Is There a Trade-Off Between Fairness and Accuracy?

A. Background on Chernoff Information

In this section, we provide a brief background on Chernoff bounds and Chernoff information, leading to the derivation of the
results under equal priors, i.e., mg = T = % We discuss the case of unequal priors in Appendix E.

Consider a detector of the form T'(x) > 7 for classification between two hypothesis Hy : X ~ Py(x) and Hy : X ~ P;(x).
Recall that the log-generating functions for this detector are defined as follows:

Ao(u) = log E[e*TX)|Hy], and A, (u) = log E[e*T )| H,]. (5)

A.1. Proof of Lemma 1

We first state the Chernoff bound (see Chapter 2.2 in (Boucheron et al., 2013)) here, which is a well-known tight bound for
approximating error probabilities. For a random variable T,

E[euT]

e’U.T

Pr(T >7)=Pr(e"? >e"") < Vu > 0. (6)

Proof of Lemma 1. Using the Chernoff bound, we can bound PéTP) (1) as follows:

EevT ) | Ao(u)
Pip (1) = Pr(T(X) > 7|Hy) < e [Ho] _ ¢ Yu > 0. 7

euT euT

Thus, — log PélT)) (1) > sup,sq (ur — Ag(u)) = Eg)) (7). Similarly, using the Chernoff bound, we have

]E[euT(X)|H1] €A1 (u)

P (7) = Pr(T(X) < 7[H:) < o = Yu<0. (8)
Thus, — log Pé? (1) > sup, o (ur — A (u)) = Eg\l) (7). O

A.2. Properties of log-generating functions

Here, we state some useful properties of the log-generating functions that are used later in the other proofs/explanations.

Property 1 (Convexity). The log-generating functions Ag(u) and Ay (u) are convex in u.

Proof of Property 1. The proof follows directly using Holder’s inequality. For any « and v, and « € [0, 1],
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E[e(aqu(lfa)v)T(X) ‘HO] — E[€QUT(X)€(17Q)UT(X)|HO} < (EHGQUT(X)

This leads to,
Ao(ou + (1 — a)v) = log E[e(@v+ =0T i1 < o log E[e"T )| Hy) + (1 — a) log E[e?T )| Hy)
= alo(u) + (1 — a)Ag(v). (10)
The proof is similar for Aj(u). O

Property 2 (Zero at origin). The log-generating functions Ag(u) and A1 (u) are both 0 at u = 0.
Proof of Property 2. The proof follows by substituting u = 0 in the expressions of Ag(u) and A;(u). O

Next, we prove some properties for the log-generating functions when the detector is well-behaved. In general, when using
a detector of the form T'(x) > 7, we would expect T'(X) to be high when H; is true, and low when H| is true. We call a
detector well-behaved if E[T'(X)|Hy] < 0 and E[T(X)|H1] > 0. The next property provides more intuition on what the
log-generating functions look like for well-behaved detectors.



Is There a Trade-Off Between Fairness and Accuracy?

Property 3 (Log-generating functions of well-behaved detectors). Suppose that E[T(X)|Ho] < 0 and E[T(X)|H1] > 0,
and Py(x) and Py (x) are non-zero for all x. Then, the following holds:

o Ao(u) and A1 (u) are strictly convex.
(

o Ao(u) >0ifu<0. Ay(u) >0ifu>0.

Proof of Property 3. The convexity of Ag(u) is proved in Property 1. Now Ag(u) is strictly convex if, for all distinct reals u
and v, and « € (0, 1), we have,
Ag(au + (1 — a)v) < alg(u) + (1 — a)Ao(v).

For the sake of contradiction, let us assume that there exists © and v with v > w such that,
Ao(au+ (1 — a)v) = alo(u) + (1 — a)Ao(v).

This indicates that Holder’s inequality holds with exact equality in (9), which could happen if and only if ae*”(®) = pe?T(®)
almost everywhere with respect to the probability measure Py(x) for constants a and b, i.e., (v — u)T'(x) = loga/b. Thus,

1
E[T(X)|Ho] = CE=) loga/b = E[T(X)|H], (11)
where the last step holds because P;(x) and Py(x) are both non-zero everywhere (absolutely continuous with respect to
each other). But, this is a contradiction since E[T'(X)|Hy] < 0 < E[T(X)|H1]. Thus, Ag(u) is strictly convex. A similar
proof can be done for Aj(u).

For proving the next claim, consider the derivative of Ag(u).

dAo(u)  E[e"TX)T(X)|Ho] (12)
du elo(u) :

The derivative of Ag(u) at u = 0 is given by E[T'(X')| Ho] which is strictly less than 0. Because Ag(u) is strictly convex in
wand Ag(0) = 0, if 2220 | _; <0, then Ag(u) > 0 for all u < 0.

A similar proof holds for the last claim as well, since the derivative of A;(u) at w = 0 is given by E[T'(X)|H;] which is
strictly greater than 0, and A;(0) = 0.

