/8

> T, we can compute the log-

for this particular example.

Epn, (12) = SUIS(UTZ — Ay (u)).
u<
Here, Ao(u) and Aqi(u) are called log-generating func-
tions, given by Ao(u) = log E[e*T=(X)|Y =0, Z = 2] and
Ai(u) = logE[e*=) |y = 1,7 = 2].
Lemma 1 (Chernoff Bound). The exponents satisfy:
PFP,TZ (TZ)SG_EFP'TZ (72) and PFN,TZ (TZ)SG_EFN‘TZ (TZ).

Remark 3 (Tightness of the Chernoff Bound). For Gaus-
sian distributions, the tail probabilities are characterized
by the Q-function which has both upper and lower bounds
in terms of Chernoff exponents with constant factors that do
not affect the exponent significantly (Coté et al., 2012). The
Bhattacharya bound (a special case of Chernoff bound) both
upper and lower bounds the Bayes error exponent (Berisha
et al., 2015; Bhattacharyya, 1946, Kailath, 1967).

Geometric Interpretation of Chernoff Exponents: Cher-
noff exponents yield more insight than exact error exponents
because of their geometric interpretation, as we discuss here
(more details in Appendix A.2).

For ease of understanding, we refer to Fig. 1 where we il-
lustrate the idea of Chernoff exponents with a numerical
example. In general, the log-generating functions are convex
and become 0 at © = 0 (see Appendix A.2). Furthermore, if
a detector is well-behaved?, i.e., E[T,(X)|Y =1, Z=z]>0
and E[T,(X)|Y=0, Z=z]<0, then Ag(u) and A (u) are
strictly convex and attain their minima on either sides
of the origin. The Chernoff exponents Erp 1, (7,) and
Epxr,(T:) can be obtained as the negative of the y-
intercepts for tangents to Ag(u) and A;(u) with slope 7,
(for 7, € (E[T.(X)|Y=0, Z=z],E[T.(X)|Y =1, Z==z])).

Definition 2. The Chernoff exponent of the overall proba-

For a detector Ty (z)>7,, we would expect T,(X) to
be high when Y=1, and low when Y'=0 justifying the crite-
ria E[T.(X)|Y=1,Z=2]>0 and E[T.(X)|Y=0,Z=2]<0
for being well-behaved. A likelihood ratio detector

To(z)=log g;gi; >0 is well-behaved under assumption A2 in
Section 2 because we have E[T.(X)|Y=1, Z=z]=D(P:||P)

and E[T.(X)|Y =0, Z=z]= — D(R||P\).

bility of ervor P, . (7,) is defined as:

E. 1. (1;) = min{Eprp 1, (72), Een,1. (72) }.

Recall that, under equal priors, we have P r, (7,) =
%PFPJ‘Z (1) + %PFN,TZ (15). The exponent of P, 1 ()
is dominated by the minimum of the error exponents of
Pep,1,(72) and Ppn 1, (7)., which in turn is bounded by
the minimum of the Chernoff exponents of FPR and FNR
(Definition 1). A higher E, 7, (7.) indicates higher accuracy,
i.e., lower P, 7. (7). To understand this, first consider likeli-

ﬁ;gg for Z =
0. As we vary 79, there is a trade-off between Prp 1, (70)
and PpN 1, (70), 1.€., as one increases, the other decreases. A
similar trade-off is also observed in their Chernoff exponents
(see Fig. 1). Pe 1, (70) is minimized when 79 = 0 (for equal
priors) and Pyp 7, (0)=Prn,1,(0). For this optimal value
of 79 = 0, the Chernoff exponents of FPR and FNR also
become equal, i.e., Erp 1,(0)=FErn1,(0), and the max-
imum value of Ee,To (To): min{EFp,TO (7'0)7 EFN,TO (TQ)}
is attained. This exponent is called the Chernoff informa-
tion (Cover & Thomas, 2012). For completeness, we include
a well-known result on Chernoff information from Cover &
Thomas (2012) with the proof in Appendix A.4.

