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Abstract

We study learning algorithms that optimize rev-
enue in repeated contextual posted-price auctions
where a seller interacts with a single strategic
buyer that seeks to maximize his cumulative dis-
counted surplus. The buyer’s valuation of a good
is a fixed private function of a d-dimensional con-
text (feature) vector that describes the good be-
ing sold. In contrast to existing studies on re-
peated contextual auctions with strategic buyer,
in our work, the seller is not assumed to know
the parametric model that underlies this valuation
function. We introduce a novel non-parametric
learning algorithm that is horizon-independent
and has tight strategic regret upper bound of
O(T/(@+1)), We also non-trivially general-
ize several value-localization techniques of non-
contextual repeated auctions to make them effec-
tive in the considered contextual non-parametric
learning of the buyer valuation function.

1. Introduction

Real-time ad exchanges (RTB), search engines, and other
Internet companies consider revenue maximization as one
of the most important development directions (Gomes &
Mirrokni, 2014; Balseiro et al., 2015; Agarwal et al., 2014;
Charles et al., 2016; Drutsa, 2017b; 2018; Hummel, 2018).
A large part of ad inventory is sold via widely applicable
second-price auctions (He et al., 2013; Mohri & Medina,
2014) and its extensions as GSP (Varian, 2007; Sun et al.,
2014) or VCG (Varian, 2009; Varian & Harris, 2014), while
revenue in most of them is usually maximized by means of
reserve prices (Myerson, 1981; Krishna, 2009; Cesa-Bianchi
et al., 2013; Paes Leme et al., 2016; Drutsa, 2020). A large
number of online auctions run, e.g., by RTB involve only a
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single advertiser (Amin et al., 2013; Mohri & Munoz, 2014;
Drutsa, 2017b; 2018; Vanunts & Drutsa, 2019). In this case,
a second-price auction with reserve reduces to a posted-
price auction (Kleinberg & Leighton, 2003): the seller sets
a reserve price for a good (e.g., an ad space) and the buyer
(e.g., advertiser) decides whether to reject or accept this
price (to bid below or above it).

We study a scenario when a single seller repeatedly inter-
acts through a posted-price auction with the same strategic
buyer that holds a private valuation for a good and seeks to
maximize his cumulative discounted surplus (Amin et al.,
2013; 2014). This strategic scenario was studied in the case
when the buyer’s valuation is constant over all rounds (Amin
et al., 2013; Mohri & Munoz, 2014; Drutsa, 2017b; 2018;
2020). However, in practice of online advertising, an Ad
exchange (the seller) faces with different ad spaces (goods)
sequentially offered to the same advertiser (the buyer): e.g.,
different users look at different web pages whose ad spaces
are offered for sale.

This more realistic scenario can be modeled as follows: the
buyer private valuation depends on the context (feature vec-
tor) that describes the good being sold. In other words, this
dependence is fixed and is unknown to the seller, while the
context of a currently offered good is observed by both the
buyer and the seller. In our work, this scenario with a fixed
valuation function (of feature vectors) is studied. The seller
uses an online learning algorithm, which is announced to the
buyer in advance and, in each round, selects the price based
on (a) previous decisions of the buyer and (b) the observed
context information of the goods offered for sale up to the
current round. The seller maximizes her cumulative revenue
over a finite time horizon 7' via regret minimization, i.e.,
he seeks for a pricing algorithm with a sublinear regret on
T (a no-regret pricing) (Amin et al., 2013; 2014; Mohri &
Munoz, 2014; Drutsa, 2017b; 2018).

The main weakness of the existing algorithms (Amin et al.,
2014; Golrezaei et al., 2019) in a scenario of repeated con-
textual auctions with strategic buyer is their assumption that
the valuation function is a particular parametric model of
features (namely, a linear model or a kernel one): these pric-
ing algorithms are thus aimed to reveal the parameters of
this model. However, in practice, it is very natural that the
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seller does not know in advance which parametric model is
used by the buyer to derive the value of a good from its fea-
ture vector. The methods developed for parametric models
cannot be effectively used in this case. Hence, in this paper,
we focus on the situation in which the seller does not know
the buyer’s parametric model of his valuation and wants to
learn this valuation in a non-parametric way assuming it
to be a Lipschitz function'. To the best of our knowledge,
no existing study investigated worst-case regret optimizing
algorithms that set prices in repeated contextual auctions
with the strategic buyer whose valuation is a fixed private
Lipschitz function of a d-dimensional context vector.

In our study, we propose a novel horizon-independent opti-
mal algorithm that can be applied against our strategic Lip-
schitz buyer with tight regret upper bound of @ (7'¢/(d+1))
(Th. 1). This result constitutes the main contribution of
our work and closes the open research question on the exis-
tence of a no-regret (and moreover, optimal) pricing for the
setup of repeated contextual auctions. We also show that
the approaches used in the fixed valuation (non-contextual)
setup (Drutsa, 2017b) (namely, instruments to locate the
valuation and to build a horizon-independent pricing) can
be non-trivially upgraded to be successfully used in the con-
textual setup. So, construction and analysis of the proposed
algorithm and the upgraded instruments have required in-
troduction of novel techniques, which are contributed by
our work as well. They include: (a) the method to isolate
so-called penalization rounds (see Def. 2 and Prop. 1) and
exploitation rounds (see, Sec. 5), what allows to converge al-
gorithm prices to the valuation and to do it independently of
the horizon; and (b) the guarantee on the amount of lie from
the buyer when he accepts an offered price (see Prop. 2).

