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1. Distribution of the null p-values
Error control holds for null p-values whose distribution satisfies a property called mirror-conservativeness:

f(a) ≤ f
(

1− 1− p∗
p∗

a

)
, for all 0 ≤ a ≤ p∗, (1)

where f is the probability mass function of P for discrete p-values or the density function otherwise, and p∗ is the parameter
in Algorithm 1. The mirror-conservativeness is first proposed by Lei & Fithian (2018) in the case of p∗ = 0.5. A more
commonly used notion of conservativeness is that p-values are stochastically larger than uniform:

P(P ≤ a) ≤ a, for all 0 ≤ a ≤ 1,

which neither implies nor is implied by the mirror-conservativeness.

Sufficient conditions of the mirror-conservativeness include that f is nondecreasing or the CDF of the p-value is convex. For
example, consider a one-dimensional exponential family and the hypotheses to test the value of its parameter θ:

H0 : θ ≤ θ0, versus H1 : θ > θ0,

where θ0 is a prespecified constant. The p-value calculated from the uniformly most powerful test is shown to have a
nondecreasing density (Zhao et al., 2019); thus, it satisfies the mirror-conservativeness. The conservative nulls described in
Section 4.1 also fall into the above category where the exponential family is Gaussian, and the parameter is the mean value.
In this setting, the i-FWER test has a valid error control as proved in Appendix 2 (for the tent masking) and Appendix 6 (for
other masking functions).

2. Proof of Theorem 1
The main idea of the proof is that the missing bits h(Pi) of nulls are coin flips with probability p∗ to be heads, so the number
of false rejections (i.e. the number of nulls with h(Pi) = 1 before the number of hypotheses with h(Pi) = −1 reaches a
fixed number) is stochastically dominated by a negative binomial distribution. There are two main challenges. First, the
interaction uses unmasked p-value information to reorder h(Pi), so it is not trivial to show that the reordered h(Pi) preserve
the same distribution as that before ordering. Second, our procedure runs backward to find the first time that the number of
hypotheses with negative h(Pi) is below a fixed number, which differs from the standard description of a negative binomial
distribution.

2.1. Missing bits after interactive ordering

We first study the effect of interaction. Imagine that Algorithm 1 does not have a stopping rule and generates a full sequence
ofRt for t = 0, 1, . . . n, whereR0 = [n] andRn = ∅. It leads to an ordered sequence of h(Pi):

h(Pπ1
), h(Pπ2

), . . . , h(Pπn
),

where πn is the index of the first excluded hypothesis and πj denotes the index of the hypothesis excluded at step n− j + 1,
that is πj = Rn−j\Rn−j+1.
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Lemma 1. Suppose the null p-values are uniformly distributed and all the hypotheses are nulls, then for any j = 1, . . . , n,

E
[
1
(
h(Pπj ) = 1

)]
= p∗,

and {1
(
h(Pπj ) = 1

)
}nj=1 are mutually independent.

Proof. Recall that the available information for the analyst to choose πj is Fn−j = σ
(
{xi, g(Pi)}ni=1, {Pi}i/∈Rn−j

)
. First,

consider the conditional expectation:

E
[
1
(
h(Pπj

) = 1
)∣∣Fn−j]

=
∑
i∈[n]

E
[
1
(
h(Pπj ) = 1

)∣∣πj = i,Fn−j
]
P (πj = i|Fn−j)

(a)
=

∑
i∈Rn−j

E [1 (h(Pi) = 1)|πj = i,Fn−j ]P (πj = i|Fn−j)

(b)
=

∑
i∈Rn−j

E [1 (h(Pi) = 1)|Fn−j ]P (πj = i|Fn−j)

(c)
=

∑
i∈Rn−j

E [1 (h(Pi) = 1)]P (πj = i|Fn−j)

= p∗
∑

i∈Rn−j

P (πj = i|Fn−j) = p∗, (2)

where equation (a) narrows down the choice of i because P(πj = i | Fn−j) = 0 for any i /∈ Rn−j ; equation (b) drops the
condition of πj = i because πj is measurable with respect to Fn−j ; and equation (c) drops the condition Fn−j because by
the independence assumptions in Theorem 1, h(Pi) is independent of Fn−j for any i ∈ Rn−j .

Therefore, by the law of iterated expectations, we prove the claim on expected value:

E
[
1
(
h(Pπj

) = 1
)]

= E
[
E
[
1
(
h(Pπj

) = 1
)∣∣Fn−j]] = p∗.

For mutual independence, we can show that for any 1 ≤ k < j ≤ n, 1 (h(Pπk
) = 1) is independent of 1

(
h(Pπj

) = 1
)
.

Consider the conditional expectation:

E
[
1 (h(Pπk

) = 1)
∣∣1 (h(Pπj

) = 1
)]

= E
[
E
[
1 (h(Pπk

) = 1)
∣∣Fn−k,1 (h(Pπj

) = 1
)]∣∣1 (h(Pπj

) = 1
)]

(note that 1
(
h(Pπj

) = 1
)

is measurable with respect to Fn−k)

= E
[
E [1 (h(Pπk

) = 1)|Fn−k]
∣∣1 (h(Pπj

) = 1
)]

(use equation (2) for the conditional expectation)

= E
[
p∗ | 1

(
h(Pπj ) = 1

)]
= p∗.

It follows that 1 (h(Pπk
) = 1) | 1

(
h(Pπj

) = 1
)

is a Bernoulli with parameter p∗, same as the marginal distribution
of 1 (h(Pπk

) = 1); thus, 1 (h(Pπk
) = 1) is independent of 1

(
h(Pπj ) = 1

)
for any 1 ≤ k < j ≤ n as stated in the

Lemma.