O

Next, we examine the properties of the log-generating functions for likelihood ratio detectors. Consider the likelihood
ratio detector Tp(xz) = log Ilz;g; The two conditions E[T'(X)|Hy] < 0 and E[T(X)|H;] > 0 become equivalent
to D(P||P1) > 0 and D(P1||Py) > 0 where D(+||-) denotes the Kullback-Leibler (KL) divergence between the two
distributions Py(z) and P;(x). Thus, a likelihood ratio detector always satisfies these conditions as long as the KL

divergences are well-defined and non-zero.

Property 4. (Log-generating functions of likelihood ratio detectors) Let Ty(xz) = log ggi;, and Py(x) and Py (x) be

non-zero for all x with D(Py||P1) and D( P, || Py) strictly greater than 0. Then, the following properties hold:
e Ao(u)isOatu=0and1, and A1 (u) is 0 at uw = 0 and —1.
e Aj(u) =Ao(u+1).
o C(Py, P,) > 0.
o Ag(u) and Ay (u) are continuous, differentiable and strictly convex.
o The derivatives of Ao(u) and A1 (u) are continuous, monotonically increasing and take all values between —oo and .
o Ao(u) attains its global minima for w in (0, 1).

o Ai(u) attains its global minima for v in (—1,0).

We first introduce the arithmetic mean-geometric mean (AM-GM) inequality.



Is There a Trade-Off Between Fairness and Accuracy?

Lemma 6 (AM-GM inequality). The following inequality is satisfied for u € (0,1) and a,b > 0:
a7 < (1 —u)a + ub, (13)
where the equality holds if and only if a = b.

Proof of Property 4. The first claim can be verified by direct substitution.
To show that A (u) = Ag(u + 1), observe that,

—log ) " Py(x) " Py( logZPl VU Py ()~ = Ag(u+1).

Next, we will show that C(P,, P;) > 0. Observe that, C(Py, P1) = —log >, Po(z)'~* Py(z)*" for some u* € (0,1).
Now, there is at least one ' with Py(z’) > 0 and P;(2’) > 0 such that Py(z') # Py(a’) because D(Py||P1) > 0 and
D(P1||Py) > 0. This leads to a strict AM-GM inequality (Lemma 6) as follows:

Po(z)'7 ™" Py(a) < (1 —u*)Py(2) + u*Py(a)).

For all other = # x/,
Py(2)' ™ Pi(z)" < (1 —u")Py(x) +u*Pi(x).
Thus,

> Po(a)' ™ Py( “<Z 1 —u*)Py(z) +u P (z) =
T

e —logZPo ()™ Py( x)“* > 0. (14)

Thus, C(Py, P;) > 0. A similar proof extends for continuous distributions as well where the strict inequality holds at least
over a set of z’s that is not measure 0.

We move on to the next claim. Since both Py(z) and P (z) are strictly greater than O for all z, we have Py(z)'~“ Py (z)" to
be well-defined and continuous for all values of u, including v = 0 and u = 1. Thus, Ag(u) is continuous over the range
(=00, 0).

The derivative of Ag(u) is given by:

dho(u) X, Po(@)' =" Pi(2)" log F2
du eho(u) ’

5)

which is well-defined for all values of u.

The strict convexity of Ag(u) can be proved using Property 3, because the two conditions E[T(X)|Hy] < 0 and
E[T(X)|H1] > 0 become equivalent to D(Fy||P1) > 0 and D(P;||Py) > 0. A similar proof extends to Aq (u).

Now, we move on to the next claim. Observe from (15) that, the derivative is also continuous for all values of u since both
Py(z) and P (x) are strictly greater than O for all z. It is monotonically increasing because Ag(u) is strictly convex. Also
note that, as u — —o0, its derivative tends to —oo. Similarly, as u — oo, its derivative tends to co. A similar proof extends
to A (u) .

Lastly, because Ag(u) is 0 at w = 0 and v = 1, and is a continuous and strictly convex function, it attains its minima for u
in (0, 1). A similar proof extends to A4 (u), validating the last claim as well. O

Property 5 (Connection to FL transforms). For well-behaved detectors, the following properties hold:

o If T <E[T(X)|H,], then sup, .o (ur — A1(u)) = sup,cr (u7 — Ay (u)) .
o IfT > E[T(X)|Ho|, then sup,~ (ur — Ag(u)) = sup,cp (ur — Ao(u)) .
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Before the proof, we introduce a lemma that will be used in the proof.

Lemma 7 (Supporting line of a strictly convex function). For a strictly convex and differentiable function f(u) : R — R,
df (u) _ df (u)
anbzua—f(ua)— sup \ u—o~ lu=u, — f(u) ).

ueER

The proof of Lemma 7 holds from the definition of strict convexity.

Proof of Property 5. In general, sup,cr (ur — A1 (u)) > sup, o (uT — A1 (w)) . But, here again,

a dAq1(u b dA1(u
sup (ur — A1 (w)) @ sup (u dl( )|u:ua — Al(u)> @ Ug it )|u:ua—A1(ua)
uER UER U du
(c)
< sup (udAl(u) lu=u, — Al(u)> @ sup (ur — Aq(u)) . (16)
u<0 du u<0

Here (a) holds because the derivative of A (u) is continuous, monotonically increasing and takes all values from (—o0, 00)

dAdl(“ |u=u, = 7. Next, (b) holds from Lemma 7,

lu=u, =7 < E[T(X)|H,] = dAl(“) |u—0 and the derivative is monotonically increasing
dAl ’LL)

(see Property 4). Thus, for any 7, there exists a single wu, such that
dAq(u)
du

whereas (c) holds because
(see Property 4) implying u, < 0. Lastly (d) holds by again substltuting T=

|u=u, - This proves the first claim.

