A. Architecture details and hyperparameters

The inverse renderer is composed of 3 submodels: a 2D
convolutional network mapping images to 2D features, an
inverse projection layer mapping 2D features to 3D features
and a 3D convolutional network mapping 3D features to the
scene representation. Each subnetwork is described in detail
in the tables below. The renderer is simply the transpose of
the inverse renderer with a sigmoid activation at the ouput
layer to ensure pixel values are in [0, 1].

Note that every layer is followed by a GroupNorm layer and
a LeakyReLU activation (except the final scene and image
layers). Each ResBlock is composed of a sequence of 1 x 1,
3 x 3, 1 x 1 convolutions added to the identity.

To ensure rotations of the scene representation do not exit
the bounds of the voxel grid we apply a spherical mask to
the scene representation before performing rotations.

The full model has 11.5 million trainable parameters.

INPUT SHAPE

OUTPUT SHAPE

OPERATION

(3, 128, 128)
(64, 128, 128)
(64, 128, 128)
(128, 64, 64)
(128, 64, 64)
(128, 32, 32)
(128, 32, 32)
(256, 16, 16)
(256, 16, 16)
(128, 32, 32)

(64,128, 128)
(64, 128, 128)

(128, 64, 64)
(128, 64, 64)
(128, 32, 32)
(128, 32, 32)
(256, 16, 16)
(256, 16, 16)
(128, 32, 32)
(128, 32, 32)

1x1 Conv

2X RESBLOCK
4X4 CONV, STRIDE 2

1X RESBLOCK
4X4 CONV, STRIDE 2

1X RESBLOCK
4X4 CONV, STRIDE 2

1X RESBLOCK

4x4 CONV.T, STRIDE 2
2X RESBLOCK

Table 1. Architecture of 2D subnetwork.

INPUT SHAPE ~ OUTPUT SHAPE OPERATION
(128, 32, 32) (256, 32, 32) 1x1 CoNv
(256, 32, 32) (512, 32, 32) 1x1 CONV
(512,32, 32) (1024, 32, 32) 1x1 CoNnv
(1024, 32,32) (32,32, 32,32) RESHAPE

Table 2. Architecture of inverse projection network from 2D to 3D.

INPUT SHAPE

OUTPUT SHAPE

OPERATION

(32, 32, 32, 32)
(32,32, 32, 32)
(32,32, 32, 32)
(128, 16, 16, 16)
(128, 16, 16, 16)
(64, 32, 32, 32)

(32, 32, 32, 32)
(32,32, 32, 32)
(128, 16, 16, 16)
(128, 16, 16, 16)
(64, 32, 32, 32)
(64, 32, 32, 32)

1x1 Conv
2X RESBLOCK
4x4 CONV, STRIDE 2
2X RESBLOCK
4x4 CONV.T, STRIDE 2
2X RESBLOCK

Table 3. Architecture of 3D subnetwork.

Hyperparameters. When training with ¢; + SSIM loss, we
set the weight of the SSIM loss to 0.05.

Training. We train each model for 100 epochs on all
datasets, although most models converge much earlier than
this (around 60 epochs). When training on a single GPU we
use a batch size of 16 and when training on 8 GPUs we use
a batch size of 112.

Optimizer. We use Adam with a learning rate of 2e-4.

Losses. We use the /5 loss for quantitative comparisons
as PSNR is inversely proportional to /5. Indeed, the base-
lines we compare against (except TCO) all directly optimize
{5, making comparisons fairer. We generally found that
¢1 + SSIM produces more visually pleasing samples and
therefore use this loss for qualitative comparisons and novel
view synthesis.

B. Dataset descriptions

Detailed descriptions of the ShapeNet chairs and cars dataset
can be found in the appendix of Sitzmann et al..

B.1. MugsHQ

The MugsHQ data set was rendered with a branch of the Mit-
suba Renderer (Jakob, 2010) adapted to import ShapeNet
geometry (Shi, 2014). Every scene was rendered with the
same environment map (lighting conditions) and checker-
board disk platform. ShapeNet objects were scaled by their
largest bounding box dimension, centered, and placed on
the platform. The object’s material is a two-sided plastic
designed to highlight glossy reflections and the diffuse re-
flectance color was randomly sampled. For each object, 150
viewpoints were uniformly sampled over the upper hemi-
sphere. Each viewpoint was rendered to a 256 x 256 high
dynamic range image, and then resized and tone-mapped to
a linear RGB image.

B.2. 3D Mountains

We created the 3D mountains dataset by first scraping the
height, latitude and longitude of the 559 highest mountains
in the Alps. We then used Apple Maps to render 50 images
of each mountain. Specifically, the camera was placed on
a sphere of radius 600m centered on the latitude, longitude
and height - 100m of the mountain. We then fixed the
elevation angle to be 55 degrees (or a pitch of 35 degrees)
and randomly sampled the azimuth angle between 0 and
360 degrees to capture multiple views of each mountain.