Corollary 1. Suppose the null p-values are uniformly distributed and there may exist non-nulls. For any j = 1, . . . , n,

E
[
1
(
h(Pπj

) = 1
)∣∣∣{1 (h(Pπk

) = 1)}nk=j+1 , {1 (πk ∈ H0)}nk=j+1 , πj ∈ H0

]
= p∗,

where {πk}nk=j+1 represents the hypotheses excluded before πj .
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Proof. Denote the condition σ
(
{1 (h(Pπk

) = 1)}nk=j+1 , {1 (πk ∈ H0)}nk=j+1

)
as Fhn−j . The proof is similar to

Lemma 1. First, consider the expectation conditional on Fn−j :

E
[
1
(
h(Pπj ) = 1

)∣∣Fhn−j , πj ∈ H0,Fn−j
]

= E
[
1
(
h(Pπj

) = 1
)∣∣πj ∈ H0,Fn−j

]
(since Fhn−j is a subset of Fn−j)

=
∑
i∈[n]

E [1 (h(Pi) = 1) | πj = i, πj ∈ H0,Fn−j ]P(πj = i | πj ∈ H0,Fn−j)

=
∑

i∈Rn−j∩H0

E [1 (h(Pi) = 1) | πj = i, πj ∈ H0,Fn−j ]P(πj = i | πj ∈ H0,Fn−j)

=
∑

i∈Rn−j∩H0

E [1 (h(Pi) = 1)|Fn−j ]P(πj = i | πj ∈ H0,Fn−j)

= p∗
∑

i∈Rn−j∩H0

P(πj = i | πj ∈ H0,Fn−j) = p∗, (3)

where we use the same technics of proving equation (2).

Thus, by the law of iterated expectations, we have

E
[
1
(
h(Pπj ) = 1

)∣∣Fhn−j , πj ∈ H0

]
= E

[
E
[
1
(
h(Pπj

) = 1
)∣∣Fhn−j , πj ∈ H0,Fn−j

]∣∣Fhn−j , πj ∈ H0

]
= p∗,

which completes the proof.

Corollary 2. Suppose the null p-values can be mirror-conservative as defined in (1) and there may exist non-nulls, then for
any j = 1, . . . , n,

E
[
1
(
h(Pπj ) = 1

)∣∣∣{1 (h(Pπk
) = 1)}nk=j+1 , {1 (πk ∈ H0)}nk=j+1 , πj ∈ H0, {g(Pπk

)}nk=1

]
≤ p∗,

where {g(Pπk
)}nk=1 denotes g(P ) for all the hypotheses (excluded or not).

Proof. First, we claim that a mirror-conservative p-value P satisfies that

E [1 (h(P ) = 1) | g(P )] ≤ p∗, (4)

since for every a ∈ (0, p∗),

E [1 (h(P ) = 1) | g(P ) = a]

=
p∗f(a)

p∗f(a) + (1− p∗)f
(

1− 1−p∗
p∗

a
)

=
p∗

p∗ + (1− p∗)f
(

1− 1−p∗
p∗

a
)
/f(a)

≤ p∗,

where recall that f is the probability mass function of P for discrete p-values or the density function otherwise. The last
inequality comes from the definition of mirror-conservativeness in (1). The rest of the proof is similar to Corollary 1, where
we first condition on Fn−j :

E
[
1
(
h(Pπj

) = 1
)∣∣Fn−j ,Fhn−j , πj ∈ H0, {g(Pπk

)}nk=1

]
=

∑
i∈Rn−i∩H0

E [1 (h(Pi) = 1) | Fn−j ]P
(
πj = i

∣∣Fn−j ,Fhn−j , πj ∈ H0, {g(Pπk
)}nk=1

)
(a)
=

∑
i∈Rn−i∩H0

E [1 (h(Pi) = 1) | g(Pi)]P
(
πj = i

∣∣Fn−j ,Fhn−j , πj ∈ H0, {g(Pπk
)}nk=1

)
≤ p∗

∑
i∈Rn−i∩H0

P
(
πj = i

∣∣Fn−j ,Fhn−j , πj ∈ H0, {g(Pπk
)}nk=1

)
= p∗,
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where equation (a) simplify the condition of Fn−j to g(Pi) because for any i ∈ Rn−i ∩H0, h(Pi) is independent of other
information in Fn−j .

Then, by the law of iterated expectations, we obtain

E
[
1
(
h(Pπj

) = 1
)∣∣Fhn−j , πj ∈ H0, {g(Pπk

)}nk=1

]
= E

[
E
[
1
(
h(Pπj

) = 1
)∣∣Fn−j ,Fhn−j , πj ∈ H0, {g(Pπk

)}nk=1

]∣∣Fhn−j , πj ∈ H0, {g(Pπk
)}nk=1

]
≤ p∗,

thus the proof is completed.

2.2. Negative binomial distribution

In this section, we discuss several procedures for Bernoulli trials (coin flips) and their connections with the negative binomial
distribution.

Lemma 2. Suppose A1, . . . , An are i.i.d. Bernoulli with parameter p∗. For t = 1, . . . , n, consider the sum Mt =
∑t
j=1Aj

and the filtration Got = σ
(
{Aj}tj=1

)
. Define a stopping time parameterized by a constant v(≥ 1):

τo = min{0 < t ≤ n : t−Mt ≥ v or t = n}, (5)

then Mτo is stochastically dominated by a negative binomial distribution:

Mτo � NB(v, p∗).