2. Setup of Repeated Contextual Auctions

We study the following mechanism of repeated contextual
posted-price auctions. Namely, a single seller repeatedly
proposes goods (e.g., ad opportunities) to a single buyer over
T rounds (the time horizon): one good per round. The good
proposed in a round ¢ is represented by a d-dimensional
feature vector z; € X:=[0, 1]¢ also referred to as the context
of the round, d € Z,.. The buyer holds a private valuation
v(x) €10, 1] for a good with context x € X: the valuation
function v : [0,1]¢ — [0, 1] is unknown to the seller and
does not depend on the rounds. This valuation function v is
assumed to be L-Lipschitz on X, L >0, where the class of d-
dimensional L-Lipschitz functions is defined by Lip; (X):=
{f:X=[0,1] | Vy, 2 €X[f(y) — f(2)| < Llly— 2]} a5

"Lipschitz assumption is required since the seller can get a
linear regret against non-Lipschitz valuation even against a truthful
buyer (Mao et al., 2018). See more discussion on this in Sec 6.

2|2]loo = max; |2'], z = (2%,...,2%), is the £oo-norm on
R<. Our results hold for other £,-norms as well.

in (Mao et al., 2018). So, for each round ¢, (a) the good’s
feature vector x; € X is observed both by the seller, and
by the buyer; (b) a price p; € R, is offered by the seller;
and (c) the buyer (knowing x; and p;) makes an allocation
decision a; € {0,1}: a; = 1, when he accepts to buy the
currently offered good at that price, a; =0, otherwise.

In our setup, the seller applies a pricing algorithm A that
sets prices {p;}7_; in response to buyer decisions a;.7:=
{a;}1_, and observed feature vectors z1.7:={x;}1_,. We
consider the deterministic online learning scenario when
the price p; in a round ¢ € {1,...,7} can depend only
on the buyer’s actions a1:4-1° during the previous rounds
and the observed context information x;.; up to the current
round. Following (Drutsa, 2017b; 2018), we are studying
algorithms that do not depend on the horizon 7T since it is
very natural in practice (e.g., of ad exchanges) that the seller
does not know in advance the number of rounds 7 that the
buyer wants to interact with her. Let A be the set of such
algorithms.

Hence, given a pricing algorithm A € A<, buyer deci-
sions ai.7 and goods 1.7 uniquely define the price se-
quence py.7:={p; }1_,, which infers the seller’s total rev-
enue ZtT:latpt. This revenue is compared to the revenue
that would have been earned by offering the buyer’s val-
uations {v(z;)}7_, if they were known in advance to the
seller (Kleinberg & Leighton, 2003; Amin et al., 2013; 2014;
Mohri & Munoz, 2014; Drutsa, 2017b; 2018). This leads
to the definition of the regret of the algorithm A that faced
the buyer with the valuation function v : [0,1]¢ — [0, 1]
making decisions a;.7 for the goods 1.7 over T rounds as
Regret(T, A,v,a1.7,1.17):= Zthl (v(x¢) —agpr).

As in (Amin et al., 2013; 2014; Mohri & Munoz, 2014,
Drutsa, 2017b; 2018; Golrezaei et al., 2019), we assume
that the seller’s algorithm A is announced to the buyer in
advance. The buyer can then act strategically against this
algorithm: in each round ¢, the buyer makes the optimal
allocation decision a; = a?pt(T, A, v,7v,a1.4-1,%1.4, D)
that maximizes his expected future ~y-discounted surplus
E,.~p[> 7" Las(v(xs) — ps)], where y € (0,1] is the
buyer’s discount rate and D is a probability distribution over
the feature domain X for goods x5,s >t + 1, (Amin et al.,
2014). Note that the distribution D is only used by the buyer
to estimate future goods’ features (for rounds > ¢+ 1) and to
make thus the strategic decision. The seller is not required
to know this distribution: our results hold for any sequence
of goods x1.7 (see the optimization goal below and Th. 1).
When T rounds has been played with goods x1.7, we can
define the strategic regret of the algorithm A that faced the
strategic buyer with the valuation function v : [0,1]¢ —
[0,1] over T rounds as SRegret(T, A,v,v,z1.7, D) =

ity oty = {yt}ﬁitl denotes a part of a time series {y; }7—1.
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Figure 1. The game’s workflow (an algorithm and the buyer exploit public knowledge available in the previous rounds).

Regret (T, A, v, a?f%t(T, A, v,7v,z1.7,D), :rlzT).

We are interested in pricing algorithms that have o(7T") strate-
gic regret for the worst-case valuation function v € Lip (X)
and the worst-case sequence of goods x1.7 € X7T. For-
mally, an algorithm A is said to be a no-regret one when
SUPg,.reXT ,weLip,, (X),D SRegret(1', A,v,v,z1.7, D) =
o(T). The optimization goal is to find an algorithm with the
best possible asymptotic of the form Or_, oo (f(T)).

Note that our no-regret requirements are much stronger than
the ones of (Amin et al., 2014; Golrezaei et al., 2019): e.g.,
our regret bounds will hold for any realization of the context
series 1.7 independently of the distribution D used by
the buyer. E.g., this distribution D can be treated as the
buyer’s personal beliefs about future goods. Also note that
all our results hold if this distribution D changes between
rounds. In Figure 1, we depict the game’s workflow for
an illustration of the information structure and roles of the
seller, the buyer, and the nature (adversary).

3. Related Work and Background

Related Work. There are two lines of works that are the
most relevant to ours. The first one (Amin et al., 2014,
Cohen et al., 2016; Golrezaei et al., 2019; Leme & Schnei-
der, 2018; Mao et al., 2018; Javanmard & Nazerzadeh,
2019; Javanmard et al., 2019; Zhiyanov & Drutsa, 2020)
dealt with contextual pricing in repeated auctions (or multi-
dimensional search in online fashion). The works (Cohen
et al., 2016; Leme & Schneider, 2018; Mao et al., 2018;
Javanmard & Nazerzadeh, 2019; Javanmard et al., 2019)
assumed that the buyer’s behavior is myopic (truthful) in
a round, while our study considers the seller’s interactions
with a strategic buyer that optimizes his cumulative surplus.
The algorithms of (Cohen et al., 2016; Leme & Schneider,
2018; Javanmard & Nazerzadeh, 2019; Javanmard et al.,
2019; Zhiyanov & Drutsa, 2020) search a valuation function
as a parametric model, while the ones of (Mao et al., 2018)
do it in a non-parametric way. Key results of the latter study
are discussed in our overview of pricing algorithms below.

