
The Complexity of Finding Stationary Points with Stochastic Gradient Descent

A. Additional Proofs
A.1. Bounded smooth interpolation

We start by recalling a recent and fundamental theorem which provide necessary and sufficient conditions under which a
set {xt,gt, ft}i∈[T ] can be interpolated (or extended using the terminology from the classical text (Whitney, 1934)) by a
convex function f with L-Lipschitz gradient such that f(xt) = ft and ∇f(xt) = gt for all t ∈ [T ]. The theorem was
established in (Taylor et al., 2017b) and also independently in (Azagra & Mudarra, 2017) for a more general setting in
Hilbert spaces.

Theorem 5. Let L > 0, d ∈ N and suppose {(xt,gt, ft)}t∈[T ] is some finite subset of Rd × Rd × R. Then there exists a
convex function f with L-Lipschitz gradient that satisfies f(xt) = ft and ∇f(xt) = gt for all t ∈ [T ] if and only if

1

2L
‖gi − gj‖2 ≤ fi − fj − 〈gj ,xi − xj〉, ∀i, j ∈ [T ]. (9)

A similar result that provides necessary and sufficient conditions for non-convex interpolation is also known.

Theorem 6 ((Taylor et al., 2017a), Theorem 3.10). Let L > 0, d ∈ N and suppose {(xt,gt, ft)}t∈[T ] is some finite subset
of Rd × Rd × R. Then there exists an function f with L-Lipschitz gradient that satisfies f(xt) = ft and ∇f(xt) = gt for
all t ∈ [T ] if and only if

1

2L
‖gi − gj‖2 −

L

4
‖xi − xj −

1

L
(gi − gj)‖2 ≤ fi − fj − 〈gj ,xi − xj〉, ∀i, j ∈ [T ]. (10)

Here we strengthen the results of Thm. 5 and Thm. 6, showing that interpolation can be performed in such a way that the
resulting function is bounded from below and attains its minimum value. The proof is based on an explicit construction
of a convex interpolating function developed in (Drori, 2017). This resolves an open question raised by (Fefferman et al.,
2017) for the case where the interpolation set is finite.

Theorem 7. Let L > 0, d ∈ N and suppose {(xt,gt, ft)}t∈[T ] is some finite subset of Rd × Rd × R that satisfies (9)
(alternatively, (10)). Then there exists a convex (alternatively, nonconvex) function f withL-Lipschitz gradient that satisfies
f(xt) = ft,∇f(xt) = gt and in addition, setting j ∈ arg mint∈[T ] ft − 1

2L‖gt‖
2, the function f also satisfies

f∗ := min
x∈Rd

f(x) = f(xj −
1

L
gj) = fj −

1

2L
‖gj‖2.

Proof. The convex case follows directly from Theorem 1 in (Drori, 2017). Indeed, taking C ← {0} and T ←
{(xt,gt, ft)}t∈[T ], the primal interpolation function WC

T (see Definition 2.1 in (Drori, 2017)) can be written as

W (y) := min
α∈∆T

[
L

2
‖y −

∑
t∈T

αt(xt −
1

L
gt)‖2 +

∑
t∈T

αt(ft −
1

2L
‖gt‖2)

]
, (11)

where ∆T is the T -dimensional unit simplex

∆T := {α ∈ RT :
∑
t∈T

αt = 1, αt ≥ 0, ∀t ∈ T}.

By the assumption that T satisfies (9), Theorem 1 in (Drori, 2017) implies that W is convex, its gradient is L-Lipschitz
and that W (xt) = ft,∇W (xt) = gt. The lower bound on W then immediately follows from (11), as

W (y) ≥ min
α∈∆T

[∑
t∈T

αt(ft −
1

2L
‖gt‖2)

]
= min
t∈[T ]

(ft −
1

2L
‖gt‖2) = fj −

1

2L
‖gj‖2,

and

W (xj −
1

L
gj) ≤ fj −

1

2L
‖gj‖2,
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which follows by taking α = ej in (11). Finally, combining these two bounds completes the proof for the convex case:

fj −
1

2L
‖gj‖2 ≤ inf

y
W (y) ≤W (xj −

1

L
gj) = fj −

1

2L
‖gj‖2.

