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A Missed proofs

A.1 Proof of Proposition 1

Here we present some details for the proof of Proposition 1. Some ideas used here are similar to
the ones used in [7, 2, 4, 5].

I. Let

SX(σ) = E[

T∑
s=t

γs−1as(v(xs)− ps) | xs ∈ X,σ] (A.1)

be the future expected surplus of the buyer over those rounds s ≥ t whose feature vector xs belongs
to a set X ⊆ X when he follows a strategy σ1. It is easy to see that the full future surplus will be
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SX(σ) and, for any X ⊆ X and any strategy σ, it can be decomposed as follows:

SX(σ) = SX(σ) + SX\X(σ). (A.2)

The considered set X̃ is isolated (from X\ X̃) after the current round t (as in Definition 3). Let
two strategies σ1 and σ2 are s.t. buyer decisions coincide (between the strategies) in all rounds where
xs belongs to a set X \X (outside of X̃), i.e., formally, in all the states L(s̃,X \X) ∪R(s̃,X \X).
Then SX\X̃(σ1) = SX\X̃(σ2).

Therefore, when we compare strategies that differ in decisions within X̃ only, it is enough to
investigate SX̃(σ) with strategies σ that are equal outside of X̃.

II. In our case (see the proof of Proposition 1 in the main text), we have two strategies: the
optimal one σOpt and the strategy σ′ that coincides with σOpt in all states outside X̃. So, applying
the arguments above, we have (due to optimality):

SX(σOpt) ≥ SX(σ′)⇒ SX̃(σOpt) + SX\X̃(σOpt) ≥ SX̃(σ′) + SX\X̃(σ′) (A.3)

⇒ SX̃(σOpt) + SX\X̃(σOpt) ≥ SX̃(σ′) + SX\X̃(σOpt)⇒ SX̃(σOpt) ≥ SX̃(σ′). (A.4)

III. Note that, in the proof in the main text, we implicitly use that the strategy σOpt is pure
(at least w.r.t. the decision in the round t). This is done for the sake of exposition, and the result
holds for a mixed strategy as well. Indeed, let σ0 be an optimal strategy among all the strategies
that have decision at = 0 in the round t. Similarly, let σ1 be an optimal strategy among all the
strategies that have decision at = 1 in the round t. Then a mixed σOpt is a linear combination of
these strategies: σOpt = ασ1 + (1 − α)σ0, α ∈ (0, 1). Instead of σ′ consider σ′′ = ασ1 + (1 − α)σ′0,
where σ′0 be the strategy, where the buyer accepts the good in the round t and rejects each future
good from X̃ (σ′0 coincides with σ0 for goods in X \ X̃).

Hence, due to linearity of surplus (since it is an expectation), we have:

SX(σOpt) ≥ SX(σ′′)⇒ αSX(σ1) + (1− α)SX(σ0) ≥ αSX(σ1) + (1− α)SX(σ′0)⇒ SX(σ0) ≥ SX(σ′0)
(A.5)

In further steps (e.g., in Eq. (A.3)), use σ0 instead of σOpt and σ′0 instead of σ′.

A.2 Proof of Proposition 2

Proof of Proposition 2. Similarly to the proof of Prop. 1 (see also details in App. A.1), we analyze
buyer surplus SX̃(σ) calculated only over rounds from X̃ (due to isolation of X̃ from X \ X̃). Let
σOpt be the optimal strategy of the buyer in the round t, what implies that SX̃(σOpt) ≥ 0, because

the buyer can reject all goods in X̃ and get at least 0. The left-hand side of the inequality can be
upper bounded as follows

SX̃(σOpt) = γt−1(v(xt)− pt) + E[
T∑
s=t

γs−1as(v(xs)− ps) | xs ∈ X̃, σOpt]

≤ γt−1(v(xt)− p(s)) +

T∑
s=t+1

γs−1 sup
x∈X̃

[v(x)− us,1(x)],

(A.6)

where we upper bounded instant surpluses in all future rounds as maximal possible ones by
supx∈X̃(v(x) − us,1(x)). The latter expression can be trivially bounded by v(xt) + Ldiam(X̃) −
infx∈X̃ us,1(x) (see Def. 1 for us,1(·)). Combining all inequalities and dividing by γt−1, one gets:

v(xt)− p(s) +
γ

1− γ

(
v(xt) + Ldiam(X̃)− inf

x∈X̃
us,1(x)

)
≥ 0, (A.7)
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what implies the proposition after using the condition on p(s)−infx∈X̃ us,1(x) and term rearrange-
ment.

A.3 Proof of Lemma 2

Proof of Lemma 2. First, we prove (a) under the assumption: let in an exploration round t, the
current uX and wX are s.t. (2η + 3)Ldiam(X) ≤ wX − uX . This implies wX : (wX − uX)− 2(η +
1)Ldiam(X) ≥ Ldiam(X). Since the gap wX−uX reduces exactly by Ldiam(X) after an acceptance
and exactly by wX : (wX − uX)− 2(η+ 1)Ldiam(X) after a rejection, we get the statement (a) for
this round.