Proof. Recall that the negative binomial NB(v, p∗) is the distribution of the number of success in a sequence of independent
and identically distributed Bernoulli trials with probability p∗ before a predefined number v of failures have occurred.
Imagine the sequence of Aj is extended to infinitely many Bernoulli trials: A1, . . . , An, A

′
n+1, . . ., where {A′j}∞j=n+1 are

also i.i.d. Bernoulli with parameter p∗ and they are independent of {Aj}nj=1. Let U be the number of success before v-th
failure, then by definition, U follows a negative binomial distribution NB(v, p∗). We can rewrite U as a sum at a stopping
time: U ≡Mτ ′ , where τ ′ = min{t > 0 : t−Mt ≥ v}. By definition, τo ≤ τ ′ (a.s.), which indicates Mτo ≤Mτ ′ because
Mt is nondecreasing with respect to t. Thus, we have proved that Mτo � NB(v, p∗).

Corollary 3. Following the setting in Lemma 2, we consider the shrinking sum M̃t =
∑n−t
j=1 Aj for t = 0, 1, . . . , n − 1.

Let the filtration be G̃t = σ
(
M̃t, {Aj}nj=n−t+1

)
. Given a constant v(≥ 1), we define a stopping time:

τ̃ = min{0 ≤ t < n : (n− t)− M̃t < v or t = n− 1}, (6)

then it still holds that M̃τ̃ � NB(v, p∗).

Proof. We first replace the notion of time t by n− s, and let time runs backward: s = n, n− 1, . . . , 1. The above setting
can be rewritten as M̃t(=

∑n−t
j=1 Aj) ≡Mn−t ≡Ms and G̃t = σ

(
Ms, {Aj}nj=s+1

)
=: Gbs . Define a stopping time:

τ b = max{0 < s ≤ n : s−Ms < v or s = 1}, (7)

which runs backward with respect to the filtration Gbs . By definition, we have n− τ̃ ≡ τ b, and hence M̃τ̃ ≡Mτb .

Now, we show that Mτb ≡ Mτo for τo defined in Lemma 2. First, consider two edge cases: (1) if t−Mt < v holds for
every 0 < t ≤ n, then τ b = n = τo, and thus Mτb = Mτo ; (2) if t−Mt ≥ v holds for every 0 < t ≤ n, then τ b = 1 = τo,
and again Mτb = Mτo . Next, consider the case where t−Mt < v for some t, and t−Mt ≥ v for some other t. Note that
by definition, τ b + 1 is a stopping time with respect to Got , and τ b + 1 = τo. Also, note that by the definition of τo, we have
Aτo = 0, so Mτo−1 = Mτo . Thus, Mτb = Mτo−1 = Mτo . Therefore, by Lemma 2, M̃τ̃ ≡Mτb ≡Mτo � NB(v, p∗), as
stated in the above Corollary.

Corollary 4. Consider a weighted version of the setting in Corollary 3. Let the weights {Wj}nj=1 be a sequence of Bernoulli,

such that (a)
∑n
j=1Wj = m for a fixed constant m ≤ n; and (b) Aj | σ

(
{Ak,Wk}nk=j+1,Wj = 1

)
is a Bernoulli with
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parameter p∗. Consider the sum Mw
t =

∑n−t
j=1 WjAj . Given a constant v(≥ 1), we define a stopping time:

τw = min{0 ≤ t < n :

n−t∑
j=1

Wj(1−Aj) < v or t = n− 1} (8)

≡ min{0 ≤ t < n :

n−t∑
j=1

Wj −Mw
t < v or t = n− 1},

then it still holds that Mw
τw � NB(v, p∗).

Proof. Intuitively, adding the binary weights should not change the distribution of the sum Mw
τw =

∑n−τw

j=1 WjAj , since by
condition (b), Aj is still a Bernoulli with parameter p∗ when it is counted in the sum. We formalize this idea as follows.

Let {Bl}ml=1 be a sequence of i.i.d. Bernoulli with parameter p∗, and denote the sum
∑m−s
l=1 Bl as M̃s(B). Let

T (t) = m−
∑n−t
j=1 Wj , then the stopping time τw can be rewritten as

τw ≡ min{0 ≤ t < n : m− T (t)− M̃T (t)(B) < v or t = n− 1}, (9)

because m− T (t) =
∑n−t
j=1 Wj by definition, and

M̃T (t)(B) =

m−T (t)∑
l=1

Bl
d
=

n−t∑
j=1

WjAj = Mw
t . (10)

For simple notation, we present the reasoning of equation (10) when t = 0 (for arbitrary t, consider the distributions
conditional on {Ak,Wk}nk=n−t+1). That is, we show that P(

∑m
l=1Bl = x) = P(

∑n
j=1WjAj = x) for every x ≥ 0. Let

{bl}mj=1 ∈ {0, 1}m, then we derive that

P(

m∑
l=1

Bl = x) =
∑

∑
bl=x

P(Bl = bl for l = 1, . . . , n) =
∑

∑
bl=x

m∏
l=1

fB(bl),

where fB is the probability mass function of a Bernoulli with parameter p∗. Let {ak}n−mk=1 ∈ {0, 1}n−m, then for the
weighted sum,

P(

n∑
j=1

WjAj = x)

=
∑

∑
bl=x

∑
∑
wj=m

∑
ak

P(Aj = bl if wj = 1;Aj = ak if wj = 0;Wj = wj for i = 1, . . . , n)

=
∑

∑
bl=x

m∏
l=1

fB(bl)
∑

∑
wj=m

∑
∑
ak

∏
wj=0

P(Aj = ak | σ
(
{Ak,Wk}nk=j+1,Wj = 0

) n∏
j=1

P(Wj = wj | {Ak,Wk}nk=j+1)

︸ ︷︷ ︸
C (a constant with respect to x)

