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Abstract
We propose a method for multiple hypothesis test-
ing with familywise error rate (FWER) control,
called the i-FWER test. Most testing methods
are predefined algorithms that do not allow mod-
ifications after observing the data. However, in
practice, analysts tend to choose a promising al-
gorithm after observing the data; unfortunately,
this violates the validity of the conclusion. The
i-FWER test allows much flexibility: a human
(or a computer program acting on the human’s
behalf) may adaptively guide the algorithm in a
data-dependent manner. We prove that our test
controls FWER if the analysts adhere to a par-
ticular protocol of masking and unmasking. We
demonstrate via numerical experiments the power
of our test under structured non-nulls, and then
explore new forms of masking.

1. Introduction
Hypothesis testing is a critical instrument in scientific re-
search to quantify the significance of a discovery. For ex-
ample, suppose an observation Z ∈ R follows a Gaussian
distribution with mean µ and unit variance. We wish to
distinguish between the following null and alternative hy-
potheses regarding the mean value:

H0 : µ ≤ 0 versus H1 : µ > 0. (1)

A test decides whether to reject the null hypothesis, usually
by calculating a p-value: the probability of observing an
outcome at least as extreme as the observed data under
the null hypothesis. In the above example, the p-value is
P = 1 − Φ(Z), where Φ is the cumulative distribution
function (CDF) of a standard Gaussian. When the true
mean µ is exactly zero, the p-value is uniformly distributed;
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when µ < 0, it has nondecreasing density. A low p-value
suggests evidence to reject the null hypothesis.

Recent work on testing focuses on a large number of hy-
potheses, referred to as multiple testing, driven by various
applications in Genome-wide Association Studies, medicine,
brain imaging, etc. (see (Farcomeni, 2008; Goeman & So-
lari, 2014) and references therein). In such a setup, we
are given n null hypotheses {Hi}ni=1 and their p-values
P1, . . . , Pn. A multiple testing method examines the p-
values, possibly together with some side/prior information,
and decides whether to reject each hypothesis (i.e., infers
which ones are the non-nulls). Let H0 be the set of hy-
potheses that are truly null and R be the set of rejected
hypotheses, then V = |H0 ∩R| is the number of erroneous
rejections. This paper considers a classical error metric,
familywise error rate:

FWER := P(V ≥ 1),

which is the probability of making any false rejection. Given
a fixed level α ∈ (0, 1), a good test should have valid error
control that FWER ≤ α, and high power, defined as the
expected proportion of rejected non-nulls:

power := E
(
|R\H0|
|[n]\H0|

)
,

where [n] := {1, . . . , n} denotes the set of all hypotheses.

Most methods with FWER control follow a prespecified
algorithm (see, for instance, (Holm, 1979; Hochberg, 1988;
Bretz et al., 2009; Goeman & Solari, 2011; Tamhane & Gou,
2018) and references therein). However, in practice, analysts
tend to try out several algorithms or parameters on the same
dataset until results are “satisfying”. When a second group
repeats the same experiments, the outcomes are often not
as good. This problem in reproducibility comes from the
bias in selecting the analysis tool: researchers choose a
promising method after observing the data, which violates
the validity of error control. Nonetheless, data would greatly
help us understand the problem and choose an appropriate
method if it were allowed. This motivates us to propose
an interactive method called the i-FWER test, that (a) can
use observed data in the design of testing algorithm, and
(b) is a multi-step procedure such that a human can monitor
the performance of the current algorithm and is allowed to
adjust it at any step interactively; and still controls FWER.
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Figure 1. A schematic of the i-FWER test. All p-values are initially ‘masked’: all {g(Pi)} are revealed to the analyst/algorithm, while all
{h(Pi)} remain hidden, and the initial rejection set isR0 = [n]. If F̂WERt > α, the analyst chooses a p-value to ‘unmask’ (observe the
masked h(P )-value), effectively removing it from the proposed rejection setRt; importantly, using any available side information and/or
covariates and/or working model, the analyst can shrinkRt in any manner. This process continues until F̂WERt ≤ α (orRt = ∅).

The word “interactive” is used in many contexts in ma-
chine learning and statistics. Specifically, multi-armed ban-
dits, active learning, online learning, reinforcement learn-
ing, differential privacy, adaptive data analysis, and post-
selection inference all involve some interaction. Each of
these paradigms has a different goal, a different model
of interaction, and different mathematical tools to enable
and overcome the statistical dependencies created by data-
dependent interaction. The type of interaction proposed in
this paper is different from the above. Here, the goal is to
control FWER in multiple testing. The model of interaction
involves “masking” of p-values followed by progressive un-
masking (details in the next paragraph). The technical tools
used are (a) for p-values of the true nulls (null p-values), the
masked and revealed information are independent, (b) an
empirical upper bound on the FWER that can be continually
updated using the revealed information.