Similarly, in general, we have sup, ¢ (uT — Ag(u)) > sup,~q (ur — Ag(u)) . But, here again,

a dAo(u b dAo(u
sup (UT - A0 (u)) (:) Sug <u 0( )|u:u,,, - AO(“)) (:) Uq, O( ) |u:ua,*AO (ua)
ue

ueR du du
(c)
< sup (u dAo(u) lumu, — Ao(u)> @ sup (ur — Ag(u)) . (17
u>0 U u>0

Here (a) holds because the derivative of A () is continuous, monotonically increasing and takes all values from (—o0, 00)

(see Property 4). Thus, for any 7, there exists a single u, such that dAO(“) |u=v, = 7. Next, (b) holds from Lemma 7,
whereas (c) holds because dAO(“) lu=u, =7 > E[T(X)|Ho| = dAOiiu o and the derivative is monotonically increasing
dAO u)

(see Property 4) implying u,, > 0. Lastly (d) holds by again substituting 7 = =7~ =, -
O

A.3. Log Generating Functions for Gaussians

Let Py(x) ~ N (o, 0I) and Py (x) ~ N (1, 0°T), where pg and 11 are vectors and I is an identity matrix. We derive the
log-generating functions for likelihood ratio detectors corresponding to these two distributions.

Ao(u) _ 1Og/P1(.Z’)uP0(.T)17udI — log/eﬁ((m—ui)T(m—/Li)—(ﬂc—/Lo)T(ac—/Lo))PO(x)dx

:loge%(#?m—uguo) ooz (=227 (1 1)) Py () da

@) log e (i =i o) 5 (=20 oo (llua—pol13))

— logeﬁ(”#i*ﬂo“g)em(iiﬂi*#o”z))
1
= 5zl = pol [Bulu = 1), (18)

where (a) is derived using the expression of the moment generating function of a Gaussian distribution.
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A.4. Proof of Lemma 2

Proof of Lemma 2. Under equal priors mp = 7 = %, the detector that minimizes the Bayesian probability of error, i.e.,

P. p(1) = moPrp 7 (T) + m1 Pen 1 (7) is the likelihood ratio detector given by T'(x) = log gg:; >0 (formg =m = %).

The proof is available in Theorem 3.1 of (Gallager, 2012).

Here, we will show that the Chernoff exponent of the probability of error for this detector, i.e., E. 7(0) is equal to
C(Py, P1) = —minyeo1)logd_, Po(x)(l_“)Pl(x)“.

Note that,

E 0) = sup —Ag(u) = — min 1 Po(2) = Py (z)" 19
rp,7(0) 21;13 o(u) uIeTE(l)Ill) Og; o(x) 1 ()", (19)

where the last step follows because Ag(u) attains its minima in the range v € (0, 1) (see Property 4).

(@) . _
E 0) =sup—A;(u) = — min | Py(z) W Py ()W
N, 7(0) sup 1(u) LA0in | log % o(z) 1 ()
= i 1 E P2 P () @) 20
w—utle@) - () 1@, 20)

where (a) also holds because A;(w) attains its minima in the range u € (—1,0) (see Property 4). Lastly,

Ee,T(O) = min{EFP’T(O), EFN,T(O)} = C(PQ, Pl) (21)

B. Appendix to Section 3.1

Before the proofs, we introduce a lemma that will be used in the proofs.

Lemma 8. Let Py(x) and Py(x) be non-zero for all x and D(Py||P1) and D(Py||Py) be strictly greater than 0. For

likelihood ratio detectors of the form Ty(z) = log ggg > 10, if To # 0, then one of the following statements is true:

Ern,1,(10) < C(Py, P1) < Erp 1, (70), 0 Exp 1, (10) < C(Po, P1) < Epx,1,(70)-

Proof of Lemma 8. Let us analyze the scenario where 79 > 0. Observe that,

Erp.1,(10) = supO(UTo — Ao(u)) > uymo — Ao(ug) [for any ug > 0]
u>
> —Ao(ug) [since ugTo > 0]
W ar, Py), (22)

where (a) follows if we choose u{; = arg min Ag(u) (from Property 4, Ag(u) attains its minima for some u € (0, 1)) and
Ao(uf) = —C(Po, P1) (by definition).

Now, we will show that Epn 1, (170) <C(FPp, P1) when 79 > 0.

Case 1: 7p > %&u)h:o = D(P1[| o)

Ern.1,(10) = su%(uTo —Ar(u) < su%(uD(PlﬂPo) — Ay (u)) [since 79 > D(Py||Py)]
u< u<

< sup (uD(P1||Py) — A1 (u))
uER

a ((')
W (0. D(P|Py) — A1(0)) L0 2 C(Ry, P)), (23)
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where (a) holds from Lemma 7 because dAdllE“) |u=0 = D(Py||Po), and (b) and (c) hold from Property 4 since A;(0) = 0
and C(Py, Py) > 0.