The second line of works studied our strategic setup with
fixed private valuation, but in the non-contextual case (all
goods are equal) (Amin et al., 2013; Mohri & Munoz, 2014;

Drutsa, 2017b;a; 2018; 2020; Schmidt, 1993; Hart & Tirole,
1988; Devanur et al., 2015; Immorlica et al., 2017; Vanunts
& Drutsa, 2019). We overview the most interesting and
relevant results from these works in the next subsection
as well. The studies (Amin et al., 2014; Golrezaei et al.,
2019; Zhiyanov & Drutsa, 2020) lie at the intersection of
both lines of works: their authors considered contextual
repeated auctions where the seller interacted with the same
strategic buyer. In contrast to our work, their algorithms
explicitly assume that the valuation function has a particular
parametric model, what makes them inapplicable in our
more realistic scenario when this knowledge is unavailable
to the seller in advance (see Sec. 1).

Background on Pricing Algorithms. First, our scenario
in the absence of context information for goods (i.e., when
d = 0) reduces to the setup of repeated posted-price auc-
tions earlier introduced in (Amin et al., 2013). In this case,
the strategic buyer has a fixed private valuation for all goods,
and pricing algorithms for worst-case regret optimization
were well studied (Amin et al., 2013; Mohri & Munoz, 2014;
Drutsa, 2017b; 2018). In particular, it is known that, if the
buyer cumulative utility is not discounted over rounds (i.e.,
the discount rate v = 1), there does not exist a no-regret
pricing, i.e., the linear strategic regret has lower bound of
Q(T) (Amin et al., 2013). Since, in our setup, the features
are chosen adversarially, this lower bound holds in the stud-
ied repeated contextual auctions as well.

For the other cases v € (0,1), the lower bound of
Q(loglogT) holds (Kleinberg & Leighton, 2003; Mohri
& Munoz, 2014), and two optimal algorithms with tight
strategic regret bound of ©(loglogT') have been recently
proposed for the non-contextual setup (Drutsa, 2017b; 2018).
Their construction strongly relied on the technique of pe-
nalization (Mohri & Munoz, 2014; Drutsa, 2017b). These
results has been extended to a setting with multiple buyers
in a round (Drutsa, 2020), where a special transformation
div was applied to 1-buyer pricing to obtain an optimal algo-
rithm with tight strategic regret bound of ©(log log T) in re-
peated second-price auctions. To the best of our knowledge,
our study is the first one where this approach is exploited for
a contextual setup. Moreover, we show that the penalization
technique without a significant modification could not be
effectively applied here (see Sec. 4).
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Second, the recent work (Mao et al., 2018) studied a quite
similar setup of repeated contextual auctions with a buyer
that held a fixed Lipschitz valuation. However, their sce-
nario considered the buyer that made decisions myopically
(truthfully) in each round (formally, their case is covered by
ours when v = 0). Two optimal algorithms with tight truth-
ful regret bound of ©(T% (¢+1)) were proposed (Mao et al.,
2018). One of them relied on the idea of “iterative partition
refinement” widely used in learning with Lipschitz condi-
tions (Kleinberg, 2005; Hazan & Megiddo, 2007; Kleinberg
et al., 2008; Slivkins, 2014; Mao et al., 2018). Our algorithm
exploits this idea as well, but we emphasize that the truthful
and the strategic scenarios are fundamentally different. The
algorithms designed to act against a myopic buyer cannot
be thus straightforwardly used in the strategic setting as it
was shown for the non-contextual setup (Drutsa, 2017b) and
as we discuss in Sec. 4: special tools for localization of
the buyer valuation are required (otherwise, the strategic
buyer may mislead the algorithm). So, our research goal
comprises closing of the open research question on the exis-
tence of a no-regret algorithm for the considered scenario of
repeated contextual auctions with strategic Lipschitz buyer.

4. Search Algorithms
4.1. Auxiliary Definitions

In order to parameterize all possible prices that can be of-
fered by an algorithm A € A?, one introduces the notion of
a state of the game that encodes a history of passed rounds.
Formally, &, := X' x {0,1}!~! is the set of all possible
states after receiving the good in the ¢-th round (before the
buyer’s decision). Let & := U2, &, be the set of states
in all rounds. Thus, any algorithm A € A? can be bijec-
tively associated with a map p : & — R, i.e., it maps
any observed history s = (z1.¢,a1.4—1) € &; to the price
pt = p(s). In other words, p(x1.¢, a1.4—1) is the price that
will be offered by this algorithm to the buyer in response to
the feature vector x; in the ¢-th round after ¢ — 1 rounds with
the feature vectors x1.;—1 and the buyer decisions aq.;—1.
For any state (z1.¢,a1.4—1) € G, let the sets

R(x1:4,01:0-1) := {(21.5,01:5-1) €S | 8§ > t, 21,4 = 1.4,
bit—1 = ar¢—1,b = 1}

and

L1, ar:e-1) = {(21:5,b1:5-1) € & | 8 > 1, 214 = T14,
bit—1 = ar:4—1,by = 0}

be all possible states that continue the history (1.4, a1.4—1)

when the buyer accepts and rejects, respectively, the price

in the round ¢. The set 2R(s) (the set £(s)) is referred to as
the right (left, respectively) continuations of a state s € G*.

*Note that the set of states & is a generalization of the com-
plete binary tree T which is actively used in studies on the non-

We also use the following notations for subsets of states
(1.4, a1.4—1) whose last feature vector x; belongs to a set
X CX: 6(X) :== X1 x X x {0,1}71, &(X) =
L 64(X), R(s; X) := R(s) N S(X), and £(s; X) =
£(s)NG(X) fors € &. In other words, a state § € R(s; X)
(or € £(s; X)) is such right (left, resp.) continuation of the
state s that its current context vector belongs to the set X.