Lemma 2. For two hypotheses Py(x) under Y = 0 and
Py (z) under Y = 1, the Chernoff exponent of the probabil-
ity of error of the Bayes optimal classifier is given by the

Chernoff information®:

hood ratio detectors of the form Ty (z) = log

C(Py, 1) = — min 1
(Po, P1) Join log

(Z Po(x)' Py (w)“) (1)
Goals: Our metrics of interest for accuracy are E. 1, (70)
and E, 7, (71) because a higher value of the Chernoff expo-
nent of P, 7, (7,) implies a higher accuracy for the respec-
tive groups Z=0 and Z=1. Our metric of interest for fair-
ness is the difference of the Chernoff exponents of FNR, i.e.,

3When Py (z) and P, (z) are continuous distributions, the sum-
mation is replaced by an integral over x (see Appendix A.3).
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|Een, 1, (T0) — Evn,7, (11)] (inspired from equal opportu-
nity). A model is fair when | Epn 1, (70) — Ewn,1, (T1)] = 0,
and progressively becomes more and more unfair as this
quantity | Epn, 1, (70) — Ern,1, (71)| increases.

Our first goal is to quantify fundamental limits on the best
accuracy-fairness trade-off in terms of our metrics of inter-
est on an existing real-world dataset, i.e., given observed
distributions Py(z), P1(z), Qo(z), and Q1 (x). Next, our
goal is to find ideal distributions where fairness and accu-
racy are in accord when accuracy is measured with respect
to the ideal distributions.

3. Main Results

3.1. Concept of Separability: Fundamental Limits on
Accuracy-Fairness Trade-Off in the Real World

Given the setup in Section 2, we show that the trade-off
between accuracy and equal opportunity in the observed
space is due to noisier mappings for the unprivileged group
making their positive and negative labels less separable. Let
us first formally define our intuitive notion of separability.

Definition 3. For a group of people with distributions Py(x)
and P (x) under hypotheses Y =0 and Y =1, we define the
separability as their Chernoff information C(Py, Py ).

Definition 3 is motivated from Lemma 2 because Chernoff
information essentially provides an information-theoretic
approximation to the best classification accuracy (in an ex-
ponent sense) for a group of people in a given dataset. Next,
we define unbiased mappings from a separability standpoint.

Definition 4. Consider the setup in Section 2. The mapping
X = fy,z(X,) from the construct space to the observed
space is said to be unbiased if C(Py, P1) = C(Qo, Q1).

Our next result demonstrates that the trade-off between fair-
ness and accuracy arises due to a bias in the mappings from
a separability standpoint, i.e., C(Py, P;) # C(Qo, @1). Be-
cause we assumed that Z = 0 is the unprivileged group, we
let C(Py, P1) be either equal to, or less than C(Qq, Q1)-

Theorem 1 (Explaining the Trade-Off). For the setup in
Section 2, one of the following is true:

1. Unbiased Mappings, i.e., C(Py, P1)=C(Qo,Q1): The
Bayes optimal detectors To(x) > 19 and Ty (x) > T for
the two groups with Chernoff exponents of the probability
of error C(Qo, @1)(= C(Po, P1)) also attain fairness,
i.e., EFN,TO (To) - EFN,Tl (Tl)‘ =0.

2. Biased Mappings, i.e., C(Py, P1) < C(Qo,Q1): The
Bayes optimal detectors To(x) > 19 and Ty (z) > 7
for the two groups are not fair, i.e., |Epnm,(70) —
Epn,1, (T1)| # 0. Furthermore, no likelihood ratio de-
tector can improve the Chernoff exponent of the probabil-
ity of error for the unprivileged group beyond C(Py, Py ).