= C
∑

∑
bl=x

m∏
l=1

fB(bl) = CP(

m∑
l=1

Bl = x),

for every possible value x ≥ 0, which implies that P(
∑m
l=1Bl = x) and P(

∑n
j=1WjAj = x) have

the same value; and hence we conclude equation (10). It follows that the filtration for both the stopping
time τw and the sum Mw

tw , denoted as σ
(∑n−t

j=1 Wj ,M
w
tw , {Aj ,Wj}nj=n−t+1

)
, has the same probability measure

as σ
(
m− T (t), M̃T (t)(B), {Aj ,Wj}nj=n−t+1

)
. Thus, the sums at the stopping time have the same distribution,

Mw
τw

d
= M̃T (τw)(B). The proof completes if M̃T (τw)(B) � NB(v, p∗). It can be proved once noticing that stopping

rule (9) is similar to stopping rule (6) except T (t) is random because of Wj , so we can condition on {Wj}nj=1 and apply
Corollary 3; and this concludes the proof.
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Corollary 5. In Corollary 4, consider Aj with different parameters. Suppose Aj | σ
(
{Ak,Wk}nk=j+1,Wj = 1

)
is a

Bernoulli with parameter p
(
{Ak,Wk}nk=j+1

)
for every j = 1, . . . , n. Given a constant p∗ ∈ (0, 1), if the parameters

satisfy that p
(
{Ak,Wk}nk=j+1

)
≤ p∗ for all j = 1, . . . , n, then it still holds that Mw

τw � NB(v, p∗).

Proof. We first construct Bernoulli with parameter p∗ based on Aj by an iterative process. Start with j = n. Let Cn be a
Bernoulli independent of {Ak}nk=1 with parameter p∗−pn1−pn , where pn = E(An |Wn = 1). Construct

Bn = An1 (An = 1) + Cn1 (An = 0) , (11)

which thus satisfies that E(Bn | Wn = 1) = p∗, and that Bn ≥ An (a.s.). Now, let j = j − 1 where we consider the
previous random variable. Let Cj be a Bernoulli independent of {Ak}jk=1, with parameter

p∗ − p̃
(
{Bk,Wk}nk=j+1

)
1− p̃

(
{Bk,Wk}nk=j+1

) , (12)

where p̃
(
{Bk,Wk}nk=j+1

)
= E

[
Aj | σ

(
{Bk,Wk}nk=j+1,Wj = 1

)]
(note that the parameter forCj is well-defined since

p̃
(
{Bk,Wk}nk=j+1

)
≤ p∗ by considering the expectation further conditioning on {Ak}nk=j+1). Then, we construct Bj as

Bj = Aj1 (Aj = 1) + Cj1 (Aj = 0) , (13)

which thus satisfies that E
[
Bj | σ

(
{Bk,Wk}nk=j+1,Wj = 1

)]
= p∗, and that Bj ≥ Aj (a.s.).

Now, consider two procedures for {Aj}nj=1 and {Bj}nj=1 with the same stopping rule (8) in Corollary 4, where the sum
of Aj is denoted as Mw

t (A) and the stopping time as τwA (and the similar notation for Bj). Since construction (13) ensures
that Bj ≥ Aj for every j = 1, . . . , n, we have Mw

t (B) ≥Mw
t (A) for every t; and hence, τwA ≥ τwB . It follows that

Mw
τw
A

(A) ≤Mw
τw
B

(A) ≤Mw
τw
B

(B) � NB(v, p∗),

where the first inequality is because Mw
t is nonincreasing with respect to t, and the last step is the conclusion of Corollary 4;

this completes the proof.

2.3. Proof of Theorem 1.

Proof. We discuss three cases: (1) the simplest case where all the hypotheses are null, and the null p-values are uniformly
distributed; (2) the case where non-nulls may exist, and the null p-values are uniformly distributed; and finally (3) the case
where non-nulls may exist, and the null p-values can be mirror-conservative.

Case 1: nulls only and null p-values uniform. By Lemma 1, {1
(
h
(
Pπj

)
= 1
)
}nj=1 are i.i.d. Bernoulli with parame-

ter p∗. Observe that the stopping rule in Algorithm 1, F̂WERt ≡ 1− (1− p∗)|R
−
t |+1 ≤ α, can be rewritten as |R−t |+ 1 ≤ v

where

v =

⌊
log(1− α)

log(1− p∗)

⌋
, (14)

which is also equivalent as |R−t | < v. We show that the number of false rejections is stochastically dominated by NB(v, p∗)

by Corollary 3. Let Aj = 1
(
h
(
Pπj

)
= 1
)

and M̃t =
∑n−t
j=1 1

(
h
(
Pπj

)
= 1
)
. The stopping time is τ̃ = min{0 ≤ t < n :

|R−t | = (n− t)− M̃t < v or t = n− 1}. The number of rejections at the stopping time is

|R+
τ̃ | ≡

n−τ̃∑
j=1

1
(
h
(
Pπj

)
= 1
)
≡ M̃τ̃ � NB(v, p∗),
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where the last step is the conclusion of Corollary 3. Note that we assume all the hypotheses are null, so the number of false
rejections is |R+

τ̃ ∩H0| = |R+
τ̃ | � NB(v, p∗). Thus, FWER is upper bounded:

P(|R+
τ̃ ∩H0| ≥ 1) ≤ 1− (1− p∗)v ≤ α, (15)

where the last inequality follows by the definition of v in (14). Thus, we have proved FWER control in Case 1.

Remark: This argument also provides some intuition on the FWER estimator (4): F̂WERt = 1− (1− p∗)|R
−
t |+1. Imagine

we run the algorithm for one time without any stopping rule until time t0 to get an instance of ̂FWERt0 , then we run
the algorithm on another independent dataset, which stops once F̂WERt ≤ ̂FWERt0 . Then in the second run, FWER is
controlled at level ̂FWERt0 .

