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A Missed proofs

A.1 Proof of Proposition 1

Here we present some details for the proof of Proposition 1. Some ideas used here are similar to
the ones used in [7), 2 [4 [5].
I. Let

T
Sx(0) =E[)_7*tas(v(xs) = ps) | 25 € X, 0] (A1)

be the future expected surplus of the buyer over those rounds s > t whose feature vector x5 belongs
to a set X C X when he follows a strategy oﬂ It is easy to see that the full future surplus will be
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'A buyer (pure) strategy is a map o : UZ_;&; — {0,1} that maps any state s € &, in a round ¢ to a decision
o(s) € {0,1}. A mixed strategy is a probability distribution over pure strategies.



Sx (o) and, for any X C X and any strategy o, it can be decomposed as follows:
Sx (o) :Sx(J)-i-SX\X(O'). (A.2)

The considered set X is isolated (from X\ X) after the current round ¢ (as in Definition 3). Let
two strategies o1 and o9 are s.t. buyer decisions coincide (between the strategies) in all rounds where
s belongs to a set X\ X (outside of X), i.e., formally, in all the states £(5, X\ X) UR(5,X \ X).
Then SX\X(O'l) = Sq\ % (02).

Therefore, when we compare strategies that differ in decisions within X only, it is enough to
investigate S (o) with strategies o that are equal outside of X.

IT. In our case (see the proof of Proposition 1 in the main text), we have two strategies: the
optimal one o°P* and the strategy o’ that coincides with ©P* in all states outside X. So, applying
the arguments above, we have (due to optimality):

Sx(09P") > Sx(0”) = S5 (0°7) + Sy 5 (0°7) > S5 (0') + Sy, ¢ (o) (A.3)
= S3(09P") + Sy, 3 (097) > S (0") + Sy 3 (0°7) = S (09P") > S5 (o). (A.4)

ITI. Note that, in the proof in the main text, we implicitly use that the strategy o©P! is pure
(at least w.r.t. the decision in the round ¢). This is done for the sake of exposition, and the result
holds for a mixed strategy as well. Indeed, let oy be an optimal strategy among all the strategies
that have decision a; = 0 in the round ¢. Similarly, let o; be an optimal strategy among all the
strategies that have decision a; = 1 in the round ¢. Then a mixed o©P! is a linear combination of
these strategies o0 = oy + (1 — a)ag,a € (0,1). Instead of ¢’ consider ¢” = aoy + (1 — a)a},
where o, be the strategy, where the buyer accepts the good in the round ¢ and rejects each future
good from X (o}, coincides with o for goods in X \ X).

Hence, due to linearity of surplus (since it is an expectation), we have:

Sx(09P') > Sx(0") = aSx(o1) + (1 — @) Sx(00) > aSx(01) + (1 — a)Sx(0p) = Sx(00) > Sx(0p)
(A.5)
In further steps (e.g., in Eq. (A.3)), use o¢ instead of ¢©P' and o}, instead of o’

A.2 Proof of Proposition 2

Proof of Proposition 2. Similarly to the proof of Prop. 1 (see also details in App. A.1), we analyze
buyer surplus S¢ (o) calculated only over rounds from X (due to isolation of X from X\ X). Let
oOPt be the optimal strategy of the buyer in the round ¢, what implies that S X(O'Opt) > 0, because
the buyer can reject all goods in X and get at least 0. The left-hand side of the inequality can be
upper bounded as follows

S (a9P) =+ (v(wr) — pi) + sz Lag(v(ws) = ps) | 5 € X, 00
(A.6)
< ola) =) + 3 7 suplu(e) — s (@),

s=t+1 zeX

where we upper bounded instant surpluses in all future rounds as maximal possible ones by
sup, . ¢ (v(z) — us1(z)). The latter expression can be trivially bounded by v(z;) + Ldiam(X) —

inf_ ¢ ug1(x) (see Def. 1 for us(-)). Combining all inequalities and dividing by 7'~1, one gets:
v(@:) — pls) (v(@) + Ldiam(X) — inf ug1(2)) > 0, (A.T)
I - zeX



what implies the proposition after using the condition on p(s)—inf _ ¢ us1(z) and term rearrange-
ment. O

A.3 Proof of Lemma 2

Proof of Lemma 2. First, we prove (a) under the assumption: let in an exploration round ¢, the
current u~ and wX are s.t. (21 + 3)Ldiam(X) < w® — u~. This implies wX: (wX —u*X) — 2(n +
1) Ldiam(X) > Ldiam(X). Since the gap w* —u* reduces exactly by Ldiam(X) after an acceptance
and exactly by w™: (wX —uX) —2(n+ 1)Ldiam(X) after a rejection, we get the statement (a) for
this round.