Case2: 0 < 79 < dAl(u)|u o= D(P1||Po)

Epn, 1, (70) = sup(urg — A1 (u)) < sup(urg — A1 (u))

u<0 ueR
@ sup (uro — Ay (w)) [where dh(w) luu, = 7o)
ueER du
@ UaTO — Al(ua)
(2 —A1(ug)  [since ugmo < 0]
< —minAq(u)
D min Ay(u) = C(Py, Py) (24)

u€e(—1,0)

Here, (a) holds because the derivative of A;(w) is continuous, monotonically increasing and takes all values from —oo to co
dAdﬂE“) lu=u, = To. Next, (b) holds from Lemma 7, (c)

(see Property 4). Thus, for any 7y, there exists a single u, such that

holds because dAd]IE“) luma, =70 < %ﬁ“) |u=0, and the derivative is monotonically increasing, implying u, < 0. Lastly (d)
holds because A;(u) attains its minima in the range u € (—1, 0) (see Property 4).

Thus, for 79 > 0, we get Epn 1, (10) < C(Fo, P1) < Erp,1,(70)-

The proof is similar for the scenario where 7y < 0, and leads to Epp 1, (70) < C(Fo, P1) < Ern,1, (70)-

B.1. Proof of Lemma 3

Proof of Lemma 3. Suppose there exists two likelihood ratio detectors for the two groups such that, Epn 1,(70) =
Epn,, (T1). Since C(Py, P1) < C(Qo,Q1), at most one of the two exponents Ern 1,(70) and Epn 1, (71) can be
equal to their corresponding Chernoff information C(Py, P;) or C(Qq, Q1). Without loss of generality, we may assume
that Epn 1, (70) # C(Po, P1). This implies that 7y # 0 because in the proof of Lemma 2, we already showed that
when 79 = 0, we always have Epn 1, (0) = Epp 1,(0) = C(Fo, P1). Since 79 # 0, using Lemma 8, we either have
EFN,TO(TO) < C(Po,Pl) < EFP,TO(TO) or EFP,TO (To) < C(Po, Pl) < EFN,TO(TO)- Thus,

Ee1,(10) = min{Erp 1, (70), Ern, 1, (70) } <C(Po, Pr). (25)

O

B.2. Proof of Theorem 1

Proof of Theorem 1. The first claim follows directly from Lemma 2 by choosing the likelihood ratio detectors for the two
groups with thresholds 79 = 71 = 0, i.e., the Bayes optimal detector under equal priors.

Now, we prove the second claim. Suppose that we choose the Bayes optimal classifiers Ty(x) > 79 and T1(z) > 71
for the two groups. Then, we have Epn 1,(70) = C(Py, P1) and Epn 1, (11) = C(Qo, Q1) which are not equal. Thus,

|Epn .1, (T0) — Eenry (12)] 7 0.
Assume (for the sake of contradiction) that there is a likelihood ratio detector such that E, 1, (7o) > C(Py, P1).

Now, if 79 = 0, then we have E. 1, (79) = C(Fo, P1) (from Lemma 2). Alternately, if 79 # 0, then we either have
EFN,TO (7'0) < C(Po,Pl) < EFP,TO (7’0) or EFP,TO (’7’0) < C(Po, Pl) < EFN,TO (7'0) (from Lemma 8) Thus,

E67T0 (To) = min{EFp7T0 (7’0), EFN,TO (7’0)} < C(PQ, P1). (26)

For both cases, we have a contradiction, implying that E. 1, (19) < C(Py, P1) < C(Qo, Q1) for all likelihood ratio
detectors. O]
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B.3. Proofs of Lemma 4 and Lemma 5

Proof of Lemma 4. Let 75 = 0. Using Lemma 2, this ensures,
Ern,1,(0) = Erp,1,(0) = C(Fy, P1).

Now, we will show that the only value of 74" that will satisfy Erx 1, (7)) = Ern 1, (0) is a 7 >0 such that Epn 1, (77) =
C(Py, P1). To prove that such a 7 exists, consider the function:

dAl(u)
d(u)

g(u) =u = A (u),

where A (u) is the log-generating transform for z = 1. The function g(u) is continuous. At v = 0, g(u) = 0 and at u = uj
(where u} = argmin A (u) and lies in (—1, 0) from Property 4) we have g(u) = C(Qo, Q1). Because g(u) is continuous,
there exists a u, € (uf,0) such that g(u,) = C(Py, P;) which lies between 0 and C(Qo, @1). If we set 7 = dl{}&g‘) lu=a, s
we have,

C(Py, P1) = g(ug) Lenma 7 su%(m'l* — Ay (u)).
ue

Now, in general, sup, o(ury — A1(w)) < supyer(urf — Ai(uw)) = g(uq). But again, sup, o(ury — A1(u)) >
UaTy — A1 (uq) = g(u,) since u, € (uf,0). Thus,

Epn1 (1) = SHIS(UTT —A1(u)) = g(ua) = C(Po, Pr).
u<

Also note that 77 > 0 because the derivative of Aj(u) is monotonically increasing and u, > uj, leading to 71 =

dAq(u) dAq(u) _
d(lu) ‘“:"a > d(lu) |“:“f =0.