Case 2: non-nulls may exist and null p-values are uniform. We again argue that the number of false rejections
is stochastically dominated by NB(v, p∗), and in this case we use Corollary 4. Consider Aj = 1

(
h
(
Pπj

)
= 1
)

and Wj = 1 (πj ∈ H0), which satisfies condition (b) in Corollary 4 according to Corollary 1. Let m = |H0|, then∑n
j=1Wj = m, which corresponds to condition (a). Imagine an algorithm stops once

n−t∑
j=1

1
(
h
(
Pπj

)
= −1 ∩ πj ∈ H0

)
=

n−t∑
j=1

Wj(1−Aj) < v, (16)

and we denote the stopping time as τw. By Corollary 4, the number of false rejections in this imaginary case is
n−τw∑
j=1

1
(
h
(
Pπj

)
= 1 ∩ πj ∈ H0

)
=

n−t∑
j=1

WjAj = Mw
τw � NB(v, p∗).

Now, consider the actual i-FWER test which stops when |R−t | = (n − t) −
∑n−t
j=1 1

(
h
(
Pπj

)
= 1
)
< v, and denote the

true stopping time as τwT . Notice that at the stopping time, it holds that
n−τw

T∑
j=1

1
(
h
(
Pπj

)
= −1 ∩ πj ∈ H0

)
≤

n−τw
T∑

j=1

1
(
h
(
Pπj

)
= −1

)
= (n− τwT )−

n−τw
T∑

j=1

1
(
h
(
Pπj

)
= 1
)
< v,

which means that stopping rule (16) is satisfied at τwT . Thus, τwT ≥ τw and Mw
τw
T
≤ Mw

τw (because Mw
t is nonincreasing

with respect to t). It follows that the number of false rejections is

|R+
τw
C
∩H0| ≡

n−τw
C∑

j=1

1
(
h
(
Pπj

)
= 1 ∩ πj ∈ H0

)
≡Mw

τw
C
≤Mw

τw � NB(v, p∗).

We then prove FWER control using a similar argument as (15):

P(|R+
τw ∩H0| ≥ 1) ≤ 1− (1− p∗)v ≤ α,

which completes the proof of Case 2.

Case 3: non-nulls may exist and null p-values can be mirror-conservative. In this case, we follow the proof of Case 2
except additionally conditioning on all the masked p-values, {g(Pπk

)}nk=1. By Corollary 2 and Corollary 5, we again
conclude that the number of false rejections is dominated by a negative binomial:

|R+
τw
C
∩H0| � NB(v, p∗),

if given {g(Pπk
)}nk=1. Thus, FWER conditional on {g(Pπk

)}nk=1 is upper bounded:

P
(
|R+

τw ∩H0| ≥ 1
∣∣{g(Pπk

)}nk=1

)
≤ 1− (1− p∗)v ≤ α,

which implies the FWER control by the law of iterated expectations. This completes the proof of Theorem 1.
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3. An alternative perspective: closed testing
This section summarizes the comments from Jelle Goeman, who kindly points out the connection between our proposed
method and the closed testing (Marcus et al., 1976). Closed testing is a general framework that generates a procedure
with FWER control given any test with Type 1 error control. Specifically, we reject Hi if all possible sets of hypotheses
involving Hi, denoted as U 3 i, can be rejected by a “local” test for hypotheses in U with Type 1 error control at level α.

The i-FWER test we propose shares some commonalities with the fallback procedure (Wiens & Dmitrienko, 2005), which
can be viewed as a shortcut of a closed testing procedure. We briefly describe the commonalities and differences next. Let v
be a prespecified positive integer. The fallback procedure orders the hypotheses from most to least interesting, and proceeds
to test them one by one at level α/v until it has failed to reject v hypotheses. The hypothesis ordering is allowed to be
data-dependent as long as the ordering is independent of the p-values, corresponding to ordering by the side information
xi in our language. This procedure is essentially also what the i-FWER test does except (a) the i-FWER test uses the
Šidák correction instead of the Bonferroni correction; (b) we are interested in whether rejecting each hypothesis instead of
adjusting individual p-values, so the ordering only needs to be independent of reject/non-reject status instead of on the full
p-values, which allows us to split each p-value into h(Pi) and g(Pi); (c) under the assumption of independent null p-values,
we are allowed to use the p-values excluded from the candidate rejection setRt as independent information to create the
ordering. The latter two differences enable the i-FWER test to be interactive based on a considerably large amount of data
information.

3.1. Alternative proof of Theorem 1

The above observation leads to a simple proof of the error control guarantee without involving any martingales or negative
binomial distributions, once we rewrite the i-FWER test in the language of closed testing.

Proof. For simplicity, we consider the nulls with only uniform p-values. Let v be a prespecified positive integer, and define
p∗ = 1− (1− α)1/v . Imagine that the i-FWER test does not have a stopping rule and let πn, . . . , π1 be the order in which
the hypotheses are chosen by an analyst, where each choice πt can base on all the information in Fn−t.

Here, we construct a closed testing procedure by defining a local test with Type 1 error control for an arbitrary subset U ∈ [n]
of size |U |. Sort the hypotheses in U according to the analyst-specified ordering from the last πn to the first chosen π1. If
the number of hypotheses in U is larger than v, define Uv as the subset of U of size v corresponding to the hypotheses in U
that are chosen last. For example, if U = [n], we have Uv = {πv, . . . , π1}. If |U | ≤ v, define Uv = U . We reject the subset
U if h(Pi) = 1 (i.e., Pi ≤ p∗) for at least one i ∈ Uv. This is a valid local test, since it controls the Type 1 error when all
the hypotheses in U are null. To verify the error control, notice that h(Pi)’s are independent and follows Bernoulli(p∗), and
Uv is independent of {h(Pi)}i∈Uv

by the construction of sequence π1, ..., πn, so the Type 1 error satisfies

P(∃i ∈ Uv : h(Pi) = 1) ≤ 1− (1− p∗)v,

which is less than α by the definition of v and p∗. Indeed, the local test corresponds to a Šidák correction for v number of
hypotheses. Through closed testing, this local test leads to a valid test with FWER control.