The first scenario is where the mappings are unbiased from
a separability standpoint, and there is no trade-off between
accuracy and fairness. The second scenario, which oc-
curs more commonly in practice, is where discrimination is
caused due to an inherent limitation of the dataset: the map-
pings from the construct space are biased and do not have
enough separability information about one group compared
to the other. For the rest of the paper, we will focus on the
case of C(Py, P1) < C(Qo, @1). Under this scenario, the
Chernoff exponents of FNR of the Bayes optimal detectors
for the two groups are C(Py, P;) and C(Qo, Q1) which are
unequal, and hence unfair. An attempt to ensure fairness
by using any alternate likelihood ratio detector for any of
the groups will therefore only reduce accuracy (Chernoff
exponent of the probability of error) for that group below
the Bayes optimal (best) classifier for that group, explaining
the accuracy-fairness trade-off. We formalize this intuition
in Lemma 3 (used in proof of Theorem 1; see Appendix B).
Lemma 3. Ler C(Py, P1)<C(Qo, Q1) Suppose that there
are two likelihood ratio detectors To(x)>719 and Ty (z)>71,
one for each group, such that Epn 1, (70)=Ern 1, (T1)-
Then, at least one of the following statements is true:

(i) Ee,To (7’0) < C(Po, Pl), or (ii) E€7T1 (7’1) < C(Qo, Ql)

The next two results show how current and reasonable ap-
proaches to fair classification can give rise to each of the
two cases in Lemma 3. Consider the following optimization
problem, where the goal is to find classifiers of the form
To(x) > 79 and Ty (x) > 7 for the two groups that maxi-
mize the Chernoff exponent of the probability of error under
the constraint that they are fair on the given dataset.

min { Erp 1, (70), Ern,1, (T0),

Eep 1 (11), Erny (11)}
such that EFN,TU (T()) = EFN,T1 (’7’1). (2)

max
To,70, 11,71

This optimization is in the spirit of existing works (Zafar
etal., 2017; Agarwal et al., 2018; Donini et al., 2018; Celis
et al., 2019) that maximize accuracy under fairness con-
straints. From the NP Lemma, we know that given any
classifier, there exists a likelihood ratio detector which is at
least as good in terms of accuracy. If we restrict Ty () and
T () to be likelihood ratio detectors of the form log 1}3;%:;

and log gégzg , then (2) has a unique solution (7, 77).

Lemma 4. Ler C(Py, P1)<C(Qo, Q1) and To(x) and
T (z) be restricted to be likelihood ratio detectors. Then
the detectors Ty(x) > 1 and Ty (x) > 71 that solve the
optimization (2) are the Bayes optimal detector for the un-
privileged group (15 = 0) and a sub-optimal detector for
the privileged group (T{ > 0) with E. 1, (11) < C(Qo, Q1)

As a proof sketch, we refer to Fig. 2 (Left). Let 7§ = 0,
which ensures EFN,TO (0) = EFP,TO (0) = C(Po,Pl).
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Figure 2. Let the distributions for the unprivileged group (Z = 0) be Py(z)~N(1,1) and P1(x)~N (4, 1). Also, let the distributions of
the privileged group be Qo (z)~N(0,1) and Q1(x)~N (4, 1). In both the figures, the red and blue curves denote the log-generating
functions for the likelihood ratio detectors for the groups Z = 0 and Z = 1 respectively (see Appendix A.3 for derivation). We
have Ao(u):—1 = 8u(u — 1) and A (u).—1 = 8u(u + 1). Also, Ao(u).—0 = Ju(u — 1), and A1(u)z—0 = Ju(u + 1). Note that,
C(Po, P1)<C(Qo, Q1). (Left) This plot corresponds to the scenario of Lemma 4. The detector for the group Z = 0 is the Bayes optimal
detector with 75 = 0 and Ern,1,(73) = Erp,1,(79) = C(Po, P1). The detector for the group Z = 1 is a sub-optimal detector because
in order to satisfy equal opportunity, we have to choose 71 such that Ern, 7, (77) = Ewn,1, (70 ) = C(Fo, P1) and this is strictly less
than C(Qo, @Q1). (Right) This plot corresponds to the scenario of Lemma 5. The detector for the group Z = 1 is the Bayes optimal
detector with 71 = 0 and Ern,1, (71) = Erp,1, (11) = C(Qo, Q1). In order to satisfy equal opportunity, we have to choose 73 such
that Ern, 1, (70) = Ern,1y, (11) = C(Qo, Q1) which is strictly greater that C'(Py, P1). However, this threshold 75 makes Erp, 1, (75)
lower that C'(Py, P1), leading to a sub-optimal detector for the group Z = 0.