The key idea that permits interaction while ensuring FWER
control is “masking and unmasking”, proposed by Lei &
Fithian (2018); Lei et al. (2020). In our method, it has three
main steps and alternates between the last two (Figure 1):

1. Masking. Given a parameter p∗ ∈ (0, 1), each p-
value Pi is decomposed into two parts by functions
h : [0, 1]→ {−1, 1} and g : [0, 1]→ (0, p∗):

h(Pi; p∗) = 2 · 1{Pi < p∗} − 1;

and g(Pi; p∗) = min

{
Pi,

p∗
1− p∗

(1− Pi)
}
, (2)

where g(Pi), the masked p-value, is used to interac-
tively adjust the algorithm, and h(Pi), the revealed

Figure 2. Functions for masking (2): missing bits h (left) and
masked p-values g (right) when p∗ = 0.5. For uniform p-values,
g(P ) and h(P ) are independent.

missing bit, is used for error control. Note that h(Pi)
and g(Pi) are independent ifHi is null (Pi is uniformly
distributed); this fact permits interaction with an ana-
lyst without any risk of violating FWER control.

2. Selection. Consider a set of candidate hypotheses to
be rejected (rejection set), denoted asRt for iteration t.
We start with all the hypotheses included,R0 = [n]. At
each iteration, the analyst excludes possible nulls from
the previousRt−1, using all the available information
(masked p-values, progressively unmasked h(Pi) from
step 3 and possible prior information). Note that our
method does not automatically use prior information
and masked p-values. The analyst is free to use any
black-box prediction algorithm or Bayesian working
model that uses the available information, and orders
the hypotheses possibly using an estimated likelihood
of being non-null. This step is where a human is al-
lowed to incorporate their subjective choices.
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3. Error control (and unmasking). The FWER is esti-
mated using h(Pi). If the estimation F̂WERt > α, the
analyst goes back to step 2, provided with additional
information: unmasked (reveal) h(Pi) of the excluded
hypotheses, which improves her understanding of the
data and guides her choices in the selection step.

The rest of the paper is organized as follows. In Section 2,
we describe the i-FWER test in detail. In Section 3, we
implement the interactive test under a clustered non-null
structure. In Section 4, we propose two alternative ways of
masking p-values and explore their advantages.

2. An interactive test with FWER control
Interaction shows its power mostly when there is prior
knowledge. We first introduce the side information, which
is available before the test in the form of covariates xi as
an arbitrary vector (mix of binary, real-valued, categorical,
etc.) for each hypothesis i. For example, if the hypotheses
are arranged in a rectangular grid (such as when processing
an image), then xi could be the coordinate of hypothesis i
on the grid. Side information can help the analyst to exclude
possible nulls, for example, when the non-nulls are believed
to form a cluster on the grid by some domain knowledge.
Here, we state the algorithm and error control with the side
information treated as fixed values, but side information
can be random variables, like the bodyweight of patients
when testing whether each patient reacts to a certain medica-
tion. Our test also works for random side information Xi by
considering the conditional behavior of p-values given Xi.

The i-FWER test proceeds as progressively shrinking a can-
didate rejection setRt at step t,

[n] = R0 ⊇ R1 ⊇ . . . ⊇ Rn = ∅,

where recall [n] denotes the set of all the hypotheses. We
assume without loss of generality that one hypothesis is
excluded in each step. Denote the hypothesis excluded
at step t as i∗t . The choice of i∗t can use the information
available to the analyst before step t, formally defined as a
filtration (sequence of nested σ-fields) 1:

Ft−1 := σ
(
{xi, g(Pi)}ni=1, {Pi}i/∈Rt−1

)
, (3)

where we unmask the p-values for the hypotheses that are
excluded from the rejection setRt−1.

To control FWER, the number of false discoveries V is
estimated using only the binary missing bits h(Pi). The

1 This filtration denotes the information used for choos-
ing i∗t . The filtration with respect to which the stopping
time in Algorithm 1 is measurable includes the scale of R−

t :
Gt−1 := σ

(
Ft−1, |i ∈ Rt : h(Pi) = −1|

)
.