Now that we have a 71 such that Epn 7, (77) = C(Pp, P1) which s strictly less that C(Qo, Q1), we must have Epp 1, (11) >
C(Qo, Q1) (from Lemma 8).

This leads to,
min{Erp 1, (0), Ern,1,(0), Erp 1, (17), Eonyr (17) }=C( Py, P1).

For any other choice of 7 # 0, we either have Ewp 1, (75) < C(Po, Pi) < Ern,1,(75), of Ern 1, (75) < C(Po, P1) <
Epp 1,(77), implying

min{ Erp 1, (79 ), Ern,1,(70), Erp,1, (17), Ernmy (1)} <C(FPo, Pr).

Proof of Lemma 5. We are given that,

Ern (11) = Erp,1y (11) = C(Qo, Q1)-

Now, we will show that the only value of 7 that will satisfy Een 1, (75) = C(Qo, @1) is a 7§ < 0. To prove that such a 7}
exists, consider the function

dA1 (u)
u

g(u) = ()

- Al (U),

where Aj(u) is the log-generating transform for z = 0. The function g(u) is continuous. At u = uj (where u} =
arg min A; (u) and lies in (—1, 0) from Property 4), we have g(uj) = C(Fo, P1) and as v — —oo, we have g(u) — oc.
Because g(u) is continuous, there exists a u, € (—oo, u}) such that g(u,) = C(Qo, Q1) which lies between C(Fy, P;) and

A
oo. If we set 7§ = dd(lg) lu=u, , we have,

C(Qo, Q1) = glua) ™7 sup (urg — Ai(u)).
UER
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Now, in general, sup, o(urg — A1(u)) < sup,er(urg — A1(u)) = g(uq). But again, sup,o(urg — Aq(u)) >
UaTg — A1 (uq) = g(u,) since u, < uj < 0. Thus,

Ernyr, (15) = Sli%(UTS‘ — Ay (u)) = g(uq) = C(Qo, Q).

This 7§ is less than O because the derivative of A;(u) is monotonically increasing and u, < uj, leading to 7§ =

u Aq(u
d1(2)|u o < dl(gl)) lu=u; = 0.

Now that we have a 7§ such that Epn 1, (75) = C(Qo, Q1) which is strictly greater that C(P,, P;), we must have
Epp 1,(7¢) < C(Py, P1) (from Lemma 8).

This leads to,
min{ Erp 1,(73), Ern,1, (75)} < C(FPy, P1).

C. Appendix to Section 3.2

Proof of Theorem 2. From Lemma 5, there exists a likelihood ratio detector of the form Ty(z) = log & Ezg > 74 such that

Ern,,(15) = C(Qo, Q1)- 27

In the proof of Lemma 5, we showed that this 75 < 0.

Now, we will show that there exists Py () and Py (z) such that their optimal detector i};( ) =log = E § > 0 is equivalent
to the detector Ty (z) > 7.

Let ]30( )= ZPD;:Z;I)(lmﬂl}(fgm)w and ]51( )= Epolgjgs)(lv)i}(fgm)v for some w, v € R with w # v. Observe that,

_ Py(z) Py(z) o 2, Po(@) T P (@)
Tolw) =log 7" 0 = (v —w)log oy o8 e )T 9 By ()
= (v —w)log ?Eg + Ao(w) — Ao(v)
= (o) (low 7y - P =), .

Because Ag(u) is strictly convex with its derivative taking all values from —oo to oo, one can always find a tangent to
Ao (u) that has a slope 7 at (say) u = u,. Thus, one can always find pairs of points (w, v) on either sides of u = u, such
that 7§ = %ﬁ}}“(w), which are essentially pairs of points (w, v) at which a straight line with slope 7§ cuts Ag(u). In

particular, we can fix v = 1 and always find a w < 0 such that

* Ao(v) — Ao(w) _ —Ao(w)
o= v —w ol w’ 29

because Ag(u) is continuous taking values 0 at w = 0 and u = 1, and takes all values from (0, co) in the range (—o0, 0).
Thus, the first claim is proved.

Now, we calculate C(Py, Py).

C(PO’Pl)_uIen(%}i)_IOgZPO )Py () @ gleax—logZPo )P ()Y

) 1 P (1— w)(l—u)P w(l—u)+u 1 — WA
Iglea% ng 0( 1 () + (1 = u)Ao(w)



Is There a Trade-Off Between Fairness and Accuracy?