For the non-convex case, consider the function

Z(y) := min
α∈∆T

[
L‖y −

∑
t∈T

αt(xt −
1

2L
(gt + Lxt))‖2 +

∑
t∈T

αt(ft +
L

2
‖xt‖2 −

1

4L
‖gt + Lxt‖2)

]
.

It is straightforward to verify that this function is the primal interpolation function WC
T taking C ← {0}, L← 2L, and

T ← {(xt,gt + Lxt, ft +
L

2
‖xt‖2)}t∈[T ].

As T satisfies (9) with a Lipschitz constant 2L, by Theorem 1 in (Drori, 2017) it follows that Z is convex, has a 2L-
Lipschitz gradient and satisfies

Z(xt) = ft +
L

2
‖xt‖2,

∇Z(xt) = gt + Lxt.

Now let Ŵ be defined by Ŵ (y) := Z(y) − L
2 ‖y‖

2. Clearly, Ŵ has L-Lipschitz gradient (see e.g., Lemma 3.9 in (Taylor
et al., 2017a)), satisfies

Ŵ (xt) = ft,

∇Ŵ (xt) = gt,

and by basic algebra it is straightforward to show that

Ŵ (y) = min
α∈∆T

L
2
‖y −

∑
t∈[T ]

αt(xt −
1

L
gt)‖2 −

L

4
‖
∑
t∈[T ]

αt(xt −
1

L
gt)‖2

+
∑
t∈[T ]

αt(ft −
1

2L
‖gt‖2 +

L

4
‖xt −

1

L
gt‖2)

 .
(12)

We have

Ŵ (y) ≥ min
α∈∆T

−L
4

∑
t∈[T ]

‖αt(xt −
1

L
gt)‖2 +

∑
t∈[T ]

αt(ft −
1

2L
‖gt‖2 +

L

4
‖xt −

1

L
gt‖2)

≥ min
α∈∆T

−L
4

∑
t∈[T ]

αt‖xt −
1

L
gt‖2 +

∑
t∈[T ]

αt(ft −
1

2L
‖gt‖2 +

L

4
‖xt −

1

L
gt‖2)

= min
α∈∆T

∑
t∈[T ]

αt(ft −
1

2L
‖gt‖2) = min

t∈[T ]
(ft −

1

2L
‖gt‖2) = fj −

1

2L
‖gj‖2,

where the second inequality follows from the convexity of the squared norm. Finally we conclude the proof by establishing
an upper bound that matches the lower bound on Ŵ ∗. Indeed,

Ŵ (xj −
1

L
gj) ≤ fj −

1

2L
‖gj‖2,

where the inequality follows, as in the convex case, by taking α = ej in (12).
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A.2. Proof of Lemma 1

Theorem 7 will be the main tool used in the proof of Lemma 1 below.

Proof of Lemma 1. By Theorem 7, it is sufficient to show that there is a choice β for the value of f̂(y1), . . . , f̂(ym) with
β ≥ mini∈[n] f(zi)− 1

L‖γ‖
2 such that the set

{(yj ,γ, β)}j∈[m] ∪ {(zi,γ, f(zi)}i∈[n],

satisfies the interpolation conditions (10). The lower bound on f̂ will then immediately follow since

f̂(yj)−
1

2L
‖γ‖2 = β − 1

2L
‖γ‖2 ≥ min

k∈[n]
f(zk)− 3

2L
‖γ‖2, ∀j ∈ [m],

and f̂(zi)−
1

2L
‖γ‖2 ≥ min

k∈[n]
f(zk)− 3

2L
‖γ‖2, ∀i ∈ [n].

In order to establish that the interpolation conditions hold, first note that all the interpolation conditions involving two points
from {zi} are naturally satisfied by the assumption that there exists some function withL-Lipschitz gradient (namely f ) that
interpolates {(zi,∇f(zi), f(zi)} = {(zi,γ, f(zi)}, and further note that by the assumptions, it follows that 〈γ,yi−yj〉 =
0, hence the interpolation conditions involving both points in yi are also trivially satisfied. We conclude that we only need
to consider (10) for cases where one of the points is zi and the other is yj , i.e., we are left the following set of inequalities:

− L

4
‖zi − yj‖2 ≤ f(zi)− β − 〈γ, zi − yj〉, i ∈ [n], j ∈ [m],

− L

4
‖yj − zi‖2 ≤ β − f(zi)− 〈γ,yj − zi〉, i ∈ [n], j ∈ [m].