Algorithm 1 The i-FWER test

Input: Side information and p-values {xi, Pi}ni=1, target
FWER level α, and parameter p∗;
Procedure:
InitializeR0 = [n];
for t = 1 to n do

1. Pick any i∗t ∈ Rt−1, using {xi, g(Pi)}ni=1 and pro-
gressively unmasked {h(Pi)}i/∈Rt−1

;
2. Exclude i∗t and updateRt = Rt−1\{i∗t };
if F̂WERt ≡ 1− (1− p∗)|R

−
t |+1 ≤ α then

Reject {Hi : i ∈ Rt, h(Pi) = 1} and exit;
end if

end for

idea is to partition the candidate rejection set Rt into R+
t

andR−t by the value of h(Pi):

R+
t := {i ∈ Rt : h(Pi) = 1} ≡ {i ∈ Rt : Pi < p∗},
R−t := {i ∈ Rt : h(Pi) = −1} ≡ {i ∈ Rt : Pi ≥ p∗};

recall that p∗ is the prespecified parameter for masking (2).
Instead of rejecting every hypothesis in Rt, note that the
test only rejects the ones inR+

t , whose p-values are smaller
than p∗ in Rt. Thus, the number of false rejection V is
|H0 ∩R+

t | and we want to control FWER, P(V ≥ 1). The
distribution of |H0 ∩R+

t | can be estimated by |H0 ∩R−t |
using the fact that h(Pi) is a (biased) coin flip. But H0

(the set of true nulls) is unknown, so we use |R−t | to upper
bound |H0 ∩R−t |, and propose an estimator of FWER:

F̂WERt = 1− (1− p∗)|R
−
t |+1. (4)

Overall, the i-FWER test shrinksRt until F̂WERt ≤ α and
rejects only the hypotheses inR+

t (Algorithm 1).

Remark 1. The parameter p∗ should be chosen in (0, α],
because otherwise F̂WERt is always larger than α and no
rejection would be made. In principle, because |R−t | only
takes integer values, we should p∗ such that log(1−α)

log(1−p∗) is
an integer; otherwise, the estimated FWER at the stopping
time, F̂WERτ , would be strictly smaller than α rather than
equal. Our numerical experiments suggest that the power is
relatively robust to the choice of p∗. A default choice can be
p∗ ≈ α/2 (see detailed discussion in Appendix 7).

Remark 2. The above procedure can be easily extended to
control k-FWER:

k-FWER := P(V ≥ k), (5)

by estimating k-FWER as

̂k-FWERt = 1−
k−1∑
i=0

(
|R−t |+ i

i

)
(1− p∗)|R

−
t |+1pi∗.
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The error control of i-FWER test uses an observation that at
the stopping time, the number of false rejections is stochas-
tically dominated by a negative binomial distribution. The
complete proof is in Appendix 2.
Theorem 1. Suppose the null p-values are mutually inde-
pendent and they are independent of the non-nulls, then the
i-FWER test controls FWER at level α.
Remark 3. The null p-values need not be exactly uniformly
distributed. For example, FWER control also holds when
the null p-values have a convex CDF or nondecreasing
probability mass function (for discrete p-values or the den-
sity function otherwise). Appendix 1 presents the detailed
technical condition for the distribution of the null p-values.

Related work. The i-FWER test mainly combines and
generalizes two sets of work: (a) we use the idea of masking
from Lei & Fithian (2018); Lei et al. (2020) and extend
it to a more stringent error metric, FWER; (b) we use the
method of controlling FWER from Janson & Su (2016) by
converting a one-step procedure in the context of “knockoff”
statistics in regression problem to a multi-step (interactive)
procedure in our context of p-values.

Lei & Fithian (2018) and Lei et al. (2020) introduce the idea
of masking and propose interactive tests that control false
discovery rate (FDR):

FDR := E
(

V

|R| ∨ 1

)
,

the expected proportion of false discoveries. It is less strin-
gent than FWER, the probability of making any false dis-
covery. Their method uses the special case of masking (2)
when p∗ = 0.5, and estimate V by

∑
i∈Rt

1{h(Pi) = −1},
or equivalently

∑
i∈Rt

1{Pi < 0.5}. While it provides a
good estimation on the proportion of false discoveries, the
indicator 1{Pi < 0.5} has little information on the correct-
ness of individual rejections. To see this, suppose there is
one rejection, then FWER is the probability of this rejec-
tion being false. Even if h(Pi) = 1, which indicates the
p-value is on the smaller side, the tightest upper bound on
FWER is as high as 0.5. Thus, our method uses masking (2)
with small p∗, so that h(Pi) = 1, or equivalently Pi < p∗,
suggests a low chance of false rejection.