Now, the only value of slope 7{ that will sat-
isfy  Epn (79)=Ern1,(0) is a 77>0 such
that EFN_’Tl(Tf):C(Po,P1)<C(Q0,Ql), and
hence  Eppr, (77)>C(Qo,Q1). This leads to,

min{ Erp 1,(0), ErNn,1,(0), Erp, 73 (1), ERN1y (T7)} =
C(Py, P1).

For 7§#0, either Ewp 1, (75)<C(Py, P1)<Ern,1, (75),
or Epn 1, (75)<C(Py, P1)<Erp 1,(7;), implying that,
min{ Erp,1, (75), Een,10 (15 ), Brp,r (1), Eenyry (1)} <
C(Py, P1).

This situation of reducing the accuracy of the privileged
group is often interpreted as causing active harm to the priv-
ileged group. To avoid causing active harm while satisfying
a fairness criterion, we may also consider a variant where
we do not alter the optimal detector (or accuracy) of the priv-
ileged group (i.e., Epn, 7, (11) = Erp, 1, (11) = C(Qo, Q1)
for the privileged group), but only vary the detector for the
unprivileged group to achieve fairness. We propose the
following optimization:

max min{ Erp 1, (70), Ern,1, (70) }
To,T0

such that EFN,TD (7'0) = C(QO7 Ql) (3)

Again, if we restrict Ty () to be a likelihood ratio detector,
then there exists a unique solution 7 to optimization (3).

Lemma 5. Ler Ty(z) = log 2—(&; and we have
C(Py, P1) < C(Qo,Q1). The detector Ty(x) > 75 that
solves optimization (3) is a sub-optimal detector for the

unprivileged group with E. 1, (175) < C(Po, P1).

As a proof sketch, we refer to Fig. 2 (Right). If we choose
75 # 0, we get a sub-optimal detector for the unprivileged

group with E, 7, (75) < C(Py, P1). The full proofs for
Lemmas 4 and 5 are provided in Appendix B.3.

Remark 4 (Equal priors on Z). Along the lines of balanced
accuracy measures, the optimization assumes equal priors
onZ = 0and Z = 1 as well. We refer to Appendix E.2
for modification of the optimization to account for unequal
priorson Z = 0and Z = 1.

Remark 5 (Generalization to other fairness measures).
While we focus on equal opportunity here, the idea extends
to other fairness measures as well. For example, if the best
likelihood detectors for each group, i.e., To(x) > 0 and
T1(z) > 0 do not satisfy statistical parity (Agarwal et al.,
2018), while there are other pairs of detectors for the two
groups that do satisfy the criterion, then for at least one of
the two groups, a sub-optimal detector is being used.

3.2. The Mismatched Hypothesis Testing Perspective:
Ideal Distributions with no Accuracy-Fairness
Trade-Off

Here, we will show that there exist ideal distributions such
that fairness and accuracy are in accord. Since the trade-off
arises due to insufficient separability of the unprivileged
group in the observed space, we are specifically interested
in finding ideal distributions for the unprivileged group that
match the separability of the privileged, and the same de-
tector that achieved fairness with sub-optimal accuracy in
Lemma 5 now achieves optimal accuracy with respect to
the ideal distributions. We show the existence of such ideal
distributions and also provide an explicit construction.

Theorem 2 (Existence of Ideal Distributions). For the setup
in Section 2, let C(Py, P1) < C(Qo,®@1). Let us choose
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the Bayes optimal detector Ty (z) = log 8122) >0 for the

group Z = 1. Then, for group Z = 0, there exist Po( )

~ ~ 2y 1=9) p. (g
and Py (x) of the form Py(x) = Epﬂlg‘ogx)u 5)1(3 gx)w and
Po(z) =Y Py (z)?

