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A. Spherical Harmonics on Sd�1

This section gives a brief overview of some of the useful
properties of spherical harmonics. We refer the interested
reader to Dai & Xu (2013); Efthimiou & Frye (2014) for an
in-depth overview.

Spherical harmonics are special functions defined on a hy-
persphere and originate from solving Laplace’s equation in
the spherical domain. They form a complete set of orthogo-
nal functions, and any sufficiently regular function defined
on the sphere can be written as a sum of these spherical har-
monics, similar to the Fourier series with sines and cosines.
Spherical harmonics have a natural ordering by increasing
angular frequency. In the next paragraphs we introduce
these concepts more formally.

We adopt the usual L2 inner product for functions f :
Sd�1

! R and g : Sd�1
! R restricted to the sphere

hf, giL2(Sd�1) =
1

⌦d�1

Z

Sd�1

f(x) g(x) d!(x), (1)

where d!(x) is the surface area measure such that ⌦d�1

denotes the surface area of Sd�1

⌦d�1 =

Z

Sd�1

d!(x) =
2⇡d/2

�(d/2)
. (2)

Definition 1. Spherical harmonics of degree (or level) `,
denoted as �`, are defined as the restriction to the unit hy-
persphere Sd�1 of the harmonic homogeneous polynomials
(with d variables) of degree `. It is the map �` : Sd�1

! R
with �` a homogeneous polynomial and ��` = 0.

For a specific dimension d and degree ` there exist

Nd
` := (2`+ d� 2)

�(`+ d� 2)

�(`+ 1)�(d� 2)
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different linearly independent spherical harmonics on Sd�1.
We refer to them as the set {�d

`,k}
Nd

`
k=1. but in the subsequent

we will drop the dependence on dimension d. The set is
ortho-normal:

h�`,k,�`0,k0iL2(Sd�1) = �``0�kk0 . (3)

Theorem 1. Since the spherical harmonics form an ortho-
normal basis, every function f : Sd�1

! R can be decom-
posed as

f =
1X

`=0

Nd

X̀

k=1

bf`,k�`,k, with bf`,k = hf,�`,kiL2(Sd�1). (4)

Which can be seen as the spherical analogue of the Fourier
decomposition of a periodic function in R onto a basis of
sines and cosines.
Theorem 2. The spherical harmonics are the eigenfunc-
tions of the Laplace-Beltrami operator with eigenvalues
�` = `(`+ d� 2) so that

�Sd�1

�`,k = `(`+ d� 2)�`,k. (5)

In the experiments we used Dai & Xu (2013, Theorem 5.1)
for an explicit expression of �. We note that while this ex-
pression gives us a general form of the spherical harmonics
in any dimension, we found that it becomes numerically
unstable for d � 10.

A.1. Gegenbauer polynomials

Gegenbauer polynomials C(↵)
` : [�1, 1] ! R are or-

thogonal polynomials with respect to the weight function
(1� z2)↵–1/2. A variety of characterizations of the Gegen-
bauer polynomials are available. We use the polynomial
characterisation for its numerical stability. It is given by

C(↵)
` (z) =

b`/2cX

k=0

(�1)k �(`� k + ↵)

�(↵)�(k + 1)�(`� 2k + 1)
(2z)`�2k.

(6)
The polynomials normalise by
Z 1

�1

h
C(↵)

` (z)
i2
(1� z2)↵–

1
2 dz =

⌦d�1

⌦d�2

↵

`+ ↵
C(↵)

` (1),

(7)
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with C(↵)
` (1) = �(2↵+`)

�(2↵) `! .

There exists a close relationship between Gegenbauer poly-
nomials (also known as generalized Legendre polynomials)
and spherical harmonics, as we will show in the next theo-
rems.

Theorem 3 (Addition). Between the spherical harmonics
of degree ` in dimension d and the Gegenbauer polynomials
of degree ` there exists the relation

Nd

X̀

k=1

�`,k(x)�`,k(x
0) =

`+ ↵

↵
C(↵)

` (x>x0), (8)

with ↵ = d�2
2 .

As a illustrative example, this property is analogues
to the trigonometric addition formula: sin(x) sin(x0) +
cos(x) cos(x0) = cos(x� x0).

Theorem 4 (Funk-Hecke). Let s(·) be an integrable func-
tion such that

R 1
�1 ks(t)k(1 � t2)(d�3)/2dt is finite and

d � 2. Then for every �`,k

1

⌦d�1

Z

Sd�1

s(x>x0)�`,k(x
0) d!(x0) = ba` �`,k(x), (9)

where ba` is a constant defined by

ba` =
!d

C(↵)
` (1)

Z 1

�1
s(t)C(↵)

` (t) (1� t2)
d�3
2 dt, (10)

with ↵ = d�2
2 and !d = ⌦d�2

⌦d�1
.