For any subset X CX, let diam(X):=sup, ,¢x [|[7— ¥l
denote the ¢.-diameter of this set.

4.2. Notion of a Search Algorithm

A good algorithm for finding (learning) the valuation func-
tion v(+) intuitively should work as follows: it keeps track
of two functions u, w : X — [0, 1]; in each round ¢ with a
feature vector z;, it proposes a price p: € [u(z), w(zs)];
and, after the buyer’s decision, the algorithm can increase
the values of u(-) and can decrease the ones of w(-) (in
some points of X). We refer to such pricing as a search
algorithm. The key idea behind this algorithm is, first,
to locate the valuation function v between u and w (i.e.,
u(z) < v(z) < w(x) Ve € X) and, second, to tight the
gap between u and w (i.e., “w(x) — u(z) — 0ast — 00”
Vz € X). In the non-contextual setup (i.e., d = 0), the most
known examples of search algorithms are the binary search
and its generalization — a consistent algorithm (Mohri &
Munoz, 2014; Drutsa, 2017b) — that tracks a feasible search
interval [g, ¢'] and reduces it to either [q, p] or [p, ¢’] depend-
ing on the buyer’s response to a price p. The “midpoint”
algorithm and similar ones from (Mao et al., 2018) are fresh
examples of the ones with search behavior described above.

Definition 1. Given any algorithm A € A9, for any
state s € G and any point z € X, we introduce the
lower bound of future prices us 1(x):=infy cor(s;{2}) P()
when the buyer accepts the price p(s) and the one
Us,0() :=infy co(s:2)) P(8") when he rejects it. The upper
bounds of future prices are defined similarly: w1 (z) :=
SUDgs co(s; {x}) P(87) and Ws,0(%) :=5UDgs e o (a:1a}) P(8')-

It is easy to see that u(-) and w(-) in Def. 1 behave as in the
above description of search algorithms: p; € [u(xt), w(zy)],
values of u(-) can only increase, while values of w(+) can
only decrease. However, this functions u and w cannot
guarantee the correct location of the valuation (u(z) <
v(z) <w(z) Va € X) as well as tightening of the gap (i.e.,
“w(x)—u(x) —0ast— 00” Vo €X). To provide guarantees
on correct location, we will introduce novel tools presented
in Prop. 1 and 2 further in this section; while guarantees on

contextual repeated auctions (Mohri & Munoz, 2014; Drutsa,
2017b; 2018). Moreover, when d = 0, the set of states & is exactly
the tree ¥, any state s € S is a node in this tree, while %i(s) and
£(s) are the right and left subtrees of the node s, respectively. So,
the state representation of contextual algorithms A ¢ is important
as the tree representation of non-contextual algorithms A°.
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tightening of the gap (and strategic regret as well) will be
given for our novel algorithm in Lemma 2 of Sec. 5.

4.3. Localization of Buyer Valuation

In the non-contextual repeated auction setup, the strategic
buyer may mislead any consistent algorithm used by the
seller and cause thus a linear regret (Drutsa, 2017b, Th.4).
Since the features are chosen adversarially in our contextual
setting, if a pricing algorithm from A behaves as a consis-
tent one within one point in X (e.g., “midpoint” algorithm
and its analogue for pricing loss (Mao et al., 2018)), then
this pricing will also have a linear regret by the results of
(Drutsa, 2017b). More generally, if an algorithm makes
decisions relying on the assumption “rejection (acceptance)
of p; for a good x; implies v(z:) < p; (v(xt) > py, resp.)”
as in (Mao et al., 2018), then the seller may obtain a linear
regret interacting with the strategic buyer. In order to reveal
information on the buyer valuation from his binary signal
a; in a round ¢, the special tool (Drutsa, 2017b, Prop.2) has
been found in the non-contextual setting; it is based on so-
called penalization rounds (Mohri & Munoz, 2014; Drutsa,
2017b). We non-trivially extend the notion of penalization
to make it useful in our contextual setup (inapplicability of
the original notion is discussed after Prop. 1).

Definition 2. For a pricing algorithm A4 € A%, a state
s € &, (and the corresponding round 7) is referred to as
a penalization one, if its price p(s) = 1 and, for all right
continuations, we have: p(s’) = 1Vs' € 9(s). A state
5 € G; is said to be the start of a r-length penalization with
domain X C X, if any left continuation (1.5, a1.s—1) €
£(5; X) s.t. at most its 7 — 1 future context vectors zy, , ...,
x4, belongs to X after the ¢-th round (e, k <r-—1and
t <t;,j5 < k), is a penalization state.

Informally, in the state s, after rejection of the price in
the ¢-th round, the algorithm .4 will conduct penalization
in future r — 1 rounds whose feature vectors belongs to
the penalization domain X5 (i.e., penalization affects r—1
goods only from X). The strategic buyer will never accept
the price in a penalization round since, otherwise, the price
of any of future goods (even outside X) will be 1, which is
at least his valuation.

The algorithm that will be proposed in Sec. 5 partitions
the whole context set X into subsets (domains) and con-
ducts pricing actions independently between these subsets.
In order to formalize this independence we introduce the
following notion of isolation.

SConsider an example: d=1, X =[0.5, 1], r=3. Let 21 =0.7
be a start of 3-length penalization with domain [0.5, 1] and the
buyer rejects the price in ¢ = 1. The penalization rounds (for this pe-
nalization start) will be those whose context sequence x1.s is, e.g.,
(0.7,0.6), (0.7,0.2,0.9), (0.7,0.2,0.4,0.7), but not (0.7,0.2)
and not (0.7,0.2,0.4). See Appendix E for more details.

Definition 3. For a pricing algorithm A € A? and a state
5§=(21.,a1.4—1) € S, a set of contexts X C X is said to be
isolated (from X\ X ) after the state s on if x; € X and buyer
decisions made for any future good in the set X (i.e., in any
state {s} U £(s, X) UR(s, X)) do not affect the algorithm
prices for any future goods whose feature vectors are in
X\ X (i.e., prices in any state £(s, X\ X) UR(s, X\ X)).