Next, we show that the rejection set from the i-FWER test,R+
τ , is included in the rejection set from the above closed testing

procedure. Choose any hypothesis j ∈ R+
τ and any set W 3 j. If Hj is among the last v hypotheses last chosen in W (or

if |W | ≤ v), the local test for W reject the null since Pj ≤ p∗ by the definition of R+
τ . Otherwise, the v hypotheses last

chosen in W are all chosen after Hj . Since j ∈ R+
τ and by the definition of τ , we have |R−τ | ≤ v − 1. That is, there can be

at most v − 1 hypotheses among these v such that h(Pi) = −1, so set W is rejected by the local test as described in the
previous paragraph. It follows from the definition of FWER and the error control of the larger (or equivalent) rejection set
from the closed testing procedure thatR+

τ has FWER control.

3.2. Improvement on an edge case

From the closed testing procedure constructed in the above proof, we observe that the local tests do not exhaust the α-level
for intersections of less than v hypotheses. This suboptimality can be remedied, but it will only improve power for rejecting
all hypotheses given that almost all are already rejected (i.e., most subsets U with |U | > v are rejected by the local test). In
the i-FWER test, such a case potentially corresponds to the case where the initial rejection set has less than v hypotheses
with negative h(Pi), so the algorithm stops before shrinkingR0, and reject all the hypotheses with positive h(Pi). However,
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we might not fully use the error budget because F̂WER0 < α. However, we might not fully use the error budget because
F̂WER0 < α. To improve power and efficiently use all the error budget, we propose randomly rejecting the hypotheses with
a negative h(Pi) if the algorithm stops at step 0.

Recall that the number of negative h(Pi) is |R−0 |. For each hypothesis with a negative h(Pi), we independently decide to
reject it with probability 1− (1− αre)

1/|R−0 |, where αre := α− F̂WER0 denotes the remaining error budget after rejecting
all the hypotheses with positive h(Pi)’s. To see the error control guarantee of this improved algorithm, notice that

P(∃i ∈ H0 : Hi is rejected)

≤ P(∃i ∈ H0 : h(Pi) = 1) + P(∃i ∈ H0 : h(Pi) = −1 and Hi is rejected)

≤ F̂WER0 + P(∃i ∈ R−0 : Hi is rejected)

≤ F̂WER0 + αre = α,

where P(∃i ∈ H0 : h(Pi) = 1) ≤ F̂WER0 follows the argument using negative binomial distribution as in the proof of the
original algorithm; and P(∃i ∈ R−0 : Hi is rejected) ≤ αre is the result of a Šidák correction. We summarize the adjusted
i-FWER test in Algorithm 1.

Algorithm 1 The adjusted i-FWER test

Input: Side information and p-values {xi, Pi}ni=1, target FWER level α, and parameter p∗;
Procedure:
InitializeR0 = [n];
if F̂WER0 ≡ 1− (1− p∗)|R

−
0 |+1 ≤ α then

Obtain n independent indicators from a Bernoulli distribution with probability 1− (1− α+ F̂WER0)1/|R
−
0 |, denoted

as {Ii}i∈[n];
Reject {Hi : i ∈ [n], h(Pi) = 1 or Ii = 1} and exit;

else
for t = 1 to n do

1. Pick any i∗t ∈ Rt−1, using {xi, g(Pi)}ni=1 and {h(Pi)}i/∈Rt−1
;

2. Exclude i∗t and updateRt = Rt−1\{i∗t };
if F̂WERt ≡ 1− (1− p∗)|R

−
t |+1 ≤ α then

Reject {Hi : i ∈ Rt, h(Pi) = 1} and exit;
end if

end for
end if

4. Sensitivity analysis
The i-FWER test is proved to have valid error control when the nulls are mutually independent and independent of the
non-nulls. In this section, we evaluate the performance of the i-FWER test under correlated p-values. Our numerical
experiments construct a grid of hypotheses as described in the setting in Section 3.2. The p-values are generated as

Pi = 1− Φ(Zi),where Z = (Z1, . . . , Zn) ∼ N(µ,Σ), (17)

where µ = 0 for the nulls and µ = 3 for the non-nulls. The covariance matrix Σ, which is identity matrix in the main paper,
is now set to an equi-correlated matrix: 

1 ρ · · · ρ
ρ 1 · · · ρ
...

...
...

...
ρ ρ · · · 1

 . (18)

Under both the positively correlated case (ρ = 0.5) and the negatively correlated case (−ρ = 0.5/n to guarantee that Σ
is positive semi-definite), the i-FWER test seems to maintain the FWER control at most target levels even when all the
hypotheses are nulls (see Figure 1c and 1d), and has higher power than the Šidák correction (see Figure 1a and 1b).
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(a) Positively correlated case
where ρ = 0.5 in the covariance
matrix (18). The non-null mean
value is 3.

(b) Negatively correlated case
where ρ = −0.5/n in the covari-
ance matrix (18). The non-null
mean value is 3.

(c) Negatively correlated case
where ρ = −0.5/n in the covari-
ance matrix (18). All hypotheses
are nulls.

(d) Negatively correlated case
where ρ = −0.5/n in the covari-
ance matrix (18). All hypotheses
are nulls.

Figure 1. FWER and power of the i-FWER test and the Šidák correction for dependent p-values generated by Gaussians as in (17) with
covariance matrix (18) when the targeted level of FWER control varies in (0.05, 0.1, 0.15, 0.2, 0.25, 0.3). The i-FWER test appears to
control FWER below the targeted level and has relatively high power.