The proof of (b) is done by induction on the depth m¥ of a current box X (s.t. z; € X € X).
When m*X = 0: at the start of the game, the bounds hold by the construction of the initial partition
X of X: 1/diam(X) = [(4n +6)L] € [(2n + 3)L, [(4n + 6)L]) and wX — u® = 1. Hence, in all
exploration rounds within this box with m* = 0, we will have (21 + 3)Ldiam(X) < wX — u¥,
because violation of this condition will result in a bisection of X. Assume (a) and (b) hold for
boxes of depth m — 1 € Z,. Let t be the first exploration round in a box X of depth m > 0.
This box is a result of the bisection of a box X; of depth m — 1 in a exploration round t;, what
implies that wX — uX < (21 + 3)Ldiam(X;) = 2(2n + 3)Ldiam(X). The values of the function
u(-) and w(-) in the round ¢; are denoted by w; and w;. So, by induction for (a), we know that
(wy —uyp) — (wX —uX) < (wy —u1) — 2(n + 1)Ldiam(X;). Hence,

wX —u® > 2(n+ 1)Ldiam(X;) = 4(n + 1) Ldiam(X) > (21 + 3) Ldiam(X).

Again, in all exploration rounds within this box with m* = m, we will have (2 + 3) Ldiam(X)

<
wX — uX, because violation of this condition will result in a bisection of X. ]

A.4 Proof of Theorem 1

We add the following remark to the proof of Theorem 1 (in the main text).
In the proof of Theorem 1, we used the following inequality

M-1
T> g(m —1)Ny, (A.8)

m=1

to upper bound 2 via a function of T. However, this inequality from Eq. is useful only for
M > 1. Indeed, note that, when M = 1, this inequality becomes T > 0 and cannot be used to
upper bound M.

So, the case M = 1 should be considered separately. In fact, this case is trivial. Namely, we
can show that, if M = 1, then the upper bound on the strategic regret holds even for T'= 1. From
the proof (in the main text) we know that R < E%:o C(L,r,1)2™¢Ny; hence, for M = 1, we have:

1
R< Y C(L,r,m)2™ Ny = C(L,7,m)No(1 +2%) < C(L,r,n)No2H" <
" (A.9)
<CO(L,, n)Nozd“(Ni 4 1)) = gL O(L )N D (1 4 Ny @ D),
0

where the right-hand side of the latter identity is exactly Eq.(6) with 7" = 1.



B The pseudo-code of the PELS algorithm

Algorithm B.1 Pseudo-code of Penalized Exploiting Lipschitz Search (PELS).

1:
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41:
42:
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Input: L>0,neRy,reN,and g:Z4 = Z4

: Initialize: Split[]: partltlon of [0,1]% into [(6+47n)L]% cubes with diam(-)=1/[(47+6)L]; Boxes|[] := @;

for all Cube € Split[] d
Box := NewStructure(X::Cube, w:=0,w:=1,P:=0,E:=0,m:=0,1:=1/[(4n + 6)L]);
Boxes|[ ] := Boxes[ ] UBox; // Add each cube with its associated data

end for

while the buyer plays do

b

The seller receives a feature vector x€[0,1]¢ from the nature, the buyer observes this vector z as well;

j := find j such that z € Boxes[j].X;
if Boxes[j].P > 0 then
Offer the price p := 1 to the buyer; // Penalization
Boxes[j].P := Boxes[j].P — 1;
if this price is accepted then offer p := 1 for all remaining rounds;
else
if Boxes[j].E > 0 then
Offer the price p := Boxes[j].u to the buyer; // Exploitation
Boxes[j].E := Boxes[j].E — 1;
if Boxes[j].E == 0 then
Split[ ] := bisect each side of the cube Boxes[j].X to get 2¢ cubes;
for all Cube € Split[] do
Box := CopyStructure(Boxes[j]); // Copy the associated data of the parent cube
Box.X := Cube; // Replace some associated for the new cube
Box.m := Box.m + 1;
Box.l :=Box.l/2;
Boxes| ] := Boxes[ | UBox; // Add each cube with its associated data
end for
Remove Boxes[j] from Boxes[]; // Remove j-th cube with its associated data
end if
else
Offer the price p := Boxes[j].u + nLBoxes|[j].l to the buyer; // Exploration
if the buyer accepts the price then
Boxes[j].u := p — (n — 1) LBoxes|[j].[;
else
Boxes[j].w :
Boxes|[j]. P
end if
if Boxes[j].w — Boxes[j].u < (21 + 3) LBoxes[j].l then
Boxes[j].E := g(Boxes[j].m);
end if
end if
end if
end while