In the context of a regression problem to select signifi-
cant covariates, Janson & Su (2016) proposes a one-step
method with control on k-FWER; recall definition in (5).
The FWER is a special case of k-FWER when k = 1, and
as k grows larger, k-FWER is a less stringent error met-
ric. Their method decomposes statistics called “knockoff”
(Barber & Candès, 2015) into the magnitudes for ordering
covariates (without interaction) and signs for estimating k-
FWER, which corresponds to decomposing p-values into
g(Pi) and h(Pi) when p∗ = 0.5. However, the decompo-
sition as magnitude and sign restricts the corresponding

p-value decomposition with a single choice of p∗ as 0.5,
making the k-FWER control conservative and power low
when k = 1; yet our method shows high power in exper-
iments. Their error control uses the connection between
k-FWER and a negative binomial distribution, based on
which we propose the estimator F̂WERt for our multi-step
procedure, and prove the error control even when interaction
is allowed. As far as we know, this estimator viewpoint of
the FWER procedure is also new in the literature.

Jelle Goeman (private communication) pointed out that the i-
FWER test can be interpreted from the perspective of closed
testing (Marcus et al., 1976). Our method is also connected
with the fallback procedure (Wiens & Dmitrienko, 2005),
which allows for arbitrary dependence but is not interac-
tive and combine covariate information with p-values to
determine the ordering. See Appendix 3 for details.

The i-FWER test in practice. Technically in a fully inter-
active procedure, a human can examine all the information
in Ft−1 and pick i∗t subjectively or by any other principle,
but doing so for every step could be tedious and unnecessary.
Instead, the analyst can design an automated version of the
i-FWER test, and still keeps the flexibility to change it at
any iteration. For example, the analyst can implement an
automated algorithm to first exclude 80% hypotheses (say).
If F̂WERt is still larger than level α, the analyst can pause
the procedure manually to look at the unmasked p-value
information, update her prior knowledge, and modify the
current algorithm. The next section presents an automated
implementation of the i-FWER test that takes into account
the structure on the non-nulls.

3. An instantiation of an automated
algorithm, and numerical experiments

One main advantage of the i-FWER test is the flexibility to
include prior knowledge and human guidance. The analyst
might have an intuition about what structural constraints the
non-nulls have. For example, we consider two structures:
(a) a grid of hypotheses where the non-nulls are in a cluster
(of some size/shape, at some location; see Figure 3a), which
is a reasonable prior belief when one wants to identify a
tumor in a brain image; and (b) a tree of hypotheses where a
child can be non-null only if its parent is non-null, as may be
the case in applications involving wavelet decompositions.

3.1. An example of an automated algorithm under
clustered non-null structure

We propose an automated algorithm of the i-FWER test that
incorporates the structure of clustered non-nulls. Here, the
side information xi is the coordinates of each hypothesis i.
The idea is that at each step of excluding possible nulls,
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(a) True non-nulls
(21 hypotheses).

(b) 18 rejections by
the i-FWER test.

(c) 7 rejections by
the Šidák correction.

Figure 3. An instance of rejections by the i-FWER test and the
Šidák correction (Šidák, 1967). Clustered non-nulls are simulated
from the setting in Section 3.2 with a fixed alternative mean µ = 3.

Figure 4. An illustration of Rt generated by the automated algo-
rithm described in Section 3.1, at t = 50, 100, 150 and t = 220
when the algorithm stops. The p-values inRt are plotted.

we peel off the boundary of the current Rt, such that the
rejection set stays connected (see Figure 4).

Suppose each hypothesis Hi has a score Si to measure the
likelihood of being non-null (non-null likelihood). A simple
example is Si = −g(Pi) since larger g(Pi) indicates less
chance of being a non-null (more details on Si to follow).
We now describe an explicit fixed procedure to shrink Rt.
Given two parameters d and δ (eg. d = 5, δ = 5%), it
replaces step 1 and 2 in Algorithm 1 as follows:

(a) DivideRt−1 from its center to d cones (like slicing a
pizza); in each cone, consider a fraction δ of hypothe-
ses farthest from the center, denotedR1

t−1, . . . ,Rdt−1;

(b) Compute S̄j = 1

|Rj
t−1|

∑
i∈Rj

t−1
Si for j = 1, . . . , d;

(c) UpdateRt = Rt−1\Rkt−1, where k = argminj S̄
j .

