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Abstract
This paper studies the statistical theory of off-
policy policy evaluation with function approxima-
tion in batch data reinforcement learning problem.
We consider a regression-based fitted Q iteration
method, and show that it is equivalent to a model-
based method that estimates a conditional mean
embedding of the transition operator. We prove
that this method is information-theoretically opti-
mal and has nearly minimal estimation error. In
particular, by leveraging contraction property of
Markov processes and martingale concentration,
we establish a finite-sample instance-dependent
error upper bound and a nearly-matching mini-
max lower bound. The policy evaluation error
depends sharply on a restricted �2-divergence
over the function class between the long-term dis-
tribution of target policy and the distribution of
past data. This restricted �2-divergence character-
izes the statistical limit of off-policy evaluation,
and is both instance-dependent and function-class-
dependent. Further, we provide an easily com-
putable confidence bound for the policy evaluator,
which may be useful for optimistic planning and
safe policy improvement.

1. Introduction
Batch data reinforcement learning (RL) is common in
decision-making applications where rich experiences are
available but new experiments are costly. A first-order ques-
tion is how much one can learn from existing experiences to
predict and improve the performance of new policies. This
is known as the off-policy policy evaluation (OPE) problem,
where one needs to estimate the cumulative rewards (aka
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value) to be earned by a new policy based on logged history.

In this paper, we study the off-policy evaluation using linear
function approximation. We assume that the Q-functions of
interests belong to a known function class Q with d basis
functions. We adopt a direct regression-based approach and
investigate the basic fitted Q iteration (FQI) (Bertsekas et al.,
1995; Sutton & Barto, 2018). It works by iteratively esti-
mating Q-functions via supervised learning using the batch
data. This approach turns out to be equivalent to the model-
based plug-in estimator where one estimates the conditional
mean embedding of the unknown transition model and uses
it to compute a plug-in value estimator. It is also related to
variants of importance sampling methods (see discussions
in Sections 1.1 and 3.3).

We provide a finite-sample error upper bound for this
policy evaluator, as well as a nearly matching minimax-
optimal lower bound. Putting them together, we see that
the regression-based policy evaluator is nearly statistically
optimal. For RL with horizon H , the minimax-optimal OPE
error takes the form

|bv⇡ � v⇡| ⇣ H2

s
1 + �2

Q(µ
⇡, µ̄)

N
+ o(1/

p
N),

where µ⇡ is some long-term state-action occupancy measure
of the target policy ⇡ and µ is the data distribution, �2

Q is a
variant of �2-divergence restricted to the family Q:

�2
Q(p1, p2) := sup

f2Q

Ep1 [f(x)]
2

Ep2 [f(x)
2]

� 1.

The term �2
Q(µ

⇡, µ) captures the distributional mismatch,
between the behavior policy and the target policy, that is
relevant to the function class Q. It determines the theoretical
limits of OPE within this function class. In the tabular
case, it relates to the worst-case density ratio, which often
shows up in importance sampling methods. However, when
we use function approximation, this �2

Q divergence term
can be significantly smaller than the worst-case density
ratio. In particular, our analysis shows that �2

Q(µ
⇡, µ̄) is the

condition number of a finite matrix, which can be reliably
estimated. This result suggests that OPE could be more
data-efficient with appropriate function approximation.

A summary of technical results of this paper:
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• A regression-based algorithm that unifies FQI and plug-
in estimation. It does not require knowledge of the
behavior policy ⇡, or try to estimate it. It uses iterative
regression but does not require Monte Carlo sampling.
In the case of linear models, the estimator can be com-
puted easily using simple matrix-vector operations.

• Finite-sample error upper bound for the regression-
based policy evaluator. Despite that regression may
be biased for OPE, we show that the curse of horizon
does not occur as long as N = ⌦(dH3). A key to
the analysis is the use of contraction properties of a
Markov process to show that estimation error accumu-
lates linearly in multi-step policy evaluation, instead of
exponentially.

• A minimax error lower bound that sets the statisti-
cal limit for OPE with function approximation. The
lower bound nearly matches our upper bound, therefore
proves the efficiency of regression-based FQI.

• A data-dependent confidence bound that can be com-
puted as a byproduct of the FQI algorithm.

1.1. Related Literature

Off-policy policy evaluation (OPE) is often the starting point
of batch reinforcement learning. A direct approach is to
estimate the transition probability distributions and then ex-
ecute the target policy on an estimated model. This has been
studied in the tabular case with bias and variance analysis
(Mannor et al., 2004). In real-world applications, in order
to tackle MDPs with infinite or continuous state spaces, one
often needs various forms of function approximation, and
many methods like fitted Q-iteration and least square policy
iteration were developed (Jong & Stone, 2007; Lagoudakis
& Parr, 2003; Grunewalder et al., 2012; Fonteneau et al.,
2013). Regression methods are often used to fit value func-
tions and to satisfy the Bellman equation (Bertsekas et al.,
1995; Sutton & Barto, 2018; Yang & Wang, 2019b).