So, for an algorithm that conducts isolated pricing in some
set of feature vectors, the following contextual analogue
of (Drutsa, 2017b, Prop.2) can be proved.

Proposition 1. Ler v € (0,1), A be a pricing algorithm,
the state 5 = (x1.4,a1.4—1) € © be the start of a r-length
penalization with domain X C X(see Def. 2), and the set X
be isolated from X\f( after the state s on (see Def. 3), where
r > log, (1 — ) and x; € X. Then, if the price p(3) is
rejected by the strategic buyer with a L-Lipschitz valuation
Sunction v € Lip, (X), then the following inequality on his
valuation v(x) holds:

v(x4) —p(8) <Cry (p(8)+ Ldiam (X)) — inf us o(2))

zeX (1)

where (pni=7"/(1—~v—7").

Proof. Since the buyer’s decisions for goods in X (start-
ing from this round ¢) do not affect the algorithm’s prices
for future goods with feature vectors outside X , one can
analyze buyer surplus only in rounds with goods from X.
So, let S (o) denote the buyer’s expected future surplus
over goods from X when he follows a strategy o. Let oOPt
be the optimal strategy of the buyer in the round ¢. Let o’
be the strategy, where the buyer accepts the good in the
round ¢ and rejects each future good from X (0’ coincides
with ¢©P* for goods in X \ X). Since 0©OP* is optimal, this
implies that S (0’) < S (0°P') (see Appendix A.1 for
details). By definition S (c’) = '~ !(v(z¢) — p(8)), while
the right-hand side of the inequality can be upper bounded
as follows

T
S (0Pt = E[Z v ag(v(zs) — ps) | s € X, 0P <
s=t
T
< Y 7 sup[u(@) - uz (),
s=t+r zeX

where we (1) used that the first » — 1 rounds with goods in
X will be penalization ones (the buyer will certainly reject
them), and (2) upper bounded instant surpluses in all further
rounds as maximal possible ones by sup,, . 3 (v(z)—uz,0(z))
(see Def. 1 for uz o(-)). The latter expression can be trivially
bounded by v(z; }+-Ldiam (X )-inf ¢ Us,0(z). Combining
all inequalities together, one obtains: (v(z;) — p(s))y' 1 <
[v(z:) + Ldiam(X) — inf,_ ¢ uso(x)]7' "7 /(1 =),
what implies Eq. (1) after dividing by 4*~! and rearrange-
ment of terms, since r > log, (1 — 7). O
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Thus, Prop. 1 is a tool to locate the valuation v(x;) de-
spite the strategic buyer makes decisions non-myopically.
Moreover, since v € Lip (X), Eq. (1) can by used to upper
bound the valuation of any good: v(z) —p(8) < (.~ (p(8) +
Ldiam(X) — inf _ g uz,0(2)) + L]z — #]|s V2 € X. So,
for any context z € X , we get

@) <P(EH (p(E)= inf s () (14, L ().

We see that the closeness of this bound to the rejected price
p(&) depends, first, on the distance of this price to the lower
bound of future prices (as in the non-contextual case (Drutsa,
2017b)) and, second, on the size of the domain X. Hence,
tightening of the gap between the lower bound u and the
upper bound w is not possible here if the size of the isolated
domain X does not decrease as well. It is the key contrast
to the non-contextual setting (where it is enough to offer a
price closer to the last accepted one) and the reason why the
original penalization (Drutsa, 2017b) is useless: the original
penalization penalizes the next » — 1 goods independently
of their context (the case X = X in Def. 2), what keeps the
gap between the bounds u and w at least L.

In Prop. 1, we generalized the non-contextual instrument
(Drutsa, 2017b, Prop.2) to control possible lies from the
buyer when he rejects a price. What about lies when the
buyer accepts a price? In the non-contextual scenario,
usage of a right-consistent algorithm guarantees that the
strategic buyer has no incentive to lie during price accep-
tance, because all future prices will be at least the accepted
price (Drutsa, 2017b). In our contextual setup with Lips-
chitz valuation, the information on v revealed in a current
point x; needs to be used to get information on v in neighbor
points of x; and, thus, future prices may be lower than the
accepted one. So, the following guarantee on possible buyer
lie during price acceptance is needed:

Proposition 2. Let v € (0,1), A be a pricing algo-
rithm, the state s = (x1.4,a1.4—1) € © be s.t. the fea-
ture vector x; € X C X and p(s) — inf_ g us1(z) >
(1 +~)Ldiam(X)/(1 — ), while the context set X is iso-
lated from X'\ X after s on (see Def. 3). Then, if the price
p(s) is accepted by the strategic buyer with Lipschitz valua-
tion function v € Lipy,(X), then the following inequality on
his valuation v(x) holds:

v(x) > inf ug () + Ldiam(X). (2)
z€X

Proof sketch. Analysis here is similar to the one of Prop. 1,
but, in the case of acceptance, we can infer for the
surplus within X: SX(aOpt) > 0, since the buyer
can reject all goods in X and get at least 0. Then,
get the upper bound Sg(cOPY) < A" Y(v(zy) — py) +

S 17 sup, ¢ ¢[v(2) — s, (2)]. Finally, use the con-

dition on p(s)—inf  _ ¢ us, 1 () to obtain Eq. (2). Full proof
is in Appendix A.2 in Supp.Materials. O

Similarly to Prop. 1, Eq. (2) can by used to lower bound
the valuation of any good = € X: v(x) > inf _ ¢ us1(2) +
Ldiam(X) — L||lz; — z||s. So, for any z € X, we get
v(z) > inf, g us1(2), what is seemingly as in the non-
contextual case (Drutsa, 2017b): the valuation is no lower
than the lower bound for future prices. However, it is par-
tially similar: rearrange the condition on u ; in Prop. 2:

inf,_ g us1(2) <p(s) — (1 + v)Ldiam(X)/(1 — 7). We
see that the valuation lower bound in Eq. (2) holds only if
the future prices will be lower than the offered price by at
least (1 4 ) Ldiam(X)/(1 — ). This margin grows as
4 — 1 and linearly depends on the size of the domain X.
So, similarly to the discussion after Prop. 1, tightening of
the gap between the lower bound u and the upper bound w
is possible (via Prop. 2) only when the size of the isolated
domain X decreases as well. In the next section, we propose
an algorithm that exploits the valuation localization tools
(Prop. 1 and 2) and shrinks sizes of isolated parts of X when
the localization of the valuation becomes more precise.