ﬁl( )= S Po(2)(T=9) Py (z)° 5 for w,v € R such that:

e (Fairness on given data) The Bayes optimal detector for
the ideal distributions, i.e., YA:O( )= log Di(@) >0 is equiv-

Po(x) —
alent to the detector Ty(z) = log ggg >7§ of Lemma 5

that satisfies equal opportunity on the given dataset, i.e.,
Ern,1,(70) = Ernyry (0) = C(Qo, Q1)

e (Accuracy and Fairness on ideal data) The Chernoff ex-
ponent of the probability of error of the Bayes optimal
detector on the ideal distributions, i.e., C(Py, P1) =
C(Qo, Q1), and is hence greater than C(Py, Py).

The proof is provided in Appendix C. The first criterion
demonstrates that one can always find ideal distributions
such that the fair detector with respect to the given distri-
butions (see Lemma 5) is in fact the Bayes optimal de-
tector with respect to the ideal distributions. Note that
there exist multiple pairs of (v,w) such that Py(z) =

Py(2)1 =) Py (2)® > Po(2) = Py (z)"
5, r@r=o b @ A4 P) = s e
isfy the first criterion of the theorem.

sat-

The second criterion goes a step further and demonstrates
that among such pairs of ideal distributions, one can always
find at least one pair such that they are just as separable as
the privileged group (i.e.,C'(Py, P1) = C(Qo,Q1)). The
Bayes optimal detector for the unprivileged group with re-
Pi(z)

(T) -
is thus not only fair on the given dataset but also satisfies

equal opportunity on the ideal data because its Chernoff ex-
ponent of FNR is also equal to that of the privileged group,
i.e., C(Qo,Q1). Note that, in order to satisfy the second
criterion, we restrict ourselves to choosing v = 1 which
leads to an appropriate value of w.

spect to the ideal distributions, i.e., i\};(z) log

Remark 6 (Uniqueness). Theorem 2 provides a proof of ex-
istence of ideal distributions along with an explicit construc-
tion. In general, there may exist other pairs of distributions,
which are not of the particular form mentioned in Theo-
rem 2, but might satisfy the two conditions of the theorem.
Therefore, given only Py(x) and Py (z), the ideal distribu-
tions are not necessarily unique unless further assumptions
are made about their desirable properties.

In order to go about finding such ideal distributions in prac-
tice, we therefore propose an additional desirable property
of such an ideal dataset. We require the ideal dataset to be
a useful representative of the given dataset. This motivates
a constraint that moD(FPy||Py) + 71 D(P1||P1) be as small
as possible, i.e., the KL divergences of the ideal distribu-
tions from their respective given real-world distributions

are small. Building on this perspective, we formulate the
following optimization for specifying two ideal distributions
Py and P, for the unprivileged group:

min mD(Pyl|Py) + mD(Py||Py)
Py, Py

such that, gy 7(0) =

C(Qo, Q1), “4)

where Tg( ) = log 1131 E“‘g > 0 is the Bayes optimal detec-
(0) is

tor with respect to the ideal distributions and EFN,'TE
the Chernoff exponent of the probability of false negative
for this detector when evaluated on the given distributions
Py(x) and Py (x). Theorem 2 already shows that the afore-
mentioned optimization is feasible.

The results of this subsection can be extended to optimiza-
tion (2), or to other measures of fairness altogether, e.g.,
statistical parity, or to other kinds of constraints such as
minimal individual distortion.

Relation to the construct space: The ideal distributions
for the unprivileged group, in conjunction with the given
distributions of the privileged group, have two interpreta-
tions: (i) They could be viewed as plausible distributions in
the observed space if the mappings were unbiased from a
separability standpoint (recall Definition 4). (ii) Given our
limited knowledge of the construct space, they could also
be viewed as candidate distributions in the construct space
itself if the mappings for the group Z = 1 were identity
mappings. This can be justified because we do not have
much knowledge about the construct space (or even its di-
mensionality) except through the observed data. It is not
unfathomable to assume they would have a separability of
at least C(Qo, Q1), which is the separability exhibited by
the privileged group in the observed space. Theorem 2 thus
also demonstrates that the construct space is non-empty.