A popular class of OPE methods use importance sampling
(IS) to reweigh sample rewards to get unbiased value esti-
mate of a new policy (Precup, 2000). Doubly robust tech-
nique blends IS with model-based estimators to reduce the
high variance (Jiang & Li, 2016; Thomas & Brunskill, 2016).
Liu et al. (2018) suggested that one should estimate the sta-
tionary state occupancy measure instead of the cumulative
importance ratio in order to break the curse of horizon.
Many IS methods only apply to tabular MDP and require
knowledge of the behavior policy. Following these ideas,
Nachum et al. (2019) proposed a minimax optimization
problem that uses function approximation to learn the IS
weights, without requiring knowledge of the bahavior policy.
Dann et al. (2019) provided error bounds and certificates for
the tabular case to achieve accountability. Liu et al. (2019)
studied off-policy gradient method for batch data policy
optimization.

On the theoretical side, the sharpest OPE error bound to
our best knowledge is given by Xie et al. (2019) and Yin &
Wang (2020), which applies to time-inhomogeneous, tabu-
lar MDP. Jiang & Li (2016) provided a Cramer-Rao lower
bound for discrete-tree MDP. To the authors’ best knowl-
edge, most existing theoretical results on OPE apply only
to tabular MDP without function approximation. Le et al.
(2019) studied batch RL and FQI for policy learning, evalu-
ation and provides generalization bounds that depend on the
VC dimension of the function class. Their results require a
“concentration coefficient” assumption that the elementwise
ratio between generating and target density functions are
uniformly bounded across all states, actions and policies.
In comparison, our results do not require such concentra-
tion condition, and appear to be the first and sharpest error
bounds for OPE with linear function approximation.

2. Problem and Model
In this paper, we study off-policy policy evaluation of an
Markov decision process (MDP) when we only have a fixed
dataset of empirical transitions. An instance of MDP is a
controlled random walk over a state space S , where at each
state s, if we pick action a 2 A, the system evolves to a
random next state s0 according to distribution p(s0 | s, a) and
generates a reward r0 2 [0, 1] with E[r0 | s, a] = r(s, a). A
policy ⇡ specifies a distribution ⇡(· | s) for choosing actions
conditioned on the current state s.

Our objective is to evaluate the performance of a target
policy ⇡ at a fixed initial distribution ⇠0, where the transition
model p is unknown. The value to be estimated is the
expected cumulative reward in an H-horizon episode, given
by

v⇡ := E⇡

"
HX

h=0

r(sh, ah)

����� s0 ⇠ ⇠0

#
, (1)

where ah ⇠ ⇡(· | sh), sh+1 ⇠ p(· | sh, ah), E⇡ denotes
expectation over the sample path generated under policy ⇡.

Let D={(sn, an, s0n, r0n)}Nn=1 be a set of sample transitions,
where each s0

n
is sampled from distribution p(· | sn, an).

The sample transitions may be collected from multiple tra-
jectories and under a possibly unknown behavior policy
denoted as ⇡. Our goal is to estimate v⇡ from D.

Given a target policy ⇡ and a reward function r, the state-
action value functions, also known as Q functions, are de-
fined as, for h = 0, 1, . . . , H ,

Q⇡

h
(s, a) := E⇡

"
HX

h0=h

r(sh0 , ah0)

����� sh = s, ah = a

#
, (2)

where ah0 ⇠ ⇡(· | sh0), sh0+1 ⇠ p(· | sh0 , ah0). Let X :=
S ⇥ A. Define the conditional transition operator P⇡ :
RX ! RX as
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P⇡f(s, a) := E⇡
⇥
f(s0, a0)

�� s, a
⇤

for any f : X ! R,

where s0 ⇠ p(· | s, a) and a0 ⇠ ⇡(· | s0). Throughout the
paper, we suppose that P⇡ operates in a function class Q,
such that we can approximate unknown Q functions within
this family. Assume without loss of generality that 1 2 Q.

Assumption 1 (Function class). For any f 2 Q, P⇡f 2 Q,
and r2Q. It follows that Q⇡

0 , . . . , Q
⇡

H
2Q, where Q✓RX .

In most parts of the paper, we assume that the transition data
are collected from multiple independent episodes.

Assumption 2 (Data generating process). The dataset D
consists of samples from K i.i.d. episodes ⌧ 1, ⌧ 2, . . . , ⌧K .
Each ⌧ k has H consecutive sample transitions gener-
ated by some policy on a single sample path, i.e., ⌧ k =
(sk,0, ak,0, r0k,0, sk,1, ak,1, r

0
k,1, . . . , sk,H , ak,H , r0

k,H
).