5. Penalized Exploiting Lipschitz Search

From here on we assume that d > 1 (i.e., the non-contextual
case d = 0 is not considered). We introduce the Penal-
ized Exploiting Lipschitz Search pricing algorithm (PELS)
that will be shown to have tight strategic regret bound of
O(T/(@+1)) (see Th. 1). This pricing uses the penaliza-
tion rounds (Mohri & Munoz, 2014; Drutsa, 2017b) up-
graded in Def. 2 and ideas of “iterative partition refine-
ment” (Kleinberg, 2005; Hazan & Megiddo, 2007; Klein-
berg et al., 2008; Slivkins, 2014; Mao et al., 2018). First,
PELS has three parameters: the price offset n € [1,+00),
the degree of penalization r € N, and the exploitation rate
g : Z4+ — Z. Second, this algorithm keeps track of a parti-
tion X of the feature domain X initialized to [(4n + 6)L]¢
cubes (boxes) whose side length is I = 1/[(4n + 6)L]:
X = {[0,1],(1,21],...,(1 —1,1]}%. For each box X € X,
PELS also keeps track of the lower bound u* € [0, 1], the
upper bound w¥ € [0,1], and the depth m* € Z,. At
the beginning of the game, they are initialized as follows:
uX =0,wX =1,and m¥ = 0,X € X. Third, the work-
flow of the algorithm is organized independently in each box
X € X. Namely, in a round ¢, the algorithm receives a good
with a feature vector x; € X and finds the box X € X in the
current partition X such that z; € X. Then, the proposed
price p; is determined only from the current state associated
with the box X, while the buyer decision a; is used only to
update the state associated with this box X.

So, in each box X € X, the algorithm iteratively offers
exploration price uX +nLdiam(X). If this price is ac-
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cepted by the buyer, the lower bound u¥ is increased by
Ldiam(X). If this price is rejected, the upper bound w™ is
decreased by (w* — u™) — 2(n + 1) Ldiam(X), and 1 is
offered as a penalization price for r — 1 next rounds in this
box X (if one of them is accepted, PELS continues offering
1 all the remaining rounds, following Def. 2 with the penal-
ization domain X = X ). Finally, if, after an acceptance of
an exploration price or after penalization rounds, we have
wX —uX < (2n+3)Ldiam(X), then PELS:

1. offers the exploitation price uX for g(m~ ) next rounds
in this box X (buyer decisions made at them do not
affect further pricing);

2. bisects each side of the box X to obtain 2¢ boxes
Xx :={Xy, ..., Xoa} with £,-diameter diam(X)/2;

3. refines the partition X" replacing the box X by the
new boxes Xx° These new boxes Xx inherit the
state of the lower bound ©*X and the upper bound w*x
from the current state of X, while their depth mX =
m¥ +1VX' € Xx.

The pseudo-code of PELS is presented in Alg. B.1 in Ap-
pendix B of Supplementary Materials.

As we see from the description, the goal of the PELS pa-
rameters is as follows: (1) g(-) controls the number of
exploitation rounds before we split a box into 2¢ boxes;
(2) r corresponds to the number of penalization rounds and
is responsible to satisfy Prop. 1; and (3) n controls the po-
sition of exploration price in the interval [u™,w*] and is
responsible to satisfy Prop. 1 and 2. Further, exact values
for these parameters will be provided to make this algorithm
be no-regret in our strategic setting (see Eq. (3)).

Note that PELS, in fact, tracks functions v and w: X — [0, 1]
defined by: u =Y ypuIx andv =Y oo v¥Ix for
a current state of PELS with partition X', where [ x is the
indicator’ of a set X € X. These functions are initialized
as v = 0 and w = 1. An attentive reader may note that, in
each state of PELS, they match with the functions in Def. 1,
if one does not take into account penalization rounds in
calculation of sup (for w). In particular, the function u will
be used to obtain statements of Prop. 1 and 2 for PELS.

5.1. Optimality of the PELS Algorithm

For v € (0, 1), let the parameters of the PELS algorithm
be set as follows:

r> Ty = {IOg”/o ((1 - 70)/2)]7

3)
glm):=2"VYme€Zy, and n>2/(1—").
SNote that, after this procedure, X’ remains a partition of the
feature domain X, i.e., Uxcx X =X.
"ie., Ix(x) = 1, when z € X, and 0, otherwise

Then, for any v € (0, yo), we have ¢, , < 1in Eq. (1), and
we will show that PELS is optimal with tight strategic regret
of ©(T4/(4+1)), First, let us show that the functions u and
w : X — [0, 1] (tracked by PELS) correctly locate the buyer
valuation function v.

Lemma 1. In any state of the algorithm PELS with pa-
rameters in Eq. (3), the functions u = )y » uXlx and
VEDY cx vX1x correctly locate the valuation function v
of the strategic buyer with discount v € (0,7, i.e., Vo € X,
the following inequalities hold: u(z) < v(z) < w(x).