Remark 7 (Explicit Use of an Ideal Dataset). Several ex-
isting methods (Calmon et al., 2018; Feldman et al., 2015;
Kamiran & Calders, 2012) propose pre-processing the given
dataset to generate an alternate dataset that satisfies cer-
tain fairness and utility (representation) properties, in the
same spirit as optimization (4), and train models on them.
The trained detector may be sub-optimal with respect to the
given dataset but is deemed to be fair. The results in this
subsection help to explain why these approaches result in an
accuracy-fairness trade-off on the given dataset, and also
demonstrate that both accuracy and fairness can improve
simultaneously when the accuracy is measured with respect
to the alternate/ideal dataset. Optimization (4) is also remi-
niscent of the formulation of Jiang & Nachum (2019), who
posit that a given biased label function is closest to an ideal
unbiased label function in terms of KL divergence. In that
work however, the KL divergence is applied to conditional
label distributions py|x as opposed to conditional feature
distributions px|y. Furthermore, Jiang & Nachum (2019)
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do not analytically characterize trade-offs.

Remark 8 (Implicit Use of an Ideal Dataset). Existing meth-
ods that fall in this category include training with fairness
regularization in the loss function or post-processing the
output to meet a fairness criterion. Instead of explicitly gen-
erating an ideal dataset, these methods aim to find a clas-
sifier that satisfies a fairness criterion on the given dataset,
with minimal compromise of accuracy on the given dataset
(recall optimizations (2) and (3)). Here, we show that there
exist ideal distributions corresponding to these fair detec-
tors such that a sub-optimal detector on the given dataset
can be optimal with respect to the ideal dataset.

3.3. Active Data Collection: Alleviating Real-World
Trade-Offs with Improved Knowledge

The inherent limitation of disparate separability between
groups in the given dataset, discussed in Section 3.1, can in
fact be overcome but with an associated cost: active data
collection. In this section, we demonstrate when gathering
more features can help in improving the Chernoff informa-
tion of the unprivileged group without affecting that of the
privileged group. Gathering more features helps us classify
members of the unprivileged group more carefully with ad-
ditional separability information that was not present in the
initial dataset. In fact, this is the idea behind active fairness
(Noriega-Campero et al., 2019; Bakker et al., 2019; Chen
et al., 2018). Our analysis below also serves as a technical
explanation for the success of active fairness.

Let X’ denote the additional features so that (X, X') is
now used for classification of the group Z=0. Note that X'
could also easily be other forms of additional information
including extra explanations to go along with the data or
decision, similar to Varshney et al. (2018). Let (X, X) have
the following distributions: (X, X')|y =0, z=0 ~ Wo(z,2’)
and (X, X")|y=1,2z=0 ~ Wi(z,2'), where Y is the true
label. Note that, Py(z) = Y, Wy(z,2’) and P;(z) =
> Wi(x,2"). Our goal is to derive the conditions un-
der which the separability improves with addition of more
features, i.e., C(Wy, W1) > C(Fy, P1).

Theorem 3 (Improving Separability). The Chernoff infor-
mation C(Wy, W1) is strictly greater than C(Py, Py ) if and
only if X" and 'Y are not independent of each other given
X and Z = 0, i.e., the conditional mutual information
I(XY|X,Z=0)>0.

The proof is provided in Appendix D. Note that, in general
C(Wy, W1) > C(Fy, Py) because separability can only
improve or remain the same (see Appendix D). We identify
the scenario where the inequality is strict.