Clearly, these inequalities hold if and only if

β ∈ [max
i,j

(
f(zi) + 〈γ,yj − zi〉 −

L

4
‖yj − zi‖2

)
,min
i,j

(
f(zi) + 〈γ,yj − zi〉+

L

4
‖zi − yj‖2

)
].

Now, this range is non-empty since it contains f(y1) (recall that f(y1) = · · · = f(ym), ∇f(y1) = · · · = ∇f(ym) = γ,
and that the interpolation conditions for the set {(yj ,∇f(yj), f(yj)} ∪ {(zi,∇f(zi), f(zi)} naturally hold), hence there
exits some i, j such that the choice

β̂ := f(zi) + 〈γ,yj − zi〉+
L

4
‖zi − yj‖2

is a feasible choice for β. We get

β̂ = f(zi) +
L

4
‖zi − yj −

2

L
γ‖2 − 1

L
‖γ‖2

≥ min
k
f(zk)− 1

L
‖γ‖2.

which concludes the proof, as all interpolation conditions are satisfied, hence a function with the claimed properties exists.

A.3. Proof of Thm. 2, adaptive step-size case

Consider the general, adaptive step-size case:

xt+1 = xt + ηx1,...,xt · (∇f(xt) + ξt), t ∈ [T − 1],

xout =

T∑
t=1

ζ(t)
x1,...,xT xi.
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Here, our goal is to show that constants ηt and ζt from the proof of the fixed step-size case can be chosen in such a way that
the method, when applied on f{ηt},{ζt} constructed above, chooses step sizes and aggregation coefficients that are almost
surely equal to the selected constants, i.e,

ηx1,...,xt
a.s.
= ηt, ζ(t)

x1,...,xT

a.s.
= ζt,

and thus the proof for the fixed-step case can proceed without change.

We use the following procedure to select ηt and ζt. We start by executing the first step of the algorithm on the initial point
x1 = 0 and f , where the constants {ηt} and {ζt} are set to arbitrarily values. Note that 1. the first-order information of
f at x1 is independent of the choice for ηt, ζt, and 2. the norm of the noise vector ξ1 and its inner product with x1 and
∇f(x1) are independent of the specific direction chosen for the noise; therefore, by the assumption on the step size ηx1

, it
is independent of the specific value for ξ1, i.e., it is almost surely a constant. We denote this constant by η1.

We continue by executing the second step of the algorithm on f , using the value of η1 chosen above while keeping the
constants η2, . . . , ηT−1, {ζt}t∈[T ] set to arbitrary values. As in the first iteration, 1. the first-order information of f at
x2 is independent of the specific choice for η2, . . . , ηT−1, {ζt}t∈[T ] and 2. the norm of the noise vector ξ2 and its inner
product with x1,x2, ∇f(x1),∇f(x2) and ξ1 are independent of the specific direction chosen for the noise; therefore by
the assumption on ηx1,x2

it is almost surely a constant. As before, we denote the step size performed by the algorithm η2.

Continuing in this fashion, we obtain a set of constants η1, . . . , ηT−1 with the property that when applying the method on
f = f{ηt},{ζt}, then for any choice of aggregation coefficients {ζt} the step-sizes chosen by the method are almost surely
equal to {ηt}. Finally, executing the aggregation step, by the assumption on the aggregation function, the coefficients are
almost surely constants, which we denote by ζ1, . . . , ζT . To conclude, we have found a function f = f{ηt},{ζt} such that
the step sizes performed by the method on f are almost surely η1, . . . , ηT−1 and the aggregation coefficients chosen by the
method are almost surely ζ1, . . . , ζT , hence the proof can continue as in the fixed-step case.