Proof. One needs only to prove that if the inequalities hold
before an exploration round, then they will still hold when
either u or w is updated after. Let s € & be the cur-
rent state of PELS, x; be the feature vector in the cur-
rent exploration round ¢, and X € X be the current box
(x; € X). Then the offered price is p; =u™ +nLdiam(X).
If the buyer accepts p;, then the updated lower bound
is set to 4* = uX + Ldiam(X). Hence, using Eq. (3):
pe— 0~ = (n—1)Ldiam(X) > (14+)Ldiam(X)/(1—7).
So, the conditions of Prop. 2 are satisfied by PELS in
the current round since inf,cx us1(z) = @X. There-
fore, from Eq. (2) and v € Lip;(X), we have v(z) >
v(z) — Ldiam(X) > 4% Vo € X. On the other hand,
if the buyer rejects p;, then the updated upper bound is
set to WX = u¥X + 2(n + 1)Ldiam(X), the conditions
of Prop. 1 are satisfied by PELS in the current round, and
infpex us o(x) = uX. Therefore, from Eq. (1), Eq. (3),
and v € Lip; (X) we have v(z) < v(x;) + Ldiam(X) <
2p; — uX + 2Ldiam(X) = @X Vr € X. O

Second, we can show that the gap between the functions u
and w tights with some guarantees, what is formalized in the
following lemma (the proof is technical and is in App.A.3).

Lemma 2. In any exploration round with x € X € X of
the algorithm PELS with parameters in Eq. (3): (a) the
gap w™ — u”™ reduces by at least Ldiam(X) and at most
(wX —uX) —2(n+ 1) Ldiam(X) after an update of either
u or w; and (b) the difference between the functions u and
v satisfies the following bounds: (2n + 3)Ldiam(X) <
wX —uX < [(4n + 6)L]diam(X) VX € X.

So, combining Lemmas 1 and 2, we can conclude that PELS
learns the valuation function v. In order to get guarantees
on the regret of this learning, we need one more statement.

Lemma 3. In any box X of a depth m € Z., the algorithm
PELS with parameters in Eq.(3) conducts at most 2n + 3 +
L= exploration rounds, at most (r — 1)(2n + 3 + L™1)
penalization ones, and at most 2™ exploitation rounds. The
strategic regret in this box is at most r(2n+3+ L™1) +271

Proof. By Lemma 2, the gap w™ — u*X is bounded and
reduces at least by Ldiam(X) in each exploration round.
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Hence, the number of exploration rounds is at most

[(4n+6)L]diam(X)—(2n+3) Ldiam(X)
Ldiam(X)

<2n+3+L71.

Each exploration round can result in up to (r — 1) penal-
ization ones in the box X (by Def. 2). The number of
exploitation rounds is controlled by g(m) and is at most
2™ from Eq. (3). Each exploration round with acceptance
contributes at most wX — uX < [(4n + 6)L]diam(X) =
[(4n+6)L]127™[(4n+6)L] "1 = 27™ to the regret. Each
exploration round with rejection and each penalization one
contribute at most wX < 1. Each exploitation round
has regret at most w™ — uX when it becomes less than
(2n + 3)Ldiam(X) = 27™(2n + 3)L/[(4n + 6)L] <
2-m-1, O

Theorem 1. Let d > 1, v € (0,1), and A be the PELS
algorithm with parameters set as in Eq.(3). Then, for any
discount v € (0,7, distribution D, and feature vectors
x1.7 € X7, the regret of PELS against the strategic buyer
with a Lipschitz valuation v € Lip;,(X) is upper bounded:

SRegret(T.A,v,7,z1.7,D) < C(No(T+No))) 71, (4)

where C = 2%+ 1r(2n+3+ L~ VL9,

and X = [0, 1]<.

1)+1, N() = |—(4'f]+6

Proof. Assume that the game has been played. Let N,,
denote the number of boxes with a depth m € Z, that
belong(ed) to the partition & (including those that have
been bisected). First, we know that Ny = [(4n+6)L]% and
N,, < 2mIN, ¥Ym € Z . Second, in order to have a box
of depth m € N, a box of depth m — 1 has to be bisected
and must have g(m — 1) exploitation rounds passed. So, the
total number of rounds 7" is at least ) g(m — 1)Ny,.
Third, the upper bound on the total strategic regret is R =
>, C(L,7,n)Ny,, where C(L, 7, n) := r(2n+3+L 1)+

1 (see Lemma 3). Thus, we have to upper bound R
that linearly depends on {V,,,} given the linear constraints
0< Ny <2™NyVmand Y, o g(m — 1)N,,, < T for
a growing g(-).

Solving this linear program (see Appendix C.1), we find that
R achieves the maximum, when N,,, = 2™¢ Ny Vm < M
and N,,, = 0Vm > M for some M & N. Therefore, the
bound on the total regret R < S C(L,r,7)2™ Ny =
C(L,r,n)No(2¢M+1) —1)/(2¢ — 1). Finally, we bound
2M a5 follows:

M-

M—-1
9(d+1)M _9d+1
EZ m-1) Ny = 272Ny =N,
m=1

2d+1-1

what implies 2" < 2(1 4+ T/Ny)'/(@+1), Hence, R <
210 (L, v, ) Ny T (T4 Np) @/ (4+1) and we get Eq. (4)
after rearrangement. O

6. Extensions and Discussion
6.1. Analysis of the Regret Upper Bound

First, note that the upper bound in Eq. (4) on strategic regret
is tight and of the form © (7% (?+1)), since there exists a
lower bound of Q(7T'%(4+1)) for any algorithm that is aimed
to reveal Lipschitz function with pricing loss (Mao et al.,
2018, Th.7). Hence, PELS is optimal. Second, it is also
easy to see that the bound grows as L — oo, what coincides
with the result for the myopic scenario (Mao et al., 2018)
and the intuition that the larger L is the harder for the seller
to propagate revealed information for the current good to its
neighborhood in the d-dimensional space.

Third, the dependence of Eq. (4) on d shows that the larger
the dimension of the feature space X is, the slower the
growth of the seller’s revenue. This situation could not be
improved in our setting due to the lower bound (Mao et al.,
2018): even in the truthful scenario, we have lower bound
for regret of any algorithm and this bound has exponential
dependence in d®. Finally, the bound in Eq. (4) blows up
when v — 1 what is in the line with the same property of the
optimal bound for non-contextual setting (Drutsa, 2017b;
2018) and with the case of v = 1, where any algorithm has
linear regret (Amin et al., 2013).