Let 2’ be a deterministic function of z, i.e., f(z). Then
Wo(z,z')=Py(x) if '=f(z), and 0 otherwise. Similarly,
Wi (z, 2" )=P; () if 2’=f(z), and 0 otherwise, leading to

C(Wy, W1)=C(Py, P). This agrees with the intuition that
if X’ is fully determined by X, then it does not improve
the separability beyond what one could achieve using X
alone. Therefore, for C(Wy, W1)>C(P,, P), we require
X' to contribute some information that helps in separating
hypotheses Y = 0 and Y = 1 better, that essentially leads
to X’ not being independent of Y given X and Z = 0.

If new data improves the separability of the group Z = 0,
its accuracy-fairness trade-off is alleviated (see Fig. 3 in
Section 4). New ideal distributions can also be found using
the techniques of Section 3.2 that are more plausible as ei-
ther candidate observed-space distributions under unbiased
mappings or construct-space distributions. The new ideal
distributions will also have better separability if the new
data improves the separability of both groups.

4. Numerical Example

We use a simple numerical example to show how our theo-
retical concepts and results can be computed in practice.

Example 1. Let the exam score for Z = (0 be
Py(z)~N(1,1) and Py (z)~N(4,1), and that for Z = 1
be QO(J:)NN(O7 1) and Ql(aj)NN(ZL 1)

Let us restrict ourselves to likelihood ratio detectors of the
form Ty(z) = log g‘;gg > 19 and Ty (z) = log g?gg >7
for the two groups. The log generating functions for Z = 1
can be computed analytically as: Ag(u),=1 = 8u(u—1) and
Ay (u).=1 = 8u(u+1) (derivation in Appendix A.3) and the
Chernoff information can be computed as C(Qo, Q1) = 2.

Now, for the unprivileged group Z = 0, the log generat-
ing functions can be computed as Ag(u).—o = Ju(u — 1)
and Aq(u).—0 = Ju(u + 1) (again see Appendix A.3 for
derivation). The Chernoff information is C(P,, P;) = 9/8.

Accuracy-Fairness Trade-off in Real World: We restrict
the detector for the privileged group to be the Bayes optimal
detector T} (z)=log Q1 (z) > 0 (equivalent to > 2). For

Qo(x)
this detector, EFP,Tl (O)ZEFNJ'l (0) = C(Qo, Ql) = 2.
Now, for Z=0, the Bayes optimal detector
Pl(:E)

To(z)=log WZO (or, £>1.5) will be unfair since
ErN 1, (0)=C(Py, P1)<Epn,1,(0). Using the geometric
interpretation of Chernoff information (recall Fig. 2),
we can compute the Chernoff exponents of FPR and
FNR, ie., Erp1,(70) and Epn1,(70) as the negative
of the y-intercept of the tangents to Ag(u),—o and
Ay (u) .o for detectors Ty(z)=1log i;gig >70. This enables
us to numerically plot the trade-off between accuracy
(Ee,To (7’0)2 min{EFp,TU (7’0)7 EFN7T0 (7’0)}) and fairness
(|Ern 1, (T0)—ErnN 1, (10)|) by varying 7y as shown by the
blue curve in Fig. 3.

Note that, the detector that satisfies fairness (equal op-
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Figure 3. Computation of the trade-off between fairness and ac-
curacy using a numerical example: For the unprivileged group,
we let Py(z)~N(1,1) and P1(x)~N(4,1). We restrict the de-
tector of the privileged group to its Bayes optimal detector with
C(Qo, Q1) = 2. The blue curve denotes the trade-off between
accuracy and fairness in the existing dataset for the unprivileged
group. Now suppose we are able to collect an additional fea-
ture X’ for the unprivileged group such that (X, X’)|y =o0,z=0 ~
N((1,1),1) and (X, X)|y=1,z=0 ~ N((4,2),I), where I is
the 2 x 2 identity matrix. The green curve shows how active data
collection alleviates the trade-off between fairness and accuracy.

portunity) on the given distributions can also be com-

puted analytically as log ﬁ;gjg >75 where 75 =—3/2 (equiv-
This leads to equal exponent of FNR,

alent to x>2).
ie., Epn g (—3/2)=2=FEpnr (0) but for this detec-
tor Ewp,r,(75)=1/2 leading to reduced Chernoff ex-
ponent of overall error probability (represents accu-
racy), i.e., Ee,To (7'0*): min{EFP’TO (Tg), EFN,TO (Tg)} =
min{1/2,2} = 1/2 which is less than C(Py, P;) = 9/8.