The proof of (b) is done by induction on the depth mX of a current box X (s.t. xt ∈ X ∈ X ).
When mX = 0: at the start of the game, the bounds hold by the construction of the initial partition
X of X: 1/diam(X) = d(4η + 6)Le ∈ [(2η + 3)L, d(4η + 6)Le) and wX − uX = 1. Hence, in all
exploration rounds within this box with mX = 0, we will have (2η + 3)Ldiam(X) ≤ wX − uX ,
because violation of this condition will result in a bisection of X. Assume (a) and (b) hold for
boxes of depth m − 1 ∈ Z+. Let t be the first exploration round in a box X of depth m > 0.
This box is a result of the bisection of a box X1 of depth m − 1 in a exploration round t1, what
implies that wX − uX < (2η + 3)Ldiam(X1) = 2(2η + 3)Ldiam(X). The values of the function
u(·) and w(·) in the round t1 are denoted by u1 and w1. So, by induction for (a), we know that
(w1 − u1)− (wX − uX) ≤ (w1 − u1)− 2(η + 1)Ldiam(X1). Hence,

wX − uX ≥ 2(η + 1)Ldiam(X1) = 4(η + 1)Ldiam(X) ≥ (2η + 3)Ldiam(X).

Again, in all exploration rounds within this box with mX = m, we will have (2η + 3)Ldiam(X) ≤
wX − uX , because violation of this condition will result in a bisection of X.

A.4 Proof of Theorem 1

We add the following remark to the proof of Theorem 1 (in the main text).
In the proof of Theorem 1, we used the following inequality

T ≥
M−1∑
m=1

g(m− 1)Nm (A.8)

to upper bound 2M via a function of T . However, this inequality from Eq. (A.8) is useful only for
M > 1. Indeed, note that, when M = 1, this inequality becomes T ≥ 0 and cannot be used to
upper bound M .

So, the case M = 1 should be considered separately. In fact, this case is trivial. Namely, we
can show that, if M = 1, then the upper bound on the strategic regret holds even for T = 1. From
the proof (in the main text) we know that R ≤

∑M
m=0C(L, r, η)2mdN0; hence, for M = 1, we have:

R ≤
1∑

m=0

C(L, r, η)2mdN0 = C(L, r, η)N0(1 + 2d) ≤ C(L, r, η)N02
d+1 ≤

≤ C(L, r, η)N02
d+1(

1

N0
+ 1)d/(d+1) = 2d+1C(L, r, η)N

1/(d+1)
0 (1 +N0)

d/(d+1),

(A.9)

where the right-hand side of the latter identity is exactly Eq.(6) with T = 1.
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B The pseudo-code of the PELS algorithm

Algorithm B.1 Pseudo-code of Penalized Exploiting Lipschitz Search (PELS).

1: Input: L > 0, η ∈ R+, r ∈ N, and g : Z+ → Z+

2: Initialize: Split[] :=partition of [0, 1]d into d(6+4η)Led cubes with diam(·)=1/d(4η+6)Le; Boxes[] := ∅;
3: for all Cube ∈ Split[ ] do
4: Box := NewStructure(X :=Cube, u :=0, w :=1, P :=0, E :=0,m :=0, l :=1/d(4η + 6)Le);
5: Boxes[ ] := Boxes[ ] ∪ Box; // Add each cube with its associated data
6: end for
7: while the buyer plays do
8: The seller receives a feature vector x∈[0, 1]d from the nature, the buyer observes this vector x as well;
9: j := find j such that x ∈ Boxes[j].X;

10: if Boxes[j].P > 0 then
11: Offer the price p := 1 to the buyer; // Penalization
12: Boxes[j].P := Boxes[j].P − 1;
13: if this price is accepted then offer p := 1 for all remaining rounds;
14: else
15: if Boxes[j].E > 0 then
16: Offer the price p := Boxes[j].u to the buyer; // Exploitation
17: Boxes[j].E := Boxes[j].E − 1;
18: if Boxes[j].E == 0 then
19: Split[ ] := bisect each side of the cube Boxes[j].X to get 2d cubes;
20: for all Cube ∈ Split[ ] do
21: Box := CopyStructure(Boxes[j]); // Copy the associated data of the parent cube
22: Box.X := Cube; // Replace some associated for the new cube
23: Box.m := Box.m+ 1;
24: Box.l :=Box.l/2;
25: Boxes[ ] := Boxes[ ] ∪ Box; // Add each cube with its associated data
26: end for
27: Remove Boxes[j] from Boxes[ ]; // Remove j-th cube with its associated data
28: end if
29: else
30: Offer the price p := Boxes[j].u+ ηLBoxes[j].l to the buyer; // Exploration
31: if the buyer accepts the price then
32: Boxes[j].u := p− (η − 1)LBoxes[j].l;
33: else
34: Boxes[j].w := p+ (η + 2)LBoxes[j].l;
35: Boxes[j].P := r
36: end if
37: if Boxes[j].w − Boxes[j].u < (2η + 3)LBoxes[j].l then
38: Boxes[j].E := g(Boxes[j].m);
39: end if
40: end if
41: end if
42: end while
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C Auxiliary statements

C.1 Statement on linear programming

Statement C.1. Consider the linear program:

maximize R(z1, .., zM ) =
M∑

m=1

zm s.t.