(0 — —u —u)+u *
g 37 Roe) 10 B (L 1

@ max(1 - w)(w = 17 = Aa((1 ) (w - 1))

9 sup (' — M) [ = (1—w)(w —1)]
U ER

D sup (u'rg — Ay () [ = (1 —u)(w - 1)]

u’' <0

2 C(Q0, Q). (30)
Here (a) holds because the log-generating function —log )" ]So(x)l_“ﬁl(a;)“ of a likelihood ratio detector attains its
global minima at (0,1) (see Property 4) and (b) holds by substituting ﬁo(x) = Efolgjg;]ffﬁlgg;’)w and P (r) =
- o) S PP with v = 1. Next, (¢) holds by using 75 = 20(=8e(e) — =Ae) (see (29)). (d) holds from

the definition of A;((1 — u)(w — 1)), (e) holds by a change of variable v/ = (1 — u)(w — 1), (f) holds because
75 < 0 < D(P1||Py) = E[To(X)|H;1] and the detector is well-behaved (see Property 5), and lastly (g) holds because
Ern,1, (15) = C(Qo, Q1) (see (27)). 0

D. Appendix to Section 3.3
D.1. Proof of Theorem 3

Proof of Theorem 3. We remind the readers that,

[/LO(.’E,J]/) , ’ [/Ll(.'li'7.’17/) ’ ’
——=Pr(X' =2 X—x,Z—O,Y—07and7—PrX—x X—.CB,Z—O7Y—1 31)

First, we would like to prove: I(X";Y|X,Z =0) >0 = C(Wy, W1) > C(Py, P1).

Suppose that X’ is not independent of Y given X and Z = 0, i.e., I(X’; Y |X, Z = 0) > 0. This implies that there exists at
least one X = z, such that the distributions of X'|x—,, z—0,y=0 and X'|x—s, z=0,y=1 are different. Therefore, there
exists at least one pair (z', z) = (a7, z,) for which the following AM-GM inequality (Lemma 6) holds with strict inequality
forallu € (0,1), i.e,

Wo(xa,xﬁl)>lu<W1(:ca7x;)>u 1 Wo(za,x}) Wi (xa, ) 3
( Po(l‘a) Pl(xa) <( U) P0<xa) T Pl(xa) ' (32)
For all other (2/, z) # (x),, x,), we have (from the AM-GM inequality in Lemma 6):
Wo<m,x'>)1“<wl<w7w’>>“< | g Wolea) | Wi,a!) 33
(e pw ) U TRG TR o
Using (32) and (33),
Wo(xa,z') tow Wi(za,z")\" Wo(za,x') Wiz, 2')\
Z( rer) ((res?) <;<(1‘“) Ry ) = 69
This leads to,
> Wol@a, &) ™" Wi(2a, 2')" < Po(a)'™"Pi(z4)". (35)

For all other x # z,, we have (using (33) alone),

3 (Ml o (el < 5 1 M) ) *

2! x!
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leading to
> W, a')' Wi (z,a')" < Py(z)' ™" Pi(2)". (37)
Lastly, using (35) and (37),
ZZWOxx)l “Wy (2™ <ZP0 PP ()Y (38)
leading to the claim:
C(Wy, W1) = —ug%nl logZZWO x, 2V W (2, ) > —uénénl)logzpo YTUPy ()" = C(Py, Py). (39)

We would now like to prove:
C(Wo, Wl) > C(PO,Pl) — I(X/,Y‘X,Z = 0) > 0, or, I(X/,Y|X, Z = 0):0 - C(Wo, Wl)?éC(Po,Pl)

First note that, from the previous proof, C(Wy, W;) > C(Py, P1) always holds using the AM-GM inequality. Thus,
C(Wo, W1)#C(Py, Py) is same as C(Wy, W1)=C(Py, P}).

Suppose that X" is independent of Y given X and Z = 0, i.e., [(X’; Y| X, Z = 0) = 0. This implies that,
Pr(X' =2/|X,Z=0,Y =0)=Pr(X' =2/|X,Z=0,Y =1) V2’
Wo(z,2")  Wi(z,2')

= v,
Po(x) Py(z)
Wo(z, ')\ 1—u, Wi(z,2") \u
=1
:'Z( R ) U@ ) =W
iZZWO.r.Z' 1 uW1 .’17.’17 ZPO 1 upl ) . 40)
This leads to
_ . N1—u A 1 u u __

C(WO,Wl)——ug%%){ll)logzz:ZWo(x,x) Wi (z,z") ——ué%nl logZPo Py(z)" = C(Py, P1). (41)

O

E. Unequal Priors
E.1. Unequal Priors on Y but Equal Priors on 2

When the prior probabilities are unequal, we can write P. 1, (7,) as:

1 1
Per. (72)25(27T0PFP,T2 (Tz))+§(27r1PFN,TZ (72)),
and define the Chernoff exponent of P, 1, (7;), i.e., E¢ 1. (7,) more generally as follows:

min{EFp’Tz (Tz)— lOg 27T0, EFN,TZ (Tz)— lOg 27T1}.

Lemma 9. Let the absolute continuity and distinct hypotheses assumptions of Section 2 hold, and T, (x) be the likelihood
ratio detector for the group Z = z. Then, the value of T, that maximizes E. r,(7,), i.e.,

max min{Erp 71, (1) — log 2my, Ern 1, (T2) — log 2m1 },
is given by 7} = log Z—f, which is the same as the value of T, that minimizes P. 1, (T,), i.e.,

rgin moPrp,1, (72) + m1 Pen,r, (72).
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This likelihood ratio detector T, (z)> log :—(1) is the Bayes optimal detector for the group.