Funk-Hecke simplifies a (d � 1)-variate surface integral
on Sd�1 to a one-dimensional integral over [�1, 1]. This
theorem gives us a practical way of computing the Fourier
coefficients for any zonal kernel. In section B.3, we use it
to compute the coefficients of the arc-cosine kernel. Notice
how the Fourier coefficients ba` only depend on the level `
(or degree) of the spherical harmonic and not the orientation
(denoted by the k index).

B. Zonal kernels

B.1. Mercer’s decomposition

Zonal kernels can be seen as the spherical counterpart of
stationary kernels. Stationary kernels are a function of x�

x0 and are thus invariant to translations in the input space
(Rasmussen & Williams, 2006). Zonal kernels (defined on
Sd�1

⇥ Sd�1) are a function of x>x0 and are thus invariant
to rotations.

The spherical harmonics are the eigenfunctions of the
Laplace-Beltrami operator (Dai & Xu, 2013; Efthimiou &
Frye, 2014). In the main paper we show the commutativity

of the Laplace-Beltrami operator and the kernel operator
of zonal kernels. This means that the spherical harmonics
are also the eigenfunctions of zonal kernels, as commuting
operators share the same eigenfunctions.

Mercer’s theorem allows us to express the kernel in terms
of its eigenvalues and eigenfunctions.
Theorem 5 (Mercer representation). Any zonal kernel k on
the hypersphere can be decomposed as

k(x,x0) =
1X

`=0

Nd

X̀

k=1

ba`,k�`,k(x)�`,k(x
0), (11)

where x,x0
2 Sd�1 and ba` are the positive Fourier coeffi-

cients, �`,k denote the elements of the spherical harmonic
basis in Sd�1, and Nd

` corresponds to the number of spheri-
cal harmonics for a given level `.

For zonal kernels the Fourier coefficients within a level are
equal: ba`,k = ba` for 1  k  Nd

` . This allows us to
simplify the Mercer decomposition of a zonal kernel using
theorem 3 to

k(x,x0) =
1X

`=0

ba`
`+ ↵

↵
C(↵)

` (x>x0), (12)

with ↵ = d�2
2 .

B.2. RKHS

Given the Mercer representation of a zonal kernel, its RKHS
can be characterised by

H =

8
<

:g =
1X

`=0

Nd

X̀

k=1

bg`,k�`,k :
1X

`=0

Nd

X̀

k=1

|bg`,k|2

ba`
< 1

9
=

;

with a reproducing inner product between two functions
g(x) =

P
`,k bg`,k�`,k(x) and h(x) =

P
`,k
bh`,k�`,k(x)

defined as

hg, hiH =
1X

`=0

Nd

X̀

k=1

bg`,kbh`,k

ba`
. (13)

Proof. (Reproducing property). The Fourier coefficients
for k(x, ·) : Sd�1

! R and f : Sd�1
! R are ba`,k�`,k(x)

and bf`,k, respectively. Substituting these coefficients in
eq. (13) gives:

hk(x, ·), fiH =
1X

`=0

Nd

X̀

k=1

ba`�`,k(x) bf`,k
ba`

(14)

=
1X

`=0

Nd

X̀

k=1

bf`,k�`,k(x) = f(x) (15)

which proofs the reproducing property.
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In the next sections we address the computation of the
Fourier coefficients (eigenvalues) of the kernels. In sec-
tion B.3 for the Arc-Cosine kernel and in section B.4 for the
Matérn family.

B.3. Fourier coefficients for the Arc-Cosine kernel

The Fourier coefficients are computed using theorem 4,
where the shape function of the Arc-Cosine kernel of the
first order (Cho & Saul, 2009) is given by:

s(x) = sinx+ (⇡ � x) cosx. (16)

Notice that we expressed the shape function as a function
of the angle between the two inputs s : [0,⇡] 7! R, rather
than the great-circle distance, as it simplifies the subsequent
computations.

Using a change of variables we also rewrite theorem 4

ba` = cd,`

Z ⇡

0
s(x)C

d�2
2

` (cosx) sind�2 x dx, (17)

with cd,` =
!d

C(↵)
` (1)

. This one dimensional integral can be

solved in closed-form for any setting of d and `. Filling
in the definition for the Gegenbauer polynomial (eq. (6)),
we observe that we need a general solution of the in-
tegral

R ⇡
0 [sin(x) + (⇡ � x) cos(x)] cosn(x) sinm(x)dx for

n,m 2 N.