5. More results on the application to genetic data
Section 5 presents the number of rejections of the i-FWER test when the masking uses the tent function. We evaluate the
i-FWER test when using the other three masking functions under the same experiments, but for simplicity, we only present
the result when the FWER control is at level α = 0.2 (see Table 1). Overall, the gap function leads to a similar number of
rejections as the tent function, consistent with the numerical experiments. However, the railway (gap-railway) function leads
to fewer rejections than the tent (gap) function, which seems counterintuitive. Upon a closer look at the p-values, we find
that the null p-values are not uniform or have an increasing density (see Figure 2). As a result, when using the tent function,
there are fewer masked p-values from the nulls that could be confused with those of the non-nulls (with huge p-values),
compared with using the railway function where the masked p-values of the confused nulls are those close to the masking
parameter (around 0.02).

Table 1. Number of rejections by i-FWER test using different masking functions when α = 0.2. The tent function and the gap function
leads to more rejections compared with the railway function and the gap-railway function. The parameters in the gap and gap-railway
function are set to pl = p∗ and pu = 0.5, and we need pl < α/2 for the test to make any rejection under level α.

Masing function p∗ = α/2 p∗ = α/10 p∗ = α/20
Tent 1752 1848 1794

Railway 1778 1463 1425
Gap NA 1802 1846

Gap-railway NA 1764 1788

Figure 2. Histogram of p-values in the airway dataset. The number of p-values that are close to one is less than those that are close to
the cutting point of the masking function (say 0.02). Consequently, the tent (gap) function leads to more rejections than the railway
(gap-railway) function.



Supplement to “Familywise Error Rate Control by Interactive Unmasking”

6. Error control for other masking functions
The proof in Appendix 2 is for the i-FWER test with the original tent masking function. In this section, we check the error
control for two new masking functions introduced in Section 4.

6.1. The railway function

We show that the i-FWER test with the “railway” function (7) has FWER control, if the null p-values have convex CDF or
nondecreasing f (recall f is the probability mass function for discrete p-values or the density function otherwise). We again
assume the same independence structure as in Theorem 1 that the null p-values are mutually independent and independent
of the non-nulls.

The proof in Appendix 2 implies that under the same independence assumption, the FWER control is valid if the null
p-values satisfy condition (4). When using the railway masking function, condition (4) is indeed satisfied if the null p-values
have nondecreasing f since

P(h(P ) = 1 | g(P ) = a) =
p∗f(a)

p∗f(a) + (1− p∗)f( 1−p∗
p∗

a+ p∗)

=
p∗

p∗ + (1− p∗)f( 1−p∗
p∗

a+ p∗)/f(a)

≤ p∗,

for every a ∈ (0, p∗). Then, we can prove the FWER control following the same argument as Appendix 2.

6.2. The gap function

The essential difference of using the gap function instead of the tent function is that here, 1 (h(P ) = 1) for the nulls follow
a Bernoulli distribution with a different parameter, p̃ = P(P = 1 | P < pl or P > pu) = pl

pl+1−pu . Once replacing p∗ by p̃,

we get a the new FWER estimator F̂WERt as defined in (9) and the error control can be proved following Appendix 2.

7. Varying the parameters in the presented masking functions
We first discuss the original tent masking (2), which represents a class of masking functions parameterized by p∗. Similar to
the discussion in Section 4, varying p∗ also changes the amount of p-value information distributed to g(P ) for interaction
(to exclude possible nulls) and h(P ) for error control (by estimating FWER), potentially influencing the test performance.
On one hand, the masking function with smaller p∗ effectively distributes less information to g(P ), in that a larger range of
big p-values is mapped to small g(P ) (see Figure 7a). In such a case, the true non-nulls with small p-values and small g(P )
are less distinctive, making it difficult to exclude the nulls fromRt. On the other hand, the rejected hypotheses inR+

t must
satisfy P < p∗, so smaller p∗ leads to less false rejections given the sameRt.

Experiments show little change in power when varying the value of p∗ in (0, α) as long as it is not near zero, as it would
leave little information in g(P ). Our simulations follow the setting in Section 3.2, where the alternative mean value is fixed
at µ = 3. We tried seven values of p∗ as (0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2), and the power of the i-FWER test does
not change much for p∗ ∈ (0.05, 0.2). This trend also holds when varying the mean value of non-nulls, the size of the grid
(with a fixed number of non-nulls), and the number of non-nulls (with a fixed size of the grid). In general, the choice of p∗
does not have much influence on the power, and a default choice can be p∗ = α/2.

There are also parameters in two other masking functions proposed in Section 4. The railway function flips the tent function
without changing the distribution of p-value information, hence the effect of varying p∗ should be similar to the case in the
tent function. The gap function (8) has two parameters: pl and pu. The tradeoff between information for interaction and
error control exhibits in both values of pl and pu: as pl decreases (or pu increases), more p-values are available to the analyst
from the start, guiding the procedure of shrinking Rt, while the estimation of FWER becomes less accurate. Whether
revealing more information for interaction should depend on the problem settings, such as the amount of prior knowledge.
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8. Mixture model for the non-null likelihoods
Two groups model for the p-values. Define the Z-score for hypothesis Hi as Zi = Φ−1(1 − Pi), where Φ−1 is the
inverse function of the CDF of a standard Gaussian. Instead of modeling the p-values, we choose to model the Z-scores since
when testing the mean of Gaussian as in (1), Z-scores are distributed as a Gaussian either under the null or the alternative:

H0 : Zi
d
= N(0, 1) versus H1 : Zi

d
= N(µ, 1),

where µ is the mean value for all the non-nulls. We model Zi by a mixture of Gaussians:

Zi
d
= (1− qi)N(0, 1) + qiN(µ, 1), with qi

d
= Bernoulli(πi),

where qi is the indicator of whether the hypothesis Hi is truly non-null.