Before we proceed to the proof, we discuss another result. Observe that,

utg — Ag(u) — log 2mg = u(1y — log @) + ulog To _ Ao(u) — log2mg = ut’ — Ko(u) —log2, (42)
1 1
where 7/ = 79 — log 7%, and Ao(u) = Ao(u) — ulog 7 + log mo. Similarly,

utg — Ay (u) —log 2m = u(1p — log Z—?) + ulog Z—? — Ay (u) —log2m = ur’ — Ay (u) — log 2, 43)

where 7/ = 75 — log 7%, and Ay(u) = Ay (u) — ulog 0+ log .

We first derive some properties of Ag(u) and Aq (u).

Lemma 10. Ler Py(z) and P (x) be strictly greater than 0 everywhere and D(Fy||P1) and D(Py||Py) be strictly greater
than 0 and 7y and 7y lie in (0, 1). Then, the following properties hold:

. Ko(u) and A, (u) are continuous, differentiable and strictly convex.

o The derivatives of Ko(u) and /~\1 (u) are continuous, monotonically increasing, and take all values from —oo to oc.
o Ay(u) = Ag(u+1).

Proof of Lemma 10. Note that, Ag(u) is the sum of Ag(u) and an affine function —u log 72 + log mo. Because Ag(u) is

continuous, differentiable and strictly convex (from Property 4), ./N\O(u) also satisfies those properties. The second claim also
holds for the same reason because the derivative of Ag(u) satisfies all these properties (from Property 4).

Lastly,
~ o 0
Ao(u+1)=Ap(u+1) — (u+ 1)log7r— +logmg = Ao(u+1) — ulogﬂ— + log m
1 1
W A (u) —ulog o4 logm = /N\l(u), (44)
1

where (a) holds because Aj(u) = Ag(u + 1) from Property 4.
O

Proof of Lemma 9. We specifically consider the case where 7y # 71 in this proof because the case of equal priors my = 71
can be proved using Lemma 2 and Lemma 8.

Without loss of generality, we assume my > 71. Thus, log :—? > 0.

Case 1: dA(1115U) |u:0 = D(P1||PO) - IOg % > 0.

Observe that, dAdl?E“) lu=—1 = —D(F[|1) —log 7 < 0 and dAdlun) lu=0 = D(P1|[Pp) — log 22 > 0. Thus, the strictly

convex function A, (u) attains its minima in (—1,0) (using Lemma 10). Next, using Ag(u + 1) = A (u) (also from
Lemma 10), we have Ag(u) attaining its minima in (0, 1).

For 7/ = 0 (equivalently 7p = log ;r—(l’), we have

Epp 1, (log @) — log 2 @ sup(u - 0 — Ag(u) — log 2) © _ min Ao(u) —log 2
1 u>0 u

=

©_ min A; (u) — log 2
u

@

= sup(u -0 — Ay (u) — log 2)
u<0

© Bexr, (log %’) —log 2m,. (45)

N
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Here, (a) holds from (42), (b) holds because Ko(u) attains its minima in (0, 1), (c) holds from 7\0 (u+1) = Kl(u) (see
Lemma 10), (d) holds because A (u) attains its minima in (—1,0), and (e) holds from (43).

Next, we will show that, for any other value of 7/ # 0 (1 # log :—‘;), we either have
iy
Erp 1,(10) — log 2my < Epp 1, (log ﬂ_—o) —log2my < Ewn 1, (70) — log 27y, or
1

iy
Eex 1, (0) — log 2m1 < Egp 1, (log 7?0) —log 21y < Epp.1,(10) — log 2m. (46)
1
Let 7/ > 0. Then,

a ~ ®) ~ (e ~
Erp,1,(10) — log 2m @ sup(ut’ — Ag(u) —log2) > (uym" — Ao(ug) —log2) > —Ag(ug) — log 2
u>0

d iy
D Brp., (log ;‘;) —log 27y, (47)

Here (a) holds from (42), (b) holds for any ug > 0, (c) holds because uo7’ > 0, and (d) holds if we set u§ = arg min /~\0(u)
since Ag(u) attains its minima in (0, 1).

Sub-case 1a: 7/ > %h:o =D(P||Ry) — log ;—‘;

- (a) A
Epx 1 (10) — log 2m; :su;())(m"—Al(u)—logQ) < su%( dA (u )|u O—Al( ) —log2)
u< u<
dAq (u
< sup u d( s — K () — log2)
UuER
by, dA
O W) K (0) - log2)

= (—11(0) — log2)
< —min A (u) — log 2

d T
D Erp 1, (log 7?(1)) — log 2o, (48)

where (a) holds because 7" > dAl(u |u=0, (b) holds from Lemma 7, (c) holds from the strict convexity of A1( ) because it
attains its minima in (—1,0), and (d) holds from (45).