A.4. Proof of Proposition 1

We will utilize the following function:

f(x) =
1

4 max
{

1/L,
∑T−1
t=1 ηt

} · 〈x, e1〉2

and assume that the initialization x1 is

x1 :=


√√√√∆ ·max

{
1/L,

T−1∑
t=1

ηt

}
, 0, 0, . . . , 0

 .

It is easily verified that f has L-Lipschitz gradient, and that f(x1)− infx f(x) < ∆. Moreover,

‖∇f(x)‖ =
|〈x, e1〉|

2 max
{

1/L,
∑T−1
t=1 ηt

} . (13)

Hereafter, for the sake of simplicity we drop the subscript indicating the coordinate number, and let xt denote the first
coordinate of iterate t, and ξt the first coordinate of the noise at iteration t.

We now turn to show that when d is large enough

min
t∈[T ]

|xt| ≥
2

5

√√√√∆ max

{
1/L,

T−1∑
t=1

ηt

}
(14)

holds with arbitrarily high probability, which together with (13) implies the desired result.

The dynamics of SGD on the first coordinate is as follows: we initially have

x1 =

√√√√∆ ·max{1/L,
T−1∑
t=1

ηt},
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and

xt+1 =

1− ηt

2 max
{

1/L,
∑T−1
t=1 ηt

}
xt − ηtξt.

Unrolling this recurrence, we have for any t

xt =

√√√√∆ ·max

{
1/L,

T−1∑
t=1

ηt

}
·
t−1∏
j=1

1− ηj

2 max
{

1/L,
∑T−1
t=1 ηt

}


−
t−1∑
j=1

ηjξj

t−1∏
i=j+1

1− ηj

2 max
{

1/L,
∑T−1
t=1 ηt

}
 ,

(15)

where we use the convention that
∏b
i=a ci is always 1 if b < a. Since each ξj is a zero-mean independent Gaussian, xt is

also Gaussian with

E[xt] =

√√√√∆ ·max

{
1/L,

T−1∑
t=1

ηt

}
·
t−1∏
j=1

1− ηj

2 max
{

1/L,
∑T−1
t=1 ηt

}


≥

√√√√∆ ·max

{
1/L,

T−1∑
t=1

ηt

}
· exp

ln
1

2
·
t−1∑
j=1

ηj

max
{

1/L,
∑T−1
t=1 ηt

}


≥ 1

2

√√√√∆ ·max

{
1/L,

T−1∑
t=1

ηt

}
,

here we used the assumption ηt ≥ 0 and the fact that 1− z/2 ≥ exp(ln 1
2 · z) for all z ∈ [0, 1]. In addition,

V[xt] =

t−1∑
j=1

η2
jV[ξj ]

t−1∏
i=j+1

1− ηj

2 max
{

1/L,
∑T−1
t=1 ηt

}
2

≤
t−1∑
j=1

η2
jV[ξj ] ≤

σ2(T − 1)

L2d
,

which follows since each ξj is independent and with variance at most σ2/d, and 0 ≤ ηj ≤ 1/L. Choosing

d ≥ d0 :=
Φ−1(1− δ/T )2σ2(T − 1)(

1
2 −

2
5

)2
L2∆ ·max

{
1/L,

∑T−1
t=1 ηt

} = O(log(T/δ)σ2T/(L2∆)),

where Φ−1 is the inverse CDF of the normal distribution, we get that for all t with V[xt] > 0

Pr

xt ≥ 2

5

√√√√∆ ·max

{
1/L,

T−1∑
t=1

ηt

}

= Pr

xt − Ext√
V[xt]

≥ −

(
1
2 −

2
5

)√
∆ ·max

{
1/L,

∑T−1
t=1 ηt

}
√
σ2(T − 1)/(L2d)



≥ Pr

xt − Ext√
V[xt]

≥ −

(
1
2 −

2
5

)√
∆ ·max

{
1/L,

∑T−1
t=1 ηt

}
√
σ2(T − 1)/(L2d0)

 = 1− δ/T,
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and furthermore, the same bound holds almost surely for all t with V[xt] = 0. Finally, taking a union bound over t, we
conclude that this lower bound holds for all xt with probability 1− δ, which implies (14) as required.