M∑
m=1

βmzm ≤ C and

0 ≤ zm ≤ cm ∀m,

(C.1)

where cm>0∀m, 0 < β1 ≤ ... ≤ βM , and C≤
∑M

m=1 βmcm. Then the maximum of R is achieved at

(z1, . . . , zM ) =

(
c1, . . . , cM−1, β

−1
M

(
C −

M−1∑
m=1

βmcm

)
, 0, . . . , 0

)
, (C.2)

where M is such that the following inequality hold:
∑M−1

m=1 βmcm < C ≤
∑M

m=1 βmcm.

Proof. The proof trivially follows from the theory of linear programs. In particular, note that the
structure of the solution in Eq. (C.2) is as follows:

• all zi have the maximal available value ci for all consecutive i = 1, ...,M − 1;

• the next zM has value s.t. it is maximal possible to fit the first condition in Eq. (C.1);

• all remaining zi are 0 the maximal available value ci for all consecutive i = M + 1, ...,M .

This is because of the following: if there is two consecutive zi and zi+1 s.t. zi < ci and zi+1 > 0,
then we can without change of R consider new vector {znewj }j : znewi := zi + ε and znewi+1 := zi+1 − ε,
where ε > 0 is s.t. zi + ε ≤ ci and zi+1 − ε ≥ 0. Then Rnew = R, while the conditions are satisfied
due to the properties ε and the monotonicity of {βj}j .

C.2 Remarks

In the definition of PELS, we used {[0, l], (l, 2l], . . . , (1− l, 1]}d to denote all boxes that are obtained
from the split of each side of the cube [0, 1]d into d(4η + 6)Le equal parts. This is done for sake of
short notations. Formally, the set of all d(4η + 6)Led boxes should be written as follows:

X =

{
I1 × I2 × . . .× Id

∣∣∣∣ (I1, I2, . . . , Id) ∈
{

[0, l], (l, 2l], . . . , (1− l, 1]
}d
}
.
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D The game’s workflow and structure of the knowledge

Figure D.1: The game’s workflow (an algorithm and the buyer exploit public knowledge available
in the previous rounds).

E Examples for the notion of a start of r-length penalization

Note that the definition of a start of r-length penalization does not mean that all the next r − 1
future rounds are penalizations: instead, penalization rounds will be those whose feature vectors
belong to the penalization domain X̃ (i.e., a round s is not a penalization if xs 6∈ X̃).

Also note that a start of r-length penalization in a round t does not mean that rounds after t+r
will not be penalizations (connected to this start): instead, the counter of penalization rounds is
increased only when context of a future round belongs to the penalization domain X̃. For instance,
if the contexts xt+1, . . . , xt+r−1 6∈ X̃ in future rounds t + 1, . . . , t + r − 1, but we have xt+r ∈ X̃
in the round t + r, then this round t + r will be the 1-st penalization round associated with the
considered start (i.e., r− 2 penalizations will remain after the round t+ r). See also the work flow
of penalization in the pseudo-code of PELS in Alg. B.1.

Let consider an example:
d = 1, X̃ = [0.5, 1], r = 3

Let x1 = 0.75 be a start of 3-length penalization with domain X̃ = [0.5, 1] and the buyer rejects
the price in t = 1.

Then, the penalization rounds (for this penalization start) will be those whose sequence of
context x1:s is , e.g.,

• (0.75, 0.6), because 0.6 ∈ X̃;

• (0.75, 0.2, 0.9), because 0.9 ∈ X̃;

• (0.75, 0.2, 0.4, 0.7), because 0.7 ∈ X̃ and contexts of rounds 2, 3, 4 do not belong to X̃;

• (0.75, 0.2, 0.4, 0.7, 0.8), because 0.8 ∈ X̃ and only one context (x4 = 0.7) is in X̃ among
contexts of rounds 2, 3, 4;

but the following sequences of context x1:s terminate with NON-penalization rounds (for the
considered penalization start):

• (0.75, 0.2), because 0.2 6∈ X̃;

• (0.75, 0.2, 0.4), because 0.4 6∈ X̃;
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• (0.75, 0.2, 0.9, 0.3), because 0.3 6∈ X̃;

• (0.75, 0.2, 0.4, 0.7, 0.8, 0.9), because, in previous rounds (2, 3, 4, 5), already 2 contexts (0.7 and
0.8) belonged to X̃ and r − 1 = 2.
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