The first term can be computed with the well-known result:
Z ⇡

0
sinn(x) cosm(x)dx (18)

=

8
><

>:

0 if m odd
(n�1)!! (m�1)!!

(n+m)!! ⇡ if m even and n odd,
(n�1)!! (m�1)!!

(n+m)!! 2 if n,m even.
(19)

The second term is harder:

I =

Z ⇡

0
(⇡ � x) sinn(x) cosm(x)dx (20)

which we solved using integration by parts with u = ⇡ � x
and dv = sinn(x) cosm(x)dx, so that

I = u(0)v(0)� u(⇡)v(⇡) +

Z ⇡

0
v(x0)dx0, (21)

where v(x0) =
R x0

0 sinn(x) cosm(x)dx. This gives v(0) =
0 and u(0) = 0, simplifying I =

R ⇡
0 v(x0)dx0. We first

focus on v(x0): for n odd, there exists a n0
2 N so that

n = 2n0 + 1, resulting

v(x0) =

Z x0

0
sin2n

0
(x) cosm(x) sin(x)dx (22)

= �

Z cos(x0)

0
(1� u2)n

0
umdu (23)

Where we used sin2(x) + cos2(x) = 1 and the substitution
u = cos(x) =) du = � sin(x)dx. Using the binomial
expansion, we get

v(x0) = �

Z cos(x0)

0

n0X

i=0

✓
k

i

◆
(�u2)iumdu (24)

=
n0X

i=0

(�1)i+1

✓
k

i

◆
cos(x0)2i+m+1

� 1

2i+m+ 1
. (25)

Similarly, for m odd, we have m = 2m0 + 1 and use the
substitution u = sin(x), to get

v(x0) =
m0X

i=0

(�1)i
✓
k

i

◆
sin(x0)2i+n+1

2i+ n+ 1
. (26)

For n and m even, we have n0 = n/2 and m0 = m/2, we
use double-angle identities to get

v(x0) =

Z x0

0

✓
1� cos(2x)

2

◆n0✓
1 + cos(2x)

2

◆m0

dx

(27)
Making use of the binomial expansion twice, we get

v(x0) = 2�(n0+m0)
n0,m0X

i,j=0

(�1)i
✓
n0

i

◆✓
m0

j

◆Z x0

0
cos(2x)i+jdx.

(28)

Returning back to the original problem I =
R ⇡
0 v(x0)dx0.

Depending on the parity of n and m we need to evaluate:
Z ⇡

0
cos(x0)pdx0 =

(
(p�1)!!

p!! ⇡ if p even
0 if p odd

(29)

and
Z ⇡

0
sin(x0)pdx0 =

(
(p�1)!!

p!! ⇡ if p even
(p�1)!!

p!! 2 if p odd.
(30)

For m and n even we need to solve the double integral
Z ⇡

0

Z x0

0
cos(2x)pdxdx0 =

(
(p�1)!!

p!!
⇡2

2 if p even
0 if p odd.

(31)

Combining these results gives us the solution for the integralR ⇡
0 s(x) cosn(x) sinm(x)dx for any n,m 2 N, which is

necessary to compute ba` for the arc-cosine kernel.

B.4. Fourier coefficients for the Matérn family kernels

The Matérn covariance between two points x, x0 separated
by r = x � x0 distance units is given by (Rasmussen &
Williams, 2006):

k⌫(r) = �2 2
1�⌫

�(⌫)

 
p

2⌫
r

⇢

!⌫

K⌫

 
p

2⌫
r

⇢

!
, (32)
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where � is the gamma function, K⌫ is the modified Bessel
function of the second kind, and ⇢ (lengthscale) and ⌫ (dif-
ferentiability) are non-negative parameters of the covariance.
The covariance has a spectral density defined on Rd

S(!) =
2d⇡

d
2�(⌫ + d

2 )(2⌫)
⌫

�(⌫)⇢2⌫

✓
2⌫

⇢2
+ 4⇡2!2

◆�(⌫+ d
2 )
.

(33)

A key result from Solin & Särkkä (2014, eq. 20) is to
show that the coefficients ba`,k have a simple expression that
depends on the kernel spectral density S and the eigenvalues
of the Laplace-Beltrami operator (theorem 2). For GPs on
Sd�1 the coefficients boil down to

ba`,k = S
⇣p

`(`+ d� 2)
⌘
. (34)
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