Sub-case 1b: 0 < 7/ < %'uzo

Epn.1, (0) — log 20 = sup(ur’ — Ay (u) —log2) < sup (ur’ — A (u) — log2)
u<0 uER
@ UgT — Al(ua) —log2

b  ~
< —Ai(ug) —log?2  [since u, 7" < 0]

< —minA;(u) — log 2

() T
© Epp,1,(log W—O) — log 2mg (49)
1

Here, (a) holds from Lemma 7 because 1~\1( ) is a strictly convex and differentiable function, and its derivative is also

continuous, monotonically increasing and takes all values from —oo to oo (see Lemma 10). Thus, there exists a single u,

such that dAl(“) |u=v, = 7. Next, (b) holds because dAdl(“ luma, = 7' < dAl(“) |u=0, and the derivative is monotonically

increasing, 1mplymg ug < 0. Lastly (c) holds from (45).
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Thus,

iy
EFN,TO (7‘0) — log 2m < EFP,TO (log ;0) — 10g 2770 < EFP,TO (To) — log 27‘(’0. (50)
1

For 7’ < 0, a similar proof holds, leading to

iy
Erp.1,(10) — log 2my < Epp 1, (log 7?0) —log 21y < Epn .1, (10) — log 2y, 51)
1

Then, the value of 7 that maximizes the Chernoff exponent E. 1, (10), i.e.,

max min{Erp 1, (70) — log 279, Ern 1, (70) — log 271 },

70
is given by 75 = log 7% (7' =0).

This matches with the detector that minimizes the Bayesian probability of error under unequal priors (see Theorem 3.1 in
(Gallager, 2012)).

Case 2: )| — D(Py||Py) — log T <.

For this case, note that, both A () and Ag(w) attain their minima in u € [0, 0c).

For 7/ = 0 (equivalently 79 = log :—(1’), we have

Epn,1, (log ?) —log 2my = sup(u - 0 — Ay (u) — log2) = —A;(0) — log 2. (52)
1 u<0
And,
Epp 1, (log @) —log 2my = sup(u - 0 — Ag(u) — log 2) = — min Ag(u) — log 2
1 u>0 w
= —min Ay (u) — log?2
> —A1(0) — log 2. (53)
Thus,
. o o e
min{ Epp 1, (log 7?1) — log 2mg, ExN 1, (log 77—1) —log2m} = —A1(0) — log 2. (54)

Now, we will show that any other value of 7' # 0 (equivalently 7y # log ;T—fl’) cannot increase the Chernoff exponent of the

probability of error beyond —A; (0) —log2.

Sub-case 2a: 7/ > dA1 i1 (w) lu=0 = D(P1[|Py) — log 22

- (a) dA
Epx,1(70) — log2my = supg(m" —Ai(u) —log2) < su[())( 1 (u )|u 0— A1( ) —log2)
u< u<
dA
< sup(u ;( >|u o — A1 (u) —log2)
UER
p  dAy(u ~
® A1), R (0) = log2)
= (—A1(0) —log2), (55)

where (a) holds because 7" > % |u=0 and (b) holds from Lemma 7. Thus,

min{EFp,To (T()) — IOg 271’0, EFN,TO (To) — IOg 27T1} S —Kl(O) — IOg 2. (56)
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dAl(u

Sub-case 2b: 7' < lu=0 = D(P1||Fp) — log 72

 + @ dki(w)
Erp 1,(10) — log 2mg = su%(m' — Ao(u) —log2) < Su%( I lu=o — AO( ) — log 2)
u> u>

(b
S) . dAo( )

up(u luz1 — Ao(u) — log2)
u>0

(©) dT\ ~

< sup(u o() lue1 — Ao(u) — log 2)
UueER

() dAo( )

|u I_AO( ) 10g2

(e) ~
< —Ao(1) —log2
D _R,(0) — log2. (57)

Here (a) holds because 7/ < dAl(") |u=0, (b) holds from Lemma 10 since A1( ) = Ko(u + 1), (c) holds because the
d/N\;(u) et = dAl(u) oo =

supremum is taken over a larger superset, (d) holds from Lemma 7, (e) holds because
D(P1|[Py) —log 7¢ < 0, and (f) holds again from from Lemma 10 since Ay (u) = Ag(u+ 1). Thus,

max min{ Epp 1, (10) — log 270, Een 1, (10) — log 2m } = —A;(0) — log 2, (58)

which is attained at 7y = log ;—‘1’

E.2. Unequal priors on both Z and Y

Here we discuss a modification of optimization (2) proposed in Section 3.1 to account for the case of unequal priors on both
ZandY.

Let PI‘(Z = 0) = )\0 and PI‘(Z = 1) = )\1. Also let, PT(Y = O‘Z = O) = T00, PI‘(Y = 1|Z = 0) = 710,
PT(Y = O|Z = 1) = 701 and PI‘(Y = ].|Z = ].) = T11.

Then, the overall probability of error considering both groups together is given by:
NPT (o) + M P (7 )
= 5(2/\0)P6T° (10) + (2>\1) (1)

1 1 1 1
= 1(4/\07700)PFP,T0 (10) + Z(4>\07T10)PFN,TO (10) + 1(4/\17T01)PFP,T1 (m1) + Z(4>\17T11)PFN,T1 (11)- (59)
Then, the error exponent of the overall probability of error considering both groups is defined as:
min{ Erp 1, (70) — 4m00 X0, ErN, 1, (T0) — 47100, EFp, 1, (T1) — 401 A1, EEN,T, (T1) — 47111 } (60)

These log-generating functions can be plotted, and the intercepts made by their tangents can be examined again to obtain the
error exponents, leading to the optimal detector.