We will focus mainly on the case where Q is a linear space
spanned by d feature functions �1, . . . ,�d. Also note that
the behavior policy ⇡ is not known.

Notations Denote X = S ⇥A. Let RX be the collection
of all functions f : X ! R. For any f 2 RX , define f⇡ :
S ! R by f⇡(s) =

R
A f(s, a)⇡(a | s)da. If A is a positive

symmetric semidefinite matrix, let �min(A) denote its small-
est eigenvalue, and let A1/2 denote the positive symmetric
semidefinite matrix that A1/2A1/2 = A. For nonnegative
{an}1n=1 and {bn}1n=1, we denote an . bn if there exists
c > 0 such that an  cbn for n = 1, 2, . . .. Let {Xn}1n=1

be a sequence of random variables and {an}1n=1 ✓ R be
deterministic. We write Xn = OP(an) if for any � > 0
there exists M > 0 such that P(|Xn| > anM)  � for all
n. If a distribution p is absolutely continuous with respect
to distribution q, the Pearson �2-divergence is defined by
�2(p, q) := Eq

⇥
(dpdq � 1)2

⇤
.

3. Regression-Based Off-Policy Evaluation
We consider a fitted Q-iteration method for new policy eval-
uation using linear function approximation. We show that
it is equivalent to a model-based method that estimates a
conditional mean operator that embeds the unknown p into
the feature space. They admit a simple matrix-vector imple-
mentation when Q is a linear model with finite dimension.

3.1. Fitted Q-iteration (FQI)

The Q-functions satisfy the Bellman equation

Q⇡

h�1(s, a) = r(s, a) + E
⇥
V ⇡

h
(s0)

�� s, a
⇤

(3)

for h=1, 2, . . . , H , where s0⇠ p(· | s, a), V ⇡

h
: S!R is the

value function defined as V ⇡

h
(s) :=

R
A Q⇡

h
(s, a)⇡(a | s)da.

For the given target policy ⇡, we apply regression recur-
sively by letting bQ⇡

H+1 := 0 and for h = H,H � 1, . . . , 0,

bQ⇡

h
:=argmin

f2Q

(
NX

n=1

✓
f(sn, an)

� r0
n
�
Z

A
bQ⇡

h+1(s
0
n
, a)⇡(a | s0

n
)da

◆2
+�⇢(f)

)
,

(4)
where � � 0 and ⇢(·) is a regularization function. The
scheme above provides a recursive way to evaluate
bQ⇡

H
, bQ⇡

H�1, . . . , bQ⇡

0 and v⇡ by regression using empirical
data. It is essentially a fitted Q-iteration. The full algorithm
is summarized in Algorithm 1.

Algorithm 1 Fitted Q-iteration for Off-Policy Evaluation
(FQI-OPE)

Input: initial distribution ⇠0, target policy ⇡,
horizon H , function class Q,
sample transitions D = {(sn, an, s0n, r0n)}Nn=1

Let bQ⇡

H+1 := 0;
for h = H,H � 1, . . . , 1 do

Calculate bQh by solving (4);
end for
Output: bv⇡FQI :=

R
X
bQ⇡

0 (s, a)⇠0(s)⇡(a | s)dsda

3.2. An equivalent model-based method using
conditional mean operator

The preceding FQI method can be equivalently viewed as
a model-based plug-in estimator. Recall the conditional
transition operator P⇡ : RX ! RX is
P⇡f(s, a) := E⇡

⇥
f(s0, a0)

�� s, a
⇤

for any f : X ! R.
Under Assumption 1, it always holds that P⇡Q⇡

h
2 Q. To

this end, we are only interested in a “projection” of ground-
truth P⇡ onto Q. We estimate the conditional transition
operator by bP⇡: for any f :X ! R, let

bP⇡f := argmin
g2Q

(
NX

n=1

⇣
g(sn, an)

�
Z

A
f(s0

n
, a)⇡(a | s0

n
)da
⌘2
+�⇢(g)

)
.

(5)

We can see that, if N ! 1, bP⇡ converges to a projected
version of P⇡ onto Q. Denote �(·) := [�1(·), . . . ,�d(·)]> :
X ! Rd. In the case where Q is a linear space given by
Q =

�
�(·)>w

��w 2 Rd
 

and ⇢(·) is taken as
⇢(f) := kwk22 for f(·) = �(·)>w, (6)

the constructed bP⇡ in (5) corresponds to an estimated bp of
the form

bp(· | s, a) := �(s, a)>b⌃�1

 
NX

n=1

�(sn, an)�s0n(·)
!
,

where b⌃ := �I +
P

N

n=1 �(sn, an)�(sn, an)
> is the empir-

ical covariance matrix and �s0(·) denotes the Dirac measure.
Note this bp is not necessary a transition kernel.
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We adopt a model-based approach and use bP⇡ in the Bell-
man equation as a plug-in estimator. In particular, let

br := argmin
f2Q

(
NX

n=1

�
f(sn, an)� r0

n

�2
+ �⇢(f)

)
, (7)

and bQ⇡

H+1 := 0,
bQ⇡

h�1 := br + bP⇡ bQ⇡

h
, h = H + 1, H, . . . , 1.