+ (n + 2) LBoxes[j].l;




C Auxiliary statements

C.1 Statement on linear programming

Statement C.1. Consider the linear program:

M
mazimize R(z1,..,237) = E Zm 8.t
m=1

Bmzm < C and

WE

=1
0 <z < e Y,

3

M

m—1 BmCm. Then the mazimum of R is achieved at

where ¢, >0Vm, 0 < B1 < ... < Bz, and C <y

M-1
(2155 257) = <cl,...,cM_1,5]T/[1<C— Z Bmcm>,0,...,0>, (C.2)
m=1

where M is such that the following inequality hold: Zn]\f:_ll Bmem < C < Zn]\le BmCm.-

Proof. The proof trivially follows from the theory of linear programs. In particular, note that the
structure of the solution in Eq. (C.2) is as follows:

e all z; have the maximal available value ¢; for all consecutive i = 1,..., M — 1;
e the next zjs has value s.t. it is maximal possible to fit the first condition in Eq. (C.1));
e all remaining z; are 0 the maximal available value ¢; for all consecutive i = M + 1, ..., M.

This is because of the following: if there is two consecutive z; and z;41 s.t. z; < ¢; and z;4+1 > 0,

then we can without change of R consider new vector {z;?ew} ji Y =zt eand 2PV 1= 241 — €,

(]
where € > 0 is s.t. z; + € < ¢; and 2,41 — € > 0. Then R"Y = R, while the conditions are satisfied

due to the properties € and the monotonicity of {;};. O

C.2 Remarks

In the definition of PELS, we used {[0,1], (1,21], ..., (1—1,1]}% to denote all boxes that are obtained
from the split of each side of the cube [0,1]¢ into [(4n + 6)L] equal parts. This is done for sake of
short notations. Formally, the set of all [(4n + 6)L]¢ boxes should be written as follows:

d
X = {11 X Ipx...xIy| (I Ioy... Iy € {[0,5],(5,21],...,(1—1,1]} }



D The game’s workflow and structure of the knowledge

private
knowledge

Seller

public
knowledge

before game starts round =1 round t =2 round {=3

Figure D.1: The game’s workflow (an algorithm and the buyer exploit public knowledge available
in the previous rounds).

E Examples for the notion of a start of r-length penalization

Note that the definition of a start of r-length penalization does not mean that all the next r — 1
future rounds are penalizations: instead, penalization rounds will be those whose feature vectors
belong to the penalization domain X (i.e., a round s is not a penalization if x5 ¢ X)

Also note that a start of r-length penahzatlon in a round t does not mean that rounds after t+r
will not be penalizations (connected to this start): instead, the counter of penalization rounds is
increased only when context of a future round belongs to the penalization domain X. For instance,
if the contexts xyy1,...,Tipr—1 & X in future rounds t + 1,...,¢t 4+ r — 1, but we have Tigr € X
in the round ¢ + r, then this round t 4+ r will be the 1-st penalization round associated with the
considered start (i.e., r — 2 penalizations will remain after the round ¢ + 7). See also the work flow
of penalization in the pseudo-code of PELS in Alg.

Let consider an example:

d=1, X=1[05,1, r=3

Let 1 = 0.75 be a start of 3-length penalization with domain X = [0.5,1] and the buyer rejects
the price in ¢ = 1.

Then, the penalization rounds (for this penalization start) will be those whose sequence of
context x1.¢ is , e.g.,

e (0.75,0.6), because 0.6 € X;

e (0.75,0.2,0.9), because 0.9 € X;

e (0.75,0.2,0.4,0.7), because 0.7 € X and contexts of rounds 2, 3,4 do not belong to X;
(

0.75,0.2,0.4,0.7,0.8), because 0.8 € X and only one context (x4 = 0.7) is in X among
contexts of rounds 2, 3, 4;

but the following sequences of context x1.s; terminate with NON-penalization rounds (for the
considered penalization start):

e (0.75,0.2), because 0.2 ¢ X;

e (0.75,0.2,0.4), because 0.4 € X;



e (0.75,0.2,0.9,0.3), because 0.3 & X;

e (0.75,0.2,0.4,0.7,0.8,0.9), because, in previous rounds (2, 3,4, 5), already 2 contexts (0.7 and
0.8) belonged to X and r — 1 = 2.
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