C. Train/validation/test splits

For each dataset we train a model and choose hyperparam-
eters based on the lowest validation loss. All images and
quantitative measurements are then made on a held out test
set which is only seen after everything else has been fixed.

C.1. Chairs

The chairs dataset consists of 6591 scenes, with the training
and validation set each having 50 views per scene and the
test set having 251 views per scene, for a total of 594,267
images. The train/validation/test splits are:

e Train: 4612 scenes (230,600 images)
e Validation: 662 scenes (33,100 images)

e Test: 1317 scenes (330,567 images)

C.2. Cars

The cars dataset consists of 3514 scenes, with the training
and validation set each having 50 views per scene and the
test set having 251 views per scene, for a total of 317,204
images. The train/validation/test splits are:

e Train: 2458 scenes (122,900 images)
e Validation: 352 scenes (17,600 images)

e Test: 704 scenes (176,704 images)

C.3. MugsHQ

The MugsHQ dataset consists of 214 scenes, each with 150
views for a total of 32,100 images. The train/validation/test
splits are:

e Train: 186 scenes (27,900 images)
e Validation: 14 scenes (2,100 images)

e Test: 14 scenes (2,100 images)

C.4. 3D mountains
The 3D mountains dataset consists of 559 scenes, each
with 50 views for a total of 27,950 images. The
train/validation/test splits are:

e Train: 478 scenes (23,900 images)

e Validation: 26 scenes (1,300 images)

e Test: 55 scenes (2,750 images)

D. Runtimes
D.1. Training time

Training time for all datasets are shown in Table 4. When
training on a single V100 GPU we use a batch size of 16,
whereas we use a batch size of 112 when training on 8
V100s.

DATASET V100 8 V100s
CHAIRS 9.7 DAYS 2.2 DAYS
CARS 5.5 DAYS 1.3 DAYS
MUGSHQ 1.2 DAYS 6 HRS
MOUNTAINS 1 DAY 5 HRS

Table 4. Training times.

D.2. Inference time

We measured inference time with a trained model on the
cars dataset running on a single Tesla V100 GPU. We took
the mean and standard deviation over 1000 iterations (using
100 warmup steps).

Single image: 21.9 + 0.3 ms

Batch of 128 images: 1578.6 +£10.2 ms (12.3 ms per
image)

Note that for a single image this corresponds to a framerate
of 45 fps, allowing for real time inference.

E. Things that didn’t work

We experimented with several things which we found did
not improve performance.

e We experimented with partitioning the latent space
(across channels) into a viewpoint invariant and equiv-
ariant part. We hypothesized this might help in learning
complex textures and create something akin to a global
texture map, but found that this did not decrease (nor
increase) the loss in practice.

e When rotating the voxels we use trilinear interpolation
to calculate the value of points that do not align with
the grid. While rotations on the grid will always suf-
fer from aliasing we hypothesized that using nearest
neighbor interpolation (instead of trilinear) could help
model performance. We also tried using shear rotations
as these have been shown to reduce aliasing in certain
cases (Paeth, 1986). In practice we found that this did
not make a big difference.

e The latent space we use in our model has shape 64 x
32 x 32 x 32. We hypothesized that increasing the
spatial resolution might help improve performance. We
therefore tried a latent space of size 8 x 64 x 64 x 64
but found that this performed the same as the original
latent space, but was much slower to train.

F. Samples from datasets

We include random ground truth samples from the MugsHQ
and 3D mountains dataset.

Figure 2. Random samples from the 3D mountains dataset.

G. Random samples from model

We include random novel view synthesis samples on all
datasets.

Input Model Target Input Model Target

Figure 3. Random single shot novel view synthesis samples on
chairs.

9L P T
g 7
T S

Input Model Target Input Model Target

T T & % %
¥ e & U O
T % & 9 ©

Figure 4. Random single shot novel view synthesis samples on
cars.

¢ ¢ &

References

Jakob, W. Mitsuba renderer, 2010. http://www.mitsuba-
renderer.org.

Paeth, A. A fast algorithm for general raster rotation. In Pro-
ceedings on Graphics Interface’86/Vision Interface’86,

pp. 77-81. Canadian Information Processing Society,
1986.

Shi, J. Mitsuba for shapenet, 2014. https://github.com/shi-
jian/mitsuba-shapenet.

Sitzmann, V., Zollhofer, M., and Wetzstein, G. Scene
representation networks: Continuous 3d-structure-

aware neural scene representations. arXiv preprint
arXiv:1906.01618, 2019.

Input Model Target Input Model Target

Figure 5. Random single shot novel view synthesis samples on
MugsHQ.

Input Model Target Input Model
7 = e
R =

-
%
r

Figure 6. Random single shot novel view synthesis samples on 3D
mountains.