Then we can estimate the policy value by

bv⇡Plug-in :=

Z

s,a

bQ⇡

0 (s, a)⇠0(s)⇡(a | s)dsda.

It is easy to verify that this plug-in estimator is equivalent
to the earlier FQI estimator. See the proof in Appendix A.
Theorem 1 (Equivalence between FQI and a model-based
method). If Q is a linear space and ⇢ is given by (6), Algo-
rithm 1 and the preceding model-based approach generate
identical policy value estimators, i.e. bv⇡:= bv⇡FQI=bv⇡Plug-in.

When Q is a d-dimensional linear space with feature map-
ping �, under Assumption 1, there exists a matrix M⇡ 2
Rd⇥d such that

�(s, a)>M⇡ = E
⇥
�⇡(s0)>

�� s, a
⇤
, 8(s, a) 2 X ,

where �⇡(s) :=
R
�(s, a)⇡(a|s)da. We refer to M⇡ as

the matrix mean embedding of the conditional transition
operator P⇡. We can implement Algorithm 1 in simple
vector forms. We embed the one-step reward function and
conditional transition operator into a vector and a matrix,
respectively:

br(·) = �(·)> bR with bR := b⌃�1

 
NX

n=1

r0
n
�(sn, an)

!
,

cM⇡ := b⌃�1

 
NX

n=1

�(sn, an)�
⇡(s0

n
)>
!
.

(8)The corresponding conditional mean operator bP⇡ is
bP⇡f(s, a) = �(s, a)>cM⇡w, for f(·) = �(·)>w. (9)

We represent bQ⇡

h
in the form of bQ⇡

h
(s, a) = �(s, a)> bw⇡

h
. In

this way, we can easily compute bQ⇡

h
using recursive compact

vector-matrix operations, as given in Algorithm 2.

Algorithm 2 Conditional Mean Embedding for Policy Eval-
uation (CME-PE)

Input: initial distribution ⇠0, target policy ⇡,
horizon H , a basis {�1, . . . ,�d} of Q,
sample transitions D = {(sn, an, s0n, r0n)}Nn=1,

Estimate bR and cM⇡ according to (8);
Let bw⇡

H+1 := 0;
Let ⌫⇡0 :=

R
X �(s, a)⇠0(s)⇡(a | s)dsda;

for h = H,H � 1, . . . , 0 do
Calculate bw⇡

h
:= bR+ cM⇡ bw⇡

h+1;
end for
Output: bv⇡ := (⌫⇡0 )

> bw⇡

0

3.3. Relations to other methods

Our method turns out to be closely related to variants of
importance sampling method for OPE. For examples:

• Marginalized importance sampling: Our FQI estimator
takes the form

bv⇡ =
1

N

NX

n=1

bw⇡/D(sn, an)r
0
n

where

bw⇡/D(s, a) :=N
HX

h=0

(⌫⇡0 )
>(cM⇡)hb⌃�1�(s, a).

By viewing bw⇡/D(s, a) as weights, our estimator can
be obtained equivalently by importance sampling. In
the special tabular case, our bv⇡ is equivalent to the
marginalized importance sampling (MIS) estimator in
(Yin & Wang, 2020).

• DualDICE: Nachum et al. (2019) proposed a minimax
formulation to find the stationary state occupancy mea-
sure and residue (weight for importance sampling) with
function approximation . We observe that, if those func-
tion classes are taken to be Q, a version of DualDICE
produces the same estimator as the FQI estimator. The
two methods can be viewed as dual to each other.

These intriguing relations permit a unified view of OPE
methods. See Appendix A for more discussions.

4. Finite-Sample Error Bound
Recall that D is a collection of K independent H-horizon
trajectories. Let ⌃ be the uncentered covariance matrix of
the data distribution:

⌃ = E
"
1

H

H�1X

h=0

�(s1,h, a1,h)�(s1,h, a1,h)
>

#
,

which is determined by the unknown behavior policy ⇡.
Given a target policy ⇡, let ⇠⇡ be an invariant distribution
of the Markov chain with transition kernel p⇡(s0 | s) =R
A p(s0 | s, a)⇡(a | s)da. Define

⌃⇡ := E
⇥
�⇡(s)�⇡(s)>

�� s ⇠ ⇠⇡
⇤
.

We assume �(s, a)>⌃�1�(s, a)  C1d without loss of gen-
erality. Theorem 2 provides an instance-dependent policy
evaluation upper bound. Its complete proof is given in Ap-
pendix B.