Ideal Distributions: We refer to Fig. 4. It turns out that
one pair of ideal distributions prescribed by Theorem 2 is

PO Qo and P1—P1—Q1 The Bayes optimal detector with
respect to the ideal distributions for Z = 0 is given by

log il Em) >0 (equivalent to x>2). Note that, this is equiva-
lent to the detector log gg; > 7¢ where 5= — 3/2 which

satisfied equal opportunity on the given dataset. This detec-
tor is now Bayes optimal with respect to the ideal distribu-
tions Py and P, and has a Chernoff exponent of the overall
probability of error equal to C( Py, P;) = 2 when measured
with respect to the ideal distributions. Thus, we demon-
strate that both fairness (in the sense of equal opportunity
on existing dataset as well as ideal dataset) and accuracy
(with respect to the ideal distributions) are in accord. Note
that, one may also find alternate pairs of ideal distributions
using optimization (4) or any variant of the optimization,
e.g., using statistical parity.

Active Data Collection: Now suppose we are able to
collect an additional feature X’ for Z = 0 such that

AYES

0.4r (2()([[7)

0.41 Py(x) x g y- T

02 Py(z) 1 (2)=P1 (2)
o N

Figure 4. (Top) For the distributions in Example 1, we denote the
Bayes optimal detector log gég; >0 (equivalent to z > 2) for the
privileged group Z = 1. (Bottom) For Z = 0, the optimal detec-
tor log L <z> >0 does not satisfy equal opportunity on the given
dataset but a sub-optimal detector does (notice the equal area cor-
responding to false negative rate for two groups). However, there
exist ideal distributions given by Py = Qo and P = P = Q1
such that this detector is optimal w.r.t. the ideal distributions, and
also achieves fairness w.r.t. both existing and ideal distributions.

(X, X"y 0,720 ~ N((1,1),T) and (X, X")|y—1 7—0 ~
N((4,2),1), where T is the 2 x 2 identity matrix. The log
generating functions can be derived as: Ag(u) = 5u(u — 1)
and A;(u) = 5u(u + 1). Note that, the Chernoff informa-
tion (separability) C'(Wy, W7) = 5/4 which is greater than
C(Py, P1) = 9/8. Thus, the collection of the new feature
has improved the separability of the unprivileged group.

Now, we examine the effect of active data collection on the
accuracy-fairness trade-off in the real world. We again
refer to Fig. 3 (green curve). Consider the likelihood
ratio detector for Z = 0 based on the total set of fea-
tures, i.e., To(z,2') = log % > 79. To satisfy
our fairness constraint, we need to choose a 7 such that
EFN,T(,(TS):EFN,Tl (O) = C(QO;Ql) = 2. Upon solv-
ing, we obtain that 7§ = 5 — V40 ~ —1.32. For this
value of 7§, we obtain Epp 1, (73)=7 — v/40) ~ 0.68.
The Chernoff exponent of the probability of error for this
fair detector is given by min{ Exn 1, (73 ), Erp,1, (1)} =
min{2,0.68} = 0.68 which is greater than 0.5 (the Cher-
noff exponent of the probability of error for the fair detector
before collection of the additional feature X).

5. Conclusion

Our results provide novel analytical insights that explain and
characterize accuracy-fairness trade-offs on real datasets.
Our Chernoff information based analysis can help quantify
the separability of a dataset, even before any classification
algorithm is applied. We believe that our demonstration that
fairness and accuracy are in accord with respect to ideal
datasets will motivate the use of accuracy with respect to an
ideal dataset as a performance metric in algorithmic fairness
research (Sharma et al., 2020; Wick et al., 2019). Lastly,
our results also inform how and when active data collection
can alleviate the trade-off in the real world.
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