A.5. Proof of Proposition 2

To prove the proposition, we will need the following Lemma, which formalizes the fact that the norm of high-dimensional
Gaussian random variables tend to be concentrated around a fixed value:

Lemma 2. Let M,γ > 0 be fixed. For any d, let xd be a random variable normally distributed with xd ∼ N (u, γd Id),
where u is some vector in Rd with ‖u‖2 = M . Then for any ε ∈ (0, 1),

Pr

(∣∣∣∣ ‖xd‖2M + γ
− 1

∣∣∣∣ ≤ ε) ≥ 1− 4 exp

(
−dε

2

24

)
.

Proof. Consider xd for some fixed d. We can decompose it as u +
√

γ
dn, where n has a standard Gaussian distribution in

Rd (zero mean and covariance matrix being the identity). Thus,

‖xd‖2

M + γ
− 1 =

‖u‖2 + 2
√

γ
du
>n + γ

d‖n‖
2

M + γ
− 1 =

2
√

γ
du
>n + γ

(
1
d‖n‖

2 − 1
)

M + γ

=
2
√
γ/d

M + γ
u>n +

γ

M + γ

(
1

d
‖n‖2 − 1

)
. (16)

The first term in the sum above is distributed as a Gaussian in R with zero mean and variance 4γ
d(M+γ)2 ‖u‖

2 = 4γM
d(M+γ)2 ≤

4γM
d·2γM = 2

d . By a standard Gaussian tail bound, it follows that the probability that it exceeds ε/2 in absolute value is at
most 2 exp(−dε2/16). Similarly, for the second term, we have by a standard tail bound for Chi-squared random variables
(see for example (Shalev-Shwartz & Ben-David, 2014), Lemma B.12) that

Pr

(
γ

M + γ

∣∣∣∣1d‖n‖2 − 1

∣∣∣∣ ≥ ε

2

)
≤ Pr

(∣∣∣∣1d‖n‖2 − 1

∣∣∣∣ ≥ ε

2

)
≤ 2 exp(−dε2/24).

Combining the above with a union bound, it follows that (16) has absolute value more than ε with probability at most

2 exp(−dε2/16) + 2 exp(−dε2/24) ≤ 4 exp(−dε2/24) .

Proof of Proposition 2. We will utilize the function

f(x) =
L

2
‖x‖2,

where x1 is some vector such that ‖x1‖ =
√

∆/L. Using a derivation similar to the one used in (15), we have

xt+1 = xt − ηt · (Lxt + ξt) = (1− Lηt)xt − ηtξt,

hence

xt =

t−1∏
j=1

(1− Lηj)x1 −
t−1∑
j=1

ηj

t−1∏
i=j+1

(1− Lηi) ξj . (17)

Since each ξj is an independent zero-mean Gaussian with covariance matrix σ2

d Id, we get that xt has a Gaussian distribu-
tion with mean

∏t−1
j=1 (1− Lηj)x1 and covariance matrix γt

d Id, where

γt = σ2
t−1∑
j=1

η2
j

t−1∏
i=j+1

(1− Lηi)2
.
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By Lemma 2, taking ε = 1/2 and d ≥ d0 with

d0 := 96 log
4T

δ
= O(log(T/δ)),

it follows that ‖∇f(xt)‖2 = ‖Lxt‖2 is at least

L

2
·

∆

t−1∏
j=1

(1− Lηj)2
+ Lσ2

t−1∑
j=1

η2
j

t−1∏
i=j+1

(1− Lηi)2

 (18)

with probability at least 1 − δ/T . Our goal now will be to lower bound (18) under the conditions in the proposition.
Plugging this lower bound and applying a union bound over all t ∈ [T ] will result in our proposition.

• If ηt = η and η ∈ [0, 1/L), we can lower bound (18) by

L

2

∆(1− Lη)2(t−1) + Lσ2
t−1∑
j=1

η2(1− Lη)2(t−1−j)


=
L

2

(
∆(1− Lη)2(t−1) + Lσ2η2 · 1− (1− Lη)2(t−1)

1− (1− Lη)2

)
=
L

2

(
∆(1− Lη)2(t−1) +

ησ2

2− Lη

(
1− (1− Lη)2(t−1)

))
.