Theorem 2 (Upper bound). Let � 2 (0, 1). Under Assump-
tions 1 and 2, if N � 201(2 + 2)2 ln(12dH/�)C1dH3

and �  ln(12dH/�)C1dH�min(⌃), then with probability
at least 1� �,
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��v⇡� bv⇡

��


HX

h=0

(H � h+ 1)sup
f2Q

E⇡
⇥
f(sh, ah)

�� s0 ⇠ ⇠0
⇤

q
E
⇥
1
H

P
H�1
h=0 f

2(s1,h, a1,h)
⇤

·
r

ln(12/�)

2N
+

C ln(12dH/�)dH3.5

N
,

(10)
where C := 151C1(3 + 2)

p
(⌫⇡0 )

>⌃�1⌫⇡0 ,
1 := cond

�
⌃�1/2⌃⇡⌃�1/2

�
,

2 :=
��⌃�1/2E

⇥
1
H

P
H

h=1�
⇡(s1,h)�⇡(s1,h)>

⇤
⌃�1/2

��
2
_1.

Additionally, if either one of the following holds:

• �(s, a)>⌃�1�(s0, a0) � 0 for any (s, a), (s0, a0) 2 X ;
• the MDP is time-inhomogeneous,

the upper bound can be improved to

|v⇡ � bv⇡|

sup
f2Q

E⇡
⇥P

H

h=0(H � h+ 1)f(sh, ah)
�� s0 ⇠ ⇠0

⇤
q
E
⇥
1
H

P
H�1
h=0 f2(s1,h, a1,h)

⇤

·
r

ln(12/�)

2N
+

C ln(12dH/�)dH3.5

N
.

(11)

Distributional mismatch as a Q-�2-divergence.
Let µ be the expected occupancy measure of observation
{(sn, an)}Nn=1. Let µ⇡ be the weighted occupancy distribu-
tion of (sh, ah) under policy ⇡ and ⇠0, given by

µ⇡(s, a) :=
E⇡
⇥P

H

h=0(H � h+ 1)1(sh = s, ah = a)
⇤

P
H

h=0(H � h+ 1)
.

The upper bound (11) can be simplified to

|bv⇡ � v⇡|  CH2

s
1 + �2

Q(µ
⇡, µ̄)

N
+O(N�1).

Moreover, each mismatch term in (10) has a vector form

E⇡[f(sh, ah)
�� s0 ⇠ ⇠0]q

E[ 1
H

P
H�1
h=0 f2(s1,h, a1,h)]

=
q
(⌫⇡

h
)>⌃�1⌫⇡

h
,

where ⌫⇡
h
:= E⇡[�(sh, ah)

�� s0 ⇠ ⇠0], so it can be estimated
tractably.

The case of tabular MDP.
In the tabular case, the condition �(s, a)>⌃�1�(s0, a0) � 0
holds for all (s, a), (s0, a0) 2 X . It can be easily seen that
the error bound (11) has a strong connection with the �2-
divergence between the state-action distributions under the
behavior and target policies.
Corollary 1 (Upper bound in tabular case). In the tabular
case with Q = RX , if N is sufficiently large and � = 0,
then with probability at least 1� �,

��v⇡�bv⇡
��  3H2

p
1 + �2(µ⇡, µ)

r
ln(12/�)

2N
+O(N�1),

(12)
where �2(·, ·) denotes the Pearson �2-divergence. If the
MDP is also time-inhomogeneous, then

|v⇡�bv⇡| 

vuutH
HX

h=0

X

s,a

µ⇡

h
(s, a)2

µ
h
(s, a)

Var
⇥
r0+V ⇡

h+1(s
0)
�� s, a

⇤

·
r

2 ln(12/�)

N
+ o(N�1/2),

(13)
where µ

h
is the marginal distribution of (s1,h, a1,h) and µ⇡

h

is the marginal distribution of (sh, ah) under policy ⇡ and
⇠0.

The tabular-case upper bound (13) has the same form with
Theorem 3.1 in Yin & Wang (2020). The proof of Corollary
1 is deferred to Appendix B.7.

4.1. Proof Outline

We decompose the error into three terms: v⇡ � bv⇡ = E1 +
E2 + E3, where E1 is a linear function of bP⇡ � P⇡ , E2 is
a high-order function of bP⇡ � P⇡ and E3 = O(�). In the
following, we outline the analysis of E1 and E2.

First-order term E1: This linear error term takes the form
E1=

1
N

P
N

n=1en, where

en :=
HX

h=0

(⌫⇡
h
)>⌃�1�(sn, an)

·
⇣
Q⇡

h
(sn, an)�

�
r0
n
+ V ⇡

h+1(s
0
n
)
�⌘

.