The non-null structures are imposed by the constraints on πi, the probability of being non-null. In our examples, the blocked
non-null structure is encoded by fitting πi as a smooth function of the hypothesis position (coordinates) xi, specifically as a
logistic regression model on a spline basis B(x) = (B1(x), . . . , Bm(x)):

πβ(xi) =
1

1 + exp(−βTB(xi))
, (19)

EM framework to estimate the non-null likelihoods. An EM algorithm is used to train the model. Specifically we treat
the p-values as the hidden variables, and the masked p-values g(P ) as observed. In terms of the Z-scores, Zi is a hidden
variable and the observed variable Z̃i is

Z̃i =

{
Zi, if Zi > Φ−1(1− p∗),
t(Zi), otherwise,

where t(Zi) depends on the form of masking. The updates needs values of its inverse function t−1(Z̃i) and the derivative of
t−1(·), denoted as

(
t−1
)′

(Z̃i), whose exact forms are presented below.

1. For tent masking (2),

t(Zi) = Φ−1
[
1− p∗

1− p∗
Φ(Zi)

]
;

t−1(Z̃i) = Φ−1
[

1− p∗
p∗

(
1− Φ(Z̃i)

)]
;(

t−1
)′

(Z̃i) = − 1− p∗
p∗

φ
(
Z̃i

)/
φ
(
t−1(Z̃i)

)
,

where φ(·) is the density function of standard Gaussian.

2. For railway masking (7),

t(Zi) = Φ−1
[
1− p∗ +

p∗
1− p∗

Φ(Zi)

]
;

t−1(Z̃i) = Φ−1
[

1− p∗
p∗

(
Φ(Z̃i)− 1 + p∗

)]
;(

t−1
)′

(Z̃i) =
1− p∗
p∗

φ
(
Z̃i

)/
φ
(
t−1(Z̃i)

)
.

3. For gap masking (8),

t(Zi) = Φ−1
[
1− pl

1− pu
Φ(Zi)

]
;

t−1(Z̃i) = Φ−1
[

1− pu
pl

(
1− Φ(Z̃i)

)]
;(

t−1
)′

(Z̃i) = − 1− pu
pl

φ
(
Z̃i

)/
φ
(
t−1(Z̃i)

)
.
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if Zi < Φ−1(1 − pu). If Φ−1(1 − pu) ≤ Zi ≤ Φ−1(1 − pl), which corresponds to the skipped p-value between pl
and pu, then Z̃i = Zi.

4. For gap-railway masking (10),

t(Zi) = Φ−1
[
1− pl

1− pu
Φ(Zi)

]
;

t−1(Z̃i) = Φ−1
[

1− pu
pl

(
Φ(Z̃i)− 1 + pl

)]
;(

t−1
)′

(Z̃i) =
1− pu
pl

φ
(
Z̃i

)/
φ
(
t−1(Z̃i)

)
.

if Zi < Φ−1(1 − pu). If Φ−1(1 − pu) ≤ Zi ≤ Φ−1(1 − pl), which corresponds to the skipped p-value between pl
and pu, then Z̃i = Zi.

Define two sequences of hypothetical labels wi = 1{Zi = Z̃i} and qi = 1{Hi = 1}, where Hi = 1 means hypothesis i is
truly non-null (Hi = 0 otherwise). The log-likelihood of observing Z̃i is

l(Z̃i) = wiqi log
{
πiφ

(
Z̃i − µ

)}
+ wi(1− qi) log

{
(1− πi)φ

(
Z̃i

)}
+ (1− wi)qi log

{
πiφ

(
t−1(Z̃i)− µ

)}
+ (1− wi)(1− qi) log

{
(1− πi)φ

(
t−1(Z̃i)

)}
.

The E-step updates wi, qi. Notice that wi and qi are not independent, and hence we update the joint distribution of (wi, qi),
namely

E[wiqi] =: ai, E[wi(1− qi)] =: bi, E[(1− wi)qi] =: ci, E[(1− wi)(1− qi)] =: di,

where ai + bi + ci + di = 1. To simplify the expression for updates, we denote

Li := πiφ
(
Z̃i − µ

)
+ (1− πi)φ

(
Z̃i

)
+
∣∣∣(t−1)′ (Z̃i)∣∣∣πiφ(t−1(Z̃i)− µ

)
+
∣∣∣(t−1)′ (Z̃i)∣∣∣ (1− πi)φ(t−1(Z̃i)

)
.

For the hypothesis i whose p-value is masked, the updates are

ai,new = E[wiqi | Z̃i] = πiφ
(
Z̃i − µ

)/
Li;

bi,new = E[wi(1− qi) | Z̃i] = (1− πi)φ
(
Z̃i

)/
Li;

ci,new = E[(1− wi)qi | Z̃i] =
∣∣∣(t−1)′ (Z̃i)∣∣∣πiφ(t−1(Z̃i)− µ

)/
Li;

di,new = E[(1− wi)(1− qi) | Z̃i] =
∣∣∣(t−1)′ (Z̃i)∣∣∣ (1− πi)φ(t−1(Z̃i)

)/
Li.

If the p-value is unmasked for i, the updates are

ai,new =

1 +
(1− πi)φ

(
Z̃i

)
πiφ

(
Z̃i − µ

)
−1 ;

bi,new = 1− ai,new; ci,new = 0; di,new = 0.

In the M-step, parameters µ and β (in model (19) for πi) are updated. The update for µ is

µnew = argmax
µ

∑
i

l(Z̃i) =

∑
aiZ̃i + cit

−1(Z̃i)∑
ai + ci

.

The update for β is

βnew = argmax
β

∑
i

(ai + ci) log πβ(xi) + (1− ai − ci) log(1− πβ(xi)),

where πβ(xi) is defined in equation (19). It is equivalent to the solution of GLM (generalized linear model) with the logit
link function on data {ai + ci} using covariates {B(xi)}.
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