6.2. On Lipschitz Valuation

It is known that any absolutely continuous (or differentiable
almost everywhere) function is a Lipschitz one. So, when a
buyer uses a continuous parametric model for his valuation
(e.g., linear one, kernel model, etc), then our algorithm
can be used. Note that linear or kernel models are the
most popular scenarios considered in related work (Amin
et al., 2014; Cohen et al., 2016; Leme & Schneider, 2018;
Javanmard & Nazerzadeh, 2019; Javanmard et al., 2019;
Golrezaei et al., 2019), but, in our work, the seller does not
need to know which kernel is used by the buyer (remind:
the seller does not know which parametric model is used
by the buyer). Therefore, we believe that our setup is more
realistic than the ones studied before, since ours covers the
models considered in those studies. For sure, it might be a
case when the buyer utilizes a non-Lipschitz function for
his valuation (e.g., with jump discontinuity points), but such
a scenario is a good direction for future work. However,
even in this case, our result suggests some insights: note
that our upper bound in Eq. (4) and the lower bound in (Mao
et al., 2018, Th.7) blow up when L. — oco. Hence, without
knowing the position of the discontinuity points, it seems
hard (or even impossible) to find a no-regret algorithm, since
the non-Lipschitz function can be approximated by a series
of Lipschitz ones with growing L — oc.

8See (Mao et al., 2018, proof of Th.7 in Appendix), where the
bound is estimated as a® with a > 1if T — oc.
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6.3. Horizon-Independence

The algorithm PELS is horizon-independent by its construc-
tion. Note that PELS can be used against a myopic buyer
in the scenario “pricing loss” of (Mao et al., 2018): just set
r=1 and n=2. Hence, we provide a horizon-independent
alternative to the horizon-dependent algorithms from (Mao
et al., 2018). Note that those algorithms of Mao et al. (2018)
can be made horizon-independent via the state-of-the-art
“doubling” trick (Cesa-Bianchi et al., 2013; Heidari et al.,
2016; Cohen et al., 2016): split the time line into epochs;
run a horizon-dependent algorithm for an epoch; and, after
the end of the epoch, restart the algorithm (from the initial
learning state) but in a 2-time longer epoch. However, mod-
ified in this way algorithms have the weakness: they do no
exploit the learned information from previous epochs, what
may unnecessarily increase the regret (usually, it raises the
constant factor in the regret (Drutsa, 2017b)). In contrast
to this, PELS does not suffer from this drawback, since its
exploration and exploitation rounds are interspersed neatly
(without returning to the initial state), see Sec. 5.

6.4. On Efficient Implementation for Practice

The proposed algorithm PELS has exponentiality in d in
terms of both computational complexity and memory re-
quirements. In both directions one can use some tricks to
make efficient implementation. First, the most computation-
ally complex part of our algorithm is the search of the box
X that contains the context x; (see Line 9 in Algorithm B.1
in Supp.Materials). For sure, one needs to use at least stan-
dard binary tree techniques to make this search fast. The
remaining algorithm operations whose computational com-
plexity depends on d are those that create new boxes (see
Lines 4, 19 and 20 in Algorithm B.1), they can be efficiently
optimized as we describe below.

Second, the most memory consuming part of our algorithm
is the storage of the state information for each box (i.e.,
the variables u, w, P, E,..). It is easy to see that we do
not need to keep in memory the information for all the
boxes. Indeed, one needs to store only information about
the boxes that have had (in previous rounds) at least one
context vector in them (since vectors from previous rounds
have caused updates in values of u, w, P, and E). For the
boxes that have had 0 context vectors inside, we can restore
the values on u, w, P, E from parent boxes (due to Line 21
in Algorithm B.1 in Supp.Mat). Hence, in worst case, our
algorithm requires O(7") memory here.

Finally, the constants in the upper bound in Eq. (4) and some
redundant actions can be optimized in a way similar to the
one applied to the non-contextual setup in (Drutsa, 2017a).

6.5. Optimization of Regret with Other Loss

Let us change slightly our setup: assume the seller is not
interested in minimization of the regret with pricing loss
(v(z¢) — ap¢ in around t), but in minimization of the cumu-
lative symmetric loss ), |v(x¢) —pe| as in (Mao et al., 2018,
Sec.2.1); all other parts of the setup remains unchanged (i.e.,
the buyer is strategic still). In this case, our algorithm PELS
can be used with effective upper bound on the symmetric
regret. Namely, use PELS with parameters from Eq. (3), but
take g(m) = 0: exploitation rounds are not needed because
we have no dramatic loss for an overguess. Since we have
at least 1 round in a box, we get the worst-case number of
boxes M s.t. 2™ < O(T'/?), by arguments similar to the
ones in the proof of Th. 1. In order to obtain regret in each
box of depth m bounded by O(2~"), one needs to slightly
modify the penalization rounds: offer the upper bound w*
instead of offering 1. In such round, the strategic buyer will
not accept price as well (his value is lower than w™), but
the symmetric loss will be O(|wX —uX|). Hence, PELS
modified in this way will have symmetric loss strategic re-
gret ofzﬁf:_ol 2md0(2-™) = O(T@=D/4) which is tight
for d > 1 due to (Mao et al., 2018, Th.6).

7. Conclusions

We studied repeated contextual posted-price auctions with
a strategic buyer that discounts his cumulative surplus and
holds a private valuation in the form of a Lipschitz func-
tion of a d-dimensional context vector of a good. First, we
closed the open research question on the existence of a no-
regret pricing in this scenario by proposing a novel optimal
learning algorithm that is horizon-independent and can act
against the strategic buyer with tight regret upper bound of
O(T%/(@+1)). Second, we generalized the value-localization
approaches well know in the non-contextual setting to the
multi-dimensional case. Finally, novel techniques were in-
troduced: (a) the method to isolate penalization; and (b) the
guarantee on the amount of lie from the buyer when he
accepts an offered price.
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