Define a filtration {Fn}n=1,...,N where Fn is generated by
(s1, a1, s01, r

0
1), . . . , (sn�1, an�1, s0n�1, r

0
n�1) and (sn, an).

Then e1, e2, . . . , eN is a martingale difference sequence
with respect to {Fn}n=1,...,N . In what is next, we analyze
Var[en | Fn] and apply the Freedman’s inequality (Freed-
man, 1975) to derive a finite sample upper bound for E1.

Consider the conditional variance Var[en | Fn]. By using
the Cauchy-Schwarz inequality and the relation Var

⇥
r0
n
+

V ⇡

h+1(s
0
n
)
�� sn, an

⇤
 1

4 (H � h+ 1)2, we have

Var
⇥
en
��Fn

⇤
= E

⇥
e2
n
| sn, an

⇤

1

4

 
HX

h=0

(H � h+ 1)
q

(⌫⇡
h
)>⌃�1⌫⇡

h

!

·
 

HX

h=0

H � h+ 1p
(⌫⇡

h
)>⌃�1⌫⇡

h

�
(⌫⇡

h
)>⌃�1�(sn, an)

�2
!
.

(14)
We learn from matrix-form Bernstein inequality that
1
N

P
N

n=1 �(sn, an)�(sn, an)
> concentrates around ⌃ with

high probability. It follows that
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NX

n=1

�
(⌫⇡

h
)>⌃�1�(sn, an)

�2

=(⌫⇡
h
)>⌃�1

 
NX

n=1

�(sn, an)�(sn, an)
>

!
⌃�1⌫⇡

h

=(⌫⇡
h
)>⌃�1⌫⇡

h

�
N +

p
dH ·OP(

p
N)
�
.

(15)

Plugging (15) into (14) and taking the summation, we obtain
NX

n=1

Var[en | Fn] 
1

4

✓ HX

h=0

(H � h+ 1)
q

(⌫⇡
h
)>⌃�1⌫⇡

h

◆2

·
�
N +

p
dH ·OP(

p
N)
�
.

It follows from the Freedman’s inequality that with high
probability,

|E1| .
1p
N

HX

h=0

(H � h+ 1)
q
(⌫⇡

h
)>⌃�1⌫⇡

h
+

p
dH

N
.

High-order term E2 (bias-inducing term): The high-
order term E2 involves powers of bP⇡ � P⇡. We use the
contraction property of Markov process with respect to its
invariant measure, in particular,f��(⌃⇡)1/2M⇡(⌃⇡)�1/2

��
2
 1. (16)

where ⌃⇡ = E
⇥
�⇡(s)�⇡(s)>

�� s ⇠ ⇠⇡
⇤
, ⇠⇡ is an invariant

distribution under policy ⇡. Assume ⌃⇡ has full rank for
simplicity.

By using the contraction property, we will see that the value
error will not grow exponentially in H for large N . We
have:

|E2| 
HX

h=0

q
(⌫0)>(⌃⇡)�1⌫⇡0 · Err(Q⇡

h
)

·
⇣�

1 + Err(cM⇡)
�h�

1 + Err(N b⌃�1)
�
� 1
⌘
,

(17)

where the explicit definitions of errors Err(cM⇡),
Err(N b⌃�1) and Err(Q⇡

h
) can be found in Lemma B.7,

Appendix B.4. By concentration arguments, we can show
Err(cM⇡), Err(N b⌃�1) .

p
dH/N and Err(Q⇡

h
) .

(H � h + 1)
p
d/N with high probability. According to

(17), as long as Err(cM⇡) . H�1, the policy evaluation
error will not grow exponentially in H . As a result, if
N & dH3, we have |E2| . dH3.5/N . ⇤

5. Minimax Lower Bound
In this section, we establish a minimax lower bound that
characterizes the hardness of off-policy evaluation using
linear function approximators. Theorem 3 nearly matches
with the finite-sample upper bound given by Theorem 2.
The complete proof of Theorem 3 is given in Appendix C.

Theorem 3 (Minimax lower bound). Suppose that an MDP
instance M = (p, r) satisfies:

• There exists a set of high-value states S ✓ S and a
set of low-value states S ✓ S under the target policy
⇡ such that V ⇡

h
(s) � 3

4 (H � h + 1) if s 2 S and
V ⇡

h
(s)  1

4 (H � h+ 1) if s 2 S;

• p :=
R
S mins2S p⇡(s0 | s)ds0 � c and

p :=
R
S mins2S p⇡(s0 | s)ds0 � c for c > 0.1

For any behavior policy ⇡, when N is sufficiently large, one
has

inf
bv⇡

sup
M 02N (M)

PM 0

 
��v⇡ � bv⇡(D)

�� �
p
c

24
p
N

· sup
f2Q

E⇡

M 0

⇥P
H�1
h=0 (H � h)f(sh, ah)

�� s0 ⇠ ⇠0
⇤

q
EM 0

⇥
1
H

P
H�1
h=0 f2(s1,h, a1,h)

⇤

1

A � 1

6
,

(18)
where N (M) is a small neighborhood of M given by
N (M) :=

�
M 0 = (p0, r)

�� sup(s,a)2X
��p0(· | s, a) �

p(· | s, a)
��
TV

 "
 

(k · kTV denotes the total variation,
" &

p
cd/N ). PM 0 is the probability space of M 0, bv⇡(D)

is the output of some algorithm bv⇡ when D is given as the
input.