For any t, this is a convex combination of L2 ∆ and L
2

ησ2

2−Lη , hence is at least the minimum between them.

• If there exists some constant c ≥ 0 such that ηt ≥ c/L for all t, we can lower bound (18) by L2

2 σ
2η2
t−1 ≥ σ2c2

2 (i.e.,
accounting for the noise at the last iterate).

• If ηt = a
L(b+tθ)

(where a > 0, b ≥ 0, θ ∈ (0, 1/2)), then it is easily verified that for a certain constant τa,b,θ depending
only on a, b, θ,

1 ≤ 1

Lηt
≤ t

2
for all t ≥ τa,b,θ.

In that case, we can lower bound (18) by

L2σ2

2

t−1∑
j=t−b1/(Lηt)c

η2
j

t−1∏
i=j+1

(1− Lηi)2

≥ L2σ2η2
t

2
·
⌊

1

Lηt

⌋ (
1− Lηbt/2c

)2b1/(Lηt)c
≥ σ2Lηt

4

(
1− a

b+ bt/2cθ

)2
⌊
b+tθ

a

⌋
,

which is at least ca,b,θσ2Lηt ≥ ca,b,θσ
2LηT if t ≥ τ ′a,b,θ (for some parameters ca,b,θ, τ ′a,b,θ depending on a, b, θ).

Moreover, if t < τ ′a,b,θ, then (18) is at least

L2σ2

2
η2
t−1 ≥

L2σ2

2
η2
τ ′
a,b,θ

=
σ2

2
·

(
a

b+ (τ ′a,b,θ)
θ

)2

.

Combining both cases, we get that (18) is at least c′a,b,θσ
2 ·min{1, LηT }, where c′a,b,θ is again some constant depen-

dent on a, b, θ, implying the stated result.
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B. Upper Bounds for SGD
In order to place our lower bounds in perspective, we state and prove a rather standardO(ε−4) complexity bound for SGD,
which unlike the result discussed in the introduction, does not assume anything special about the Hessians or the noise,
and is completely independent of the dimension.

We start the analysis with a technical lemma that we will use to derive bounds both in the stochastic and deterministic
settings.

Lemma 3. Consider the Stochastic Gradient Descent

xt+1 = xt − ηt (∇f(xt) + ξt) , t ∈ [T − 1],

where 0 < ηt < 1/L, f is a non-convex function with L-Lipschitz gradient, and ξt is a random noise with E(ξt) = 0,
V (ξt) = σ2. Then for any choice of κt, t ∈ [T − 1] such that 1− Lηt ≤ κt ≤ (1− Lηt)−1 we have

min
t∈[T ]

E‖∇f(xt)‖2 ≤
4L(f(x1)− f(x∗)) +

∑T−1
t=1

L2η2t (1−Lηt+κt)
1−Lηt σ2

3(T − 1)−
∑T−1
t=1 (1− Lηt)(1− Lηt + κt + 1

κt
)
,

where x∗ is a stationary point with f(x∗) ≤ f(xT ).

Proof. By Thm. 6 we have

1

2L
‖∇f(xt)−∇f(xt+1)‖2 − L

4
‖xt − xt+1 −

1

L
(∇f(xt)−∇f(xt+1))‖2

a.s.
≤ f(xt)− f(xt+1)− 〈∇f(xt+1),xt − xt+1〉, t ∈ [T − 1],

which by the definition of xt+1 becomes

1

2L
‖∇f(xt)−∇f(xt+1)‖2 − 1

4L
‖Lηtξt − (1− Lηt)∇f(xt) +∇f(xt+1)‖2

a.s.
≤ f(xt)− f(xt+1)− 〈∇f(xt+1), ηt (∇f(xt) + ξt)〉, t ∈ [T − 1],

Adding up the inequality above for all t ∈ [T − 1] brings us to

1

2L

T−1∑
t=1

‖∇f(xt)−∇f(xt+1)‖2 − 1

4L

T−1∑
t=1

‖Lηtξt − (1− Lηt)∇f(xt) +∇f(xt+1)‖2

+

T−1∑
t=1

ηt〈∇f(xt+1),∇f(xt) + ξt〉
a.s.
≤ f(x1)− f(xT ),

which, after adding
1

4

T−1∑
t=1

ηt(1− Lηt + κt)