The score Si that estimates the non-null likelihood can be
computed with the aid of a working statistical model. For
example, consider a mixture model where each p-value Pi is
drawn from a mixture of a null distribution F0 (eg: uniform)
with probability 1 − πi and an alternative distribution F1

(eg: beta distribution) with probability πi, or equivalently,

Pi
d
= (1− πi)F0 + πiF1. (6)

To account for the clustered structure of non-nulls, we may
further assume a model that treats πi as a smooth function
of the covariates xi. The hidden missing bits {h(Pi)}i∈Rt

can be inferred from g(Pi) and the unmasked h(Pi) by the

EM algorithm (see details in Appendix 8). As Rt shrinks,
progressively unmasked missing bits improve the estimation
of non-null likelihood and increase the power. Importantly,
the FWER is controlled regardless of the correctness of the
above model or any other heuristics to shrink Rt.

The above algorithm is only one automated example and
there are many possibilities of what we can do to shrink Rt.

1. A different algorithm can be developed for a different
structure. For example, when hypotheses have a hier-
archical structure and the non-nulls only appear on a
subtree, an algorithm can gradually cut branches.

2. The score Si for non-null likelihood is not exclusive for
the above algorithm – it can be used in any heuristics
such as directly ordering hypotheses by Si.

3. Human interaction can help the automated procedure:
the analyst can stop and modify the automated algo-
rithm at any iteration. It is a common case where prior
knowledge might not be accurate, or there exist several
plausible structures. The analyst may try different al-
gorithms and improve their understanding of the data
as the test proceeds. In the example of clustered non-
nulls, the underlying truth might have two clustered
non-nulls instead of one. After several iterations of the
above algorithm that is designed for a single cluster,
the shape of Rt could look like a dumbbell, so the
analyst can splitRt into two subsets if they wish.

Note that there is no universally most powerful test in non-
parametric settings since we do not make assumptions on
the distribution of non-null p-values, or how informative the
covariates are. It is possible that the classical Bonferroni-
Holm procedure (Holm, 1979) might have high power if
applied with appropriate weights. Likewise, the power of
our own test might be improved by changing the working
model or choosing some other heuristic to shrinkRt. The
main advantage of our method is that it can accommodate
structural and covariate information and revise the modeling
on the fly (as p-values are unmasked) while other methods
commit to one type of structure without looking at the data.

Next, we demonstrate via experiments that the i-FWER test
can improve power over the Šidák correction, a baseline
method that does not take side information into account2.
We chose a clustered non-null structure for visualization
and intuition, though our test can utilize any covariates,
structural constraints, domain knowledge, etc.

3.2. Numerical experiments for clustered non-nulls

For most simulations in this paper, we use the setting below,

2In all experiments, the Hommel method has similar power to
the Šidák correction, and was hence omitted.
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Figure 5. The i-FWER test versus Šidák for clustered non-nulls. The experiments are described in Section 3.2 where we tried two sizes of
hypotheses grid: 10× 10 and 30× 30 (the latter is a harder problem since the number of nulls increases while the number of non-nulls
remains fixed). Both methods show valid FWER control (left). The i-FWER test has higher power under both grid sizes (right).

Setting. Consider 900 hypotheses arranged in a 30 × 30
grid with a disc of 21 non-nulls. Each hypothesis tests the
mean value of a univariate Gaussian as described in (1).
The true nulls are generated from N(0, 1) and non-nulls
from N(µ, 1), where we varied µ as (1, 2, 3, 4, 5). For all
experiments in the paper, the FWER control is set at level
α = 0.2, and the power is averaged over 500 repetitions3.

The i-FWER test has higher power than the Šidák correction,
which does not use the non-null structure (see Figure 5). It is
hard for most existing methods to incorporate the knowledge
that non-nulls are clustered without knowing the position
or the size of this cluster. By contrast, such information
can be learned in the i-FWER test by looking at the masked
p-values and the progressively unmasked missing bits. This
advantage of the i-FWER test is more evident as the number
of nulls increases (by increasing the grid size from 10× 10
to 30× 30 with the number of non-nulls fixed). Note that
the power of both methods decreases, but the i-FWER test
seems less sensitive. This robustness to nulls is expected
as the i-FWER test excludes most nulls before rejection,
whereas the Šidák correction treats all hypotheses equally.