Remark. The minimax lower bound is a worst-case error
lower bound that applies to any estimator, biased or un-
biased. Typical minimax lower bound takes the form of
infbv supM where the sup is taken over the entire class of
MDP M. Our lower bound is much stronger and can be
easily relaxed to the typical form.

Compare Theorems 2 and 3. They nearly match each other,
implying that the Q-�2-divergence term �2

Q(µ, µ
⇡) deter-

mines the statistical complexity of OPE.

An example. Suppose that there is a high-value state s
and a low-value state s, which are two absorbing states
under the target policy ⇡, with reward 1 and 0 respectively.

We construct �, ⇡ and ⇡ such that �⇡(s) = [z, 1 � z]>,
�⇡(s) = [1� z, z]>; and �⇡(s) = [1, 0]>, �⇡(s) = [0, 1]>.
Here z 2 [0, 1] is a parameter. We construct the transition
model as:

p under behavior policy ⇡:

s

1

1 � z

1 � z

zz s

1

p under target policy ⇡:

s

1

s

1

11 s

1

s

1

Suppose that the behavior policy ⇡ initiates at either one
of the states with probability 1/2, and the target policy ⇡

1We assume the bahavior policy ⇡ is deterministic only for the
sake of notational simplicity.
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always initiates at state s. We can see that

⌃ =


z2 � z + 1

2 z(1� z)
z(1� z) z2 � z + 1

2

�
,

and ⌫⇡0 = ⌫⇡1 = . . . = ⌫⇡
H�1 = [1, 0]>. For z 2 [ 14 ,

3
4 ], the

distributional mismatch term controlling the lower bound
becomes

⇥(H2)

s

1 +
1

(2z � 1)2
,

where z quantifies how much one can tell apart the two
states under the target policy ⇡ using data generated by ⇡̄.
When z ⇡ 1/2, one can not distinguish s̄ and s from data
generated by ⇡̄, where the lower bound becomes unbounded.

5.1. Proof Outline

We start with an arbitrary MDP M with transition kernel p
that satisfies the assumption. We will construct a perturbed
instance ep = p+�p so that the two transition models are
similar but have a gap in their policy values, denoted by v⇡

and ev⇡ .

Construct the perturbation �p such that �p(s0 | s, a) � 0
if s0 2 S, �p(s0 | s, a)  0 if s0 2 S and �p(s0 | s, a) = 0
elsewhere. In particular, we construct the perturbation as

�p(s0 | s, a) = �(s, a)>�q(s0),

�q(s0) := x ·min
s2S

p⇡(s0 | s) ·
�
p S(s

0)� p S(s
0)
�
,

(19)
where p and p are picked such that

R
S �p(s0 | s, a)ds0 = 0

for any s, a, x is a vector to be picked later.

Reduction to likelihood test We define likelihood func-
tions L(D) and eL(D) of transition kernels p and ep. The
likelihood ratio

eL(D)
L(D) =

Q
N

n=1
ep(s0n | sn,an)
p(s0n | sn,an)

reflects how
likely the observation D comes from model ep rather than p.
When p ⇡ ep, with high probability, the dataset D generated
by model p has a relatively large likelihood ratio, so that it
is hard to distinguish p and ep based on observation D. We
prove by a martingale concentration argument that, when N
is sufficiently large,

ln

✓ eL(D)

L(D)

◆
& �

p
N
p
x>⌃x�N · x>⌃x

with high probability. In particular, we have

P
✓ eL(D)

L(D)
� 1

2

◆
� 1

2
. (20)

when
p
x>⌃x . N�1/2. If we further have |v⇡ � ev⇡| �

⇢ + e⇢ for some constant gaps ⇢, e⇢ � 0, condition (20)
implies that for an arbitrary algorithm bv⇡, only one of the
following must hold: either P

�
|v⇡ � bv⇡(D)| � ⇢

�
� 1

6 or
eP
�
|ev⇡ � bv⇡(D)| � e⇢

�
� 1

6 . In other words, no algorithm
can achieve small OPE error for both p and ep.