(
Lηt

1− Lηt
‖ξt‖2 + 2〈∇f(xt), ξt〉

)
to both sides and rearranging the terms, brings us to

1

4L

T−1∑
t=1

(2− (1− Lηt)(1− Lηt + κt)) ‖∇f(xt)‖2 +
1

4L

T−1∑
t=1

(
1− 1− Lηt

κt

)
‖∇f(xt+1)‖2

+
1

4L

T−1∑
t=0

(1− Lηt)κt
∥∥∥∥∇f(xt)−

1

κt
∇f(xt+1)− Lηt

1− Lηt
ξt

∥∥∥∥2

a.s.
≤ f(x1)− f(xT ) +

1

4

T−1∑
t=0

ηt(1− Lηt + κt)

(
Lηt

1− Lηt
‖ξt‖2 + 2〈∇f(xt), ξt〉

)
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Finally, taking the expected value of both side, and noting that E‖ξt‖ = σ, E〈∇f(xt), ξt〉 = 0, and Ef(xT ) ≥ f(x∗), we
reach

1

4L

(
3(T − 1)−

T−1∑
t=1

(1− Lηt)(1− Lηt + κt)−
T−1∑
t=1

1− Lηt
κt

)
min
t∈[T ]

E‖∇f(xt)‖2

≤ f(x1)− f(x∗) +
1

4

T−1∑
t=1

ηt(1− Lηt + κt)
Lηt

1− Lηt
σ2,

concluding the proof.

An explicit optimal expression for κi appears to be complex in the general case, however, for two important cases a good
approximation can be obtained. First, when σ is large, the term in the numerator dominates the expression, thus the optimal
value for κt approaches 1− Lηt as σ →∞, recovering the following result by Ghadimi and Lan:

Theorem 8 ((Ghadimi & Lan, 2013), Theorem 2.1). Consider the fixed-step Stochastic Gradient Descent

xt+1 = xt − ηt (∇f(xt) + ξt) , t ∈ [T − 1],

where f is a nonconvex function with L-Lipschitz gradient, ξt is a random noise with E(ξt) = 0, V (ξt) = σ2 and
0 < Lηt < 1. Then

min
t∈[T ]

‖∇f(xt)‖2 ≤
2(f(x1)− f(x∗)) + L

∑T−1
t=1 η2

t σ
2∑T−1

t=1 ηt(2− Lηt)
. (19)

where x∗ is a stationary point with f(x∗) ≤ f(xT ).

Proof. The result follows directly from Lemma 3, taking κt = 1− Lηt.

A second case where a simple expression for κt can be easily attained is when σ = 0, i.e., in the deterministic case. Here
an optimal choice for κ is κi = 1, giving the following result which appears to be a new and slightly improved version of
the classical result by Nesterov (Nesterov, 2004), eq. (1.2.15):

Corollary 1. Consider the fixed-step Gradient Descent

xt+1 = xt − ηt∇f(xt), t ∈ [T − 1],

where f is a nonconvex function with L-Lipschitz gradient and 0 < ηt < 1/L. Then

min
t∈[T ]

‖∇f(xt)‖2 ≤
4(f(x1)− f(x∗))∑T−1
t=1 ηt(4− Lηt)

,

where x∗ is a stationary point with f(x∗) ≤ f(xT ).

Remark 3. The discovery of the proof of Lemma 3 was guided by numerically solving an optimization problem called the
Performance Estimation Problem, whose solution captures the worst-case performance of the SGD method. This technique
was first introduced in (Drori & Teboulle, 2014) and was later shown in (Taylor et al., 2017b) to achieve tight bounds for
a wide range of methods in the deterministic case. This, in conjunction with the nearly matching lower bound established
in Thm. 2, motivates us to raise the conjecture that Lemma 3 gives a tight bound (including the constant) in the stochastic
case.