3.3. An example of an automated algorithm under a
hierarchical structure of hypotheses

When the hypotheses form a tree, the side information xi
encodes the parent-child relationship (the set of indices of
the children nodes for each hypothesis i). Suppose we have
prior knowledge that a node cannot be non-null if its parent
is null, meaning that the non-nulls form a subtree with the
same root. We now develop an automated algorithm that
prunes possible nulls among the leaf nodes of current Rt,
such that the rejection set has such a subtree shape. Like
the algorithm for clustered non-nulls, we use a score Si to

3The standard error of FWER and averaged power are less than
0.02, thus ignored from the plots in this paper.

Figure 6. Power of the i-FWER test under a tree structure when
varying the alternative mean value. It has higher power than inher-
itance procedure, Meinshausens method, and the Sidak correction.

choose which leaf nodes to exclude. For example, the score
Si can be the estimated non-null likelihood learned from
model (6), where we account for the hierarchical structure
by further assuming a partial order constraint on πi that
πi ≥ πj if j ∈ xi (i.e., i is the parent of j).

We simulate a tree of five levels (the root has twenty children
and three children for each parent node after that) with 801
nodes in total and 7 of them being non-nulls. The non-nulls
gather in one of the twenty subtrees of the root. Individual
p-values are generated by the hypotheses of testing zero-
mean Gaussian, same as for the clustered structure, where
we varied the non-null mean values µ as (1, 2, 3, 4, 5).

In addition to the Šidák correction, we compare the i-FWER
test with two other methods for tree-structured hypotheses:
Meinshausens method (Meinshausen, 2008) and the inher-
itance procedure (Goeman & Finos, 2012), which work
under arbitrary dependence. Their idea is to pass the er-
ror budget from a parent node to its children in a prefixed
manner, whereas our algorithm picks out the subtree with
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non-nulls based on the observed data. In our experiments,
the i-FWER test has the highest power (see Figure 6).

The above results demonstrate the power of the i-FWER
test in one particular form where the masking is defined
as (2). However, any two functions that decompose the null
p-values into two independent parts can, in fact, be used for
masking and fit into the framework of the i-FWER test (see
the proofs of error control when using the following new
masking functions in Appendix 6). In the next section, we
explore several choices of masking.

4. New masking functions
Recall that masking is the key idea that permits interaction
and controls error at the same time, by decomposing the
p-values into two parts: masked p-value g(P ) and missing
bits h(P ). Such splitting distributes the p-value information
for two different purposes, interaction and error control,
leading to a tradeoff. More information in g(P ) provides
better guidance on how to shrinkRt and improves the power,
while more information in h(P ) enhances the accuracy of
estimating FWER and makes the test less conservative. This
section explores several ways of masking and their influence
on the power of the i-FWER test. To distinguish different
masking functions, we refer to masking (2) introduced at
the very beginning as the “tent” function based on the shape
of map g (see Figure 7a).

4.1. The “railway” function

We start with an adjustment to the tent function that flips
the map g when p > p∗, which we call the “railway” func-
tion (see Figure 7b). It does not change the information
distribution between g(P ) and h(P ), and yet improves the
power when nulls are conservative, as demonstrated later.
Conservative nulls are often discussed under a general form
of hypotheses testing for a parameter θ:

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1,

where Θ0 and Θ1 are two disjoint sets. Conservative nulls
are those whose true parameter θ lies in the interior of Θ0.
For example, when testing whether a Gaussian N(µ, 1) has
nonnegative mean in (1) where Θ0 = {µ ≤ 0}, the nulls
are conservative when µ < 0. The resulting p-values are
biased toward larger values, which compared to the uniform
p-values from nonconservative nulls should be easier to
distinguish from that of non-nulls. However, most classical
methods do not take advantage of it, but the i-FWER test
can, when using the railway function for masking:

h(Pi) = 2 · 1{Pi < p∗} − 1;

and g(Pi) =

{
Pi, 0 ≤ Pi < p∗,
p∗

1−p∗ (Pi − p∗), p∗ ≤ Pi ≤ 1.
(7)

The above masked p-value, compared with the tent mask-
ing (2), can better distinguish the non-nulls from the conser-
vative nulls. To see this, consider a p-value of 0.99. When
p∗ = 0.2, the masked p-value generated by the originally
proposed tent function would be 0.0025, thus causing poten-
tial confusion with a non-null, whose masked p-value is also
small. But the masked p-value from the railway function
would be 0.1975, which is close to 0.2, the upper bound of
g(Pi). Thus, it can easily be excluded by our algorithm.