Constructing similar instances with a gap in values
We have

ev⇡ � v⇡ =
HX

h=0

⇠>0 ( eP⇡)h( eP⇡ � P⇡)Q⇡

h+1. (21)

By first-order Taylor expansion and our construction, if the
perturbation �p is sufficiently small, we have

ev⇡ � v⇡ ⇡
HX

h=0

⇠>0 (P⇡)h( eP⇡ � P⇡)Q⇡

h+1

&
H�1X

h=0

(H � h)(⌫⇡
h
)>x.

(22)

For a given N , we maximize the above value over x
under the constraint

p
x>⌃x . N�1/2. Then we ob-

tain x⇤ = c0x0p
N

p
x>
0 ⌃x0

where c0 > 0 is a constant and

x0 = ⌃�1
P

H�1
h=0 (H � h)⌫⇡

h
. In this way, we have shown

that ev⇡ � v⇡ & 1p
N

��PH�1
h=0 (H � h)⌫⇡

h

��2
⌃�1 using the

above construction of x⇤.

Similarly, one can show that for N sufficiently large,
v⇡ � ev⇡ � ⇢ + e⇢ for ⇢ =

p
c

24
p
N

��PH�1
h=0 (H � h)⌫⇡

h

��2
⌃�1

and e⇢ =
p
c

24
p
N

��PH�1
h=0 (H � h)e⌫⇡

h

��2e⌃�1 , where e⌫⇡
h

and e⌃
are counterparts of ⌫⇡ and ⌃ under the perturbed model
ep. Finally, we apply the result of the likelihood test and
complete the proof. ⇤

6. A Computable Confidence Bound
Next we study how to quantify the uncertainty in the pol-
icy evaluator given by Algorithm 1. In this section, we
assume that the dataset is an arbitrary set of experiences,
not necessarily independent episodes. We only assume that
the transition samples D = {(sn, an, s0n, r0n)}n=1,...,N are
collected in time order.
Assumption 3. The dataset D consists of sample transitions
{(st, at, s0t, r0t)}Nt=1 generated in time order, i.e. adapted to
a filtration {Ft}Nt=1, where {(s⌧ , a⌧ , s0⌧ , r0⌧ )}t⌧=1 are Ft-
measurable.

Assumption 3 is much weaker than Assumption 2. It allows
the samples to be generated from a long single path possibly
under a nonstationary adaptive policy, as is typical in online
reinforcement learning.

Under this mildest assumption, we provide a confidence
bound for the policy evaluation error |v⇡ � bv⇡|, which can
be analytically computed from the data D.
Theorem 4 (Computable confidence bound). Let As-
sumptions 1 and 3 hold. Let ! := max

�
kwk2

�� 0 
�(s, a)>w  1, 8(s, a) 2 X

 
2. Assume k�(s, a)k2  1

2Such ! always exists and can be computed priorly
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for any (s, a) 2 X . For a target policy ⇡, with probability
at least 1� �, we have
��v⇡ � bv⇡

�� 
HX

h=0

(H � h+ 1)
q
(b⌫⇡

h
)>b⌃�1b⌫⇡

h

·
✓p

2�!+2

r
2d ln

⇣
1+

N

�d

⌘
ln
⇣3N2H

�

⌘
+
4

3
ln
⇣3N2H

�

⌘◆
,

(23)

where b⌫⇡
h

is given by (b⌫⇡
h
)> := (⌫⇡0 )

>(cM⇡)h.

The proof begins with a decomposition of error given by
v⇡ � bv⇡ =

P
H

h=0(b⌫⇡h )>
�
w⇡

h
� ( bR + cM⇡w⇡

h+1)
�
, from

which we derive
��v⇡ � bv⇡

�� 
HX

h=0

q
(b⌫⇡

h
)>b⌃�1b⌫⇡

h

·
��b⌃1/2

�
w⇡

h
� ( bR+ cM⇡w⇡

h+1)
���

2
.

(24)

We analyze the concentration of ⇥h :=
��b⌃1/2

�
w⇡

h
� ( bR+

cM⇡w⇡

h+1)
���2

2
using a martingale argument that is similar

to the bandit literature (e.g., proof of Theorem 5 in (Dani
et al., 2008)). The complete proof is given in Appendix D.

The confidence bound given in Theorem 4 can be easily
calculated as a byproduct of FQI-OPE (Algorithm 1), since
b⌫⇡
h
, b⌃ were already computed in the iterations. In practice,

one can tune the value of � to get the smallest possible
confidence bound.

7. Summary
This paper studies the statistical limits of off-policy eval-
uation using linear function approximation. We establish
a minimax error lower bound that depends on a function
class-restricted �2-divergence between the data distribution
and the target policy’s occupancy measure. We prove that
a regression-based FQI method, which can be viewed as a
plug-in estimator based on a conditional mean embedding of
the transition operator, nearly achieves the minimax lower
bound. We also provide a computable confidence bound as
a byproduct of the algorithm.
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