We follow the setting in Section 3.2 for simulation , except
that the alternative mean is fixed as µ = 3, and the nulls
are simulated from N(µ0, 1), where the mean value µ0 is
negative so that the resulting null p-values are conservative.
We tried µ0 as (0,−1,−2,−3,−4), with a smaller value
indicating higher conservativeness, in the sense that the p-
values are more likely to be biased to a larger value. When
the null is not conservative (µ0 = 0), the i-FWER test with
the railway function and tent function have similar power.
As the conservativeness of nulls increases, while the power
of the i-FWER test with the tent function decreases and the
Šidák correction stays the same, the power of the i-FWER
test with the railway function increases (see Figure 8).

4.2. The “gap” function

Another form of masking we consider maps only the p-
values that are close to 0 or 1, which is referred to as the
“gap” function (see Figure 7c) . The resulting i-FWER test
directly unmasks all the p-values in the middle, and as a
price, never rejects the corresponding hypotheses. Given
two parameters pl and pu, the gap function is defined as

h(Pi) =

{
1, 0 ≤ Pi < pl,

−1, pu < Pi ≤ 1;

and g(Pi) =

{
Pi, 0 ≤ Pi < pl,
pl

1−pu (1− Pi), pu < Pi ≤ 1.
(8)

All the p-values in [pl, pu] are available to the analyst from
the beginning. Specifically, letM = {i : pl < Pi < pu}
be the set of skipped p-values in the masking step, then the
available information at step t for shrinkingRt−1 is

Ft−1 := σ
(
{xi, g(Pi)}ni=1, {Pi}{i/∈Rt−1}, {Pi}{i∈M}

)
.

The i-FWER test with the gap masking changes slightly. We
again consider two subsets ofRt:

R+
t := {i ∈ Rt : h(Pi) = 1} ≡ {i ∈ Rt : Pi < pl},
R−t := {i ∈ Rt : h(Pi) = −1} ≡ {i ∈ Rt : Pi > pu},

and reject only the hypotheses in R+
t . The procedure of

shrinkingRt stops when F̂WERt ≤ α, where the estimation
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(a) The tent functions when p∗
varies as (0.5, 0.2). We need
p∗ ≤ α for FWER control.

(b) The railway function when
p∗ = 0.2.

(c) The gap function when
(pl, pu) = (0.2, 0.9).

(d) The gap-railway function
when (pl, pu) = (0.2, 0.9).

Figure 7. Different masking functions leaves different amount of information to g(P ) (and the complement part to h(P )).
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Figure 8. Power of the i-FWER test with the tent function and the
railway function, where the nulls become more conservative as
the null mean decreases in (0,−1,−2,−3,−4). The i-FWER test
benefits from conservative null when using the railway function.

changes to

F̂WERt = 1−
(

1− pl
pl + 1− pu

)|R−
t |+1

. (9)

To avoid the case that F̂WERt is always larger than α and
the algorithm cannot make any rejection, the parameters
pl and pu need to satisfy 1−α

α pl + pu < 1. The above
procedure boils down to the original i-FWER test with the
tent function when pl = pu = p∗.

The “gap” function reveals more information to select out
possible nulls and help the analyst shrink Rt, leading to
power improvement in numerical experiments. We present
the power results of the i-FWER test using different masking
functions after introducing a variant of the gap function.

4.3. The “gap-railway” function

Combining the idea of the gap and railway functions, we
develop the “gap-railway” function such that the middle
p-values are directly unmasked and the map g for large

Figure 9. Power of the i-FWER test with the tent function (p∗ =
0.1) and the gap function (pl = 0.1, pu = 0.5). The gap function
leads to slight improvement in power. Simulation follows the
setting in Section 3.2.

p-values is an increasing function (see Figure 7d). Given
parameters pl and pu, the gap-railway function is defined as

h(Pi) =

{
1, 0 ≤ Pi < pl,

−1, pu < Pi ≤ 1;

and g(Pi) =

{
Pi, 0 ≤ Pi < pl,
pl

1−pu (Pi − pu), pu < Pi ≤ 1.
(10)

Comparing with the tent function with p∗ = pl, the i-FWER
test using the gap function additionally uses the entire p-
values in [pl, pu] for interaction, which leads to an increased
power (see Figure 9). The same pattern is maintained when
we flip the mappings for large p-values, shown in the com-
parison of the railway function and the gap-railway func-
tion4. This improvement also motivates why the i-FWER
test progressively unmasks h(Pi), in other words, to reveal

4The tests with the tent function and the railway function have
similar power; and same for the gap function and the gap-railway
function. As the null p-values follow an exact uniform distribution,
so flipping the map g for large p-values does not change the power.
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as much information to the analyst as allowed at the cur-
rent step. Unmasking the p-values even for the hypotheses
outside of the rejection set can improve the power, because
they help the joint modeling of all the p-values, especially
when there is some non-null structure.

To summarize, we have presented four types of masking
functions: tent, railway, gap, gap-railway (see Figure 7).
Compared to the tent (gap) function, the railway (gap-
railway) functions are more robust to conservative nulls.
Compared with the tent (railway) function, the gap (gap-
railway) function reveals more information to guide the
shrinkage ofRt. Note however that the railway or gap func-
tion is not always better than the tent function. We may
favor the tent function over the railway function when there
are less p-values close to one, and we may favor the tent
function over the gap function when there is considerable
prior knowledge to guide the shrinkage ofRt.

The above discussion has explored specific non-null struc-
tures and masking functions. A large variety of masking
functions and their advantages are yet to be discovered.

5. A prototypical application to genetic data
Below, we further demonstrate the power of the i-FWER test
using a real ‘airway dataset’, which is analyzed by Indepen-
dent Hypothesis Weighting (IHW) (Ignatiadis et al., 2016)
and AdaPT (Lei & Fithian, 2018); these are (respectively)
adaptive and interactive algorithms with FDR control for
independent hypotheses. We compare the number of rejec-
tions made by a variant of the IHW with FWER control and
the i-FWER test using the tent function with the masking
parameter p∗ chosen as α/20, α/10, α/2, when the targeted
FWER level α varies in (0.1, 0.2, 0.3).

The airway data is an RNA-Seq dataset targeting the identi-
fication of differentially expressed genes in airway smooth
muscle cell lines in response to dexamethasone, which con-
tains 33469 genes (hypotheses) and a univariate covariate
(the logarithm of normalized sample size) for each gene.
The i-FWER test makes more rejections than the IHW for
all considered FWER levels and all considered choices of
p∗ (see Table 1).

Table 1. Number of rejections by IHW and i-FWER test under
different FWER levels.

level α IHW i-FWER
p∗ = α/2 p∗ = α/10 p∗ = α/20

0.1 1552 1613 1681 1646
0.2 1645 1740 1849 1789
0.3 1708 1844 1925 1894

In hindsight, a small value for the masking parameter was
more powerful in this dataset because over 1600 p-values

are extremely small (< 10−5), and these are highly likely
to be the non-nulls. Thus, even when the masked p-values
for all hypotheses are in a small range, such as (0, 0.01)
when α = 0.1 and p∗ = α/10, the p-values from the non-
nulls still stand out because they gather below 10−5. At
the same time, the smaller the p∗, the more accurate (less
conservative) is our estimate of FWER in (4); the algorithm
can stop shrinking Rt earlier since more hypotheses with
negative h(P ) are allowed to be included in the finalRt. In
practice, the choice of masking parameter can be guided by
the prior belief of the strength of non-null signals: if the non-
nulls have strong signal and hence extremely small p-values
(such as the mean value µ ≥ 5 when testing if a univariate
Gaussian has zero mean), a small masking parameter is
preferred; otherwise, we recommend α/2 to leave more
information for interactively shrinking the rejection setRt.

6. Discussion
We proposed a multiple testing method with a valid FWER
control while granting the analyst freedom of interacting
with the revealed data. The masking function must be fixed
in advance, but during the procedure of excluding possible
nulls, the analyst can employ any model, heuristic, intuition,
or domain knowledge, tailoring the algorithm to various ap-
plications. Although the validity requires an independence
assumption, our method is a step forward to fulfilling the
practical needs of allowing interactive human guidance to
automated large-scale testing using ML in the sciences.

The critical idea that guarantees the FWER control is “mask-
ing and unmasking”. A series of interactive tests are devel-
oped following the idea of masking: Lei & Fithian (2018)
and Lei et al. (2020) proposed the masking idea and an
interactive test with FDR control; Duan et al. (2019) de-
veloped an interactive test for the global null; this work
presents an interactive test with FWER control. At a high
level, masking-based interactive testing achieves rigorous
conclusions in an exploratory framework, giving this broad
technique much appeal and potential.

Code and Data
Code can be found in https://github.com/duanby/i-FWER.
It was tested on macOS using R (version 3.6.0) and the
following packages: magrittr, splines, robustbase, ggplot2.

Data in Section 5 is collected by (Himes et al., 2014) and
available in R package airway. We follow (Ignatiadis
et al., 2016) and (Lei & Fithian, 2018) to analyze the data
using DEseq2 package (Love et al., 2014).

https://github.com/duanby/i-FWER
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