
Supplementary material

1. Pointers of the proofs and experiments

Table 1

Paper Supplementary material Position of proof
Proposition 3.1 PROPOSITION 7 A.10
Theorem 3.2 THEOREM 3
Theorem 3.3 THEOREM 4 A.14
Proposition 4.1 PROPOSITION 8 A.18
Theorem 4.2 THEOREM 7
Theorem 4.3 THEOREM 8 A.19
Theorem 5.1 THEOREM 10
lK→ l convergence rate LEMMA 5 A.7

2. List of Notation
3. Inverse Multiobjective Optimization
3.1. Decision Making Problem with Multiple Objectives

Consider the following decision making problem with p (≥ 2) objective functions parameterized by

θ:

min
x∈Rn

{f1(x, θ), f2(x, θ), . . . , fp(x, θ)}
s.t. x∈X(θ).

DMP

Assumption 1. Θ is a convex set. For each θ ∈Θ, f(x, θ) is convex in x, i.e., fl(x) is convex

on X(θ) for all l ∈ [p]. Here, X(θ) is also a convex set for each θ ∈Θ.

A common way to derive a Pareto optimal solution is to solve a problem with a single objective

function constructed by the weighted sum of original functions, i.e., to solve the following problem

Gass and Saaty (1955).

min wT f(x, θ)
s.t. x∈X(θ)

WP

where w = (w1, . . . ,wp)T is the nonnegative weight vector in the (p− 1)-simplex Wp ≡ {w ∈ Rp+ :

1Tw= 1}.
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Proposition 1. Let x∈ S(w,θ) be an optimal solution of WP. The following statements hold.

(a) If w ∈W +
p , then x∈XP (θ).

(b) If x is the unique optimal solution of WP, then x∈XP (θ).

Proposition 2. Given that DMP is convex and x∈XP (θ), there exists a weight vector w ∈Wp

such that x is an optimal solution to WP, i.e., x∈ S(w,θ).

Corollary 1. For a convex DMP,⋃
w∈W +

p

S(w,θ)⊆XP (θ)⊆
⋃
w∈Wp

S(w,θ).

3.2. Models for IMOP as an Unsupervised Learning Task

l(y, θ) = min
x∈XP (θ)

‖y−x‖22, loss function

where XP (θ) is the Pareto optimal set of DMP for a given θ.

Using (loss function), our inverse multiobjective optimization problem can be formulated as

follows

min
θ∈Θ

M(θ)≡E
(
l(y, θ)

)
, IMOP

where M(θ) is also called the risk of the loss function l(y, θ) for the hypothesis θ.

Practically, θ can not be learned by directly solving IMOP as Py is not known a priori. Given

available observations {yi}i∈[N ], it is often the case that θ will be inferred through solving the

following empirical risk minimizing problem:

min
θ∈Θ

MN(θ)≡ 1
N

∑
i∈[N ]

l(yi, θ). IMOP-EMP

Nevertheless, one remaining challenge of using (loss function) is that there is no general approach

to comprehensively and explicitly characterize the Pareto optimal set XP (θ). One way is to intro-

duce weight variable representing the appropriate weight and convert the (loss function) into

min
w∈Wp,x∈S(w,θ)

‖y−x‖22.

However, this approach might not be suitable for a data-driven study, since it results in a

drastically complicated model, where every single observation requires one weight variable and the

nonlinear term between it and θ is heavily involved. On the contrary, according to Corollary 1

and its following remarks, we adopt a sampling approach to generate wk ∈ Wp for each k ∈ [K]

and approximate XP (θ) as the union of their S(wk, θ)s. Then, by utilizing binary variables that
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select an appropriate Pareto optimal solution from this union, the loss function is converted into

the following sampling based loss problem.

lK(y, θ) = minxk,zk∈{0,1} ‖y−
∑
k∈[K]

zkxk‖22

s.t.
∑
k∈[K]

zk = 1, xk ∈ S(wk, θ).
surrogate loss function

As previously mentioned, we indeed do not have the explicit representation of XP (θ).

Through the sampling approach described in the last subsection, variants of IMOP using

(surrogate loss function) can be easily defined. The following one is to reformulate IMOP with

weight samples, which helps us perform theoretical analysis of the reformulation of IMOP-EMP.

min
θ∈Θ

MK(θ)≡E
(
lK(y, θ)

)
. IMOP-WS

Next, we provide the reformulation of IMOP-EMP with the (surrogate loss function). As it serves

as the primary model for analysis and computation, we present its comprehensive form to facilitate

our discussion and understanding.

min
θ∈Θ

MN
K (θ)≡ 1

N

∑
i∈[N ]

‖yi−
∑
k∈[K]

zikxk‖22

s.t. xk ∈ S(wk, θ), ∀k ∈ [K],∑
k∈[K]

zik = 1, ∀i∈ [N ],

zik ∈ {0,1}, ∀i∈ [N ], k ∈ [K].

IMOP-EMP-WS

4. Estimators’ Risk Consistency and Generalization Bound
4.1. Risk Consistency of IMOP-EMP-WS

Assumption 2. (i) The parameter set Θ is compact.

(ii) For each θ ∈Θ, X(θ) is compact, and has a nonempty relatively interior. Also, X(θ) is uni-

formly bounded. Namely, there exists B > 0 such that ‖x‖2 ≤B for all x∈X(θ) and θ ∈Θ.

(iii) Functions f(x, θ) and g(x, θ) are continuous on Rn×Θ.

(iv) E[yTy]<+∞.

Lemma 1. Suppose Assumptions 1 - 2 hold. X(θ) is continuous on Θ.

The continuity of X(θ) follows from its lower semicontinuity (l.s.c.) and upper semicontinuity

(u.s.c.), both of which can be derived by using Hogan (1973) under our assumptions.

Lemma 2. Suppose Assumptions 1 - 2 hold. If f(x, θ) is strictly convex in x for each θ ∈Θ, then

XP (θ) is continuous on Θ.
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Proposition 3 (ULLN for MN(θ) in N). Under the same conditions of Lemma 2, MN(θ)

uniformly converges to M(θ) in N . That is,

sup
θ∈Θ

|MN(θ)−M(θ)| p−→ 0.

Proposition 4 (ULLN for MN
K (θ) in N). Under the same conditions of Lemma 2, MN

K (θ)

uniformly converges to MK(θ) in N . That is, ∀K,

sup
θ∈Θ

|MN
K (θ)−MK(θ)| p−→ 0.

Throughout the paper, we use K2 ≥K1 to denote the set of weights {wk}k∈[K1] ⊆ {wk}k∈[K2], and

K2 >K1 to denote the set of weights {wk}k∈[K1] ( {wk}k∈[K2]. Then, we depict the monotonicity

of {MK(θ)} and {MN
K (θ)} in K for each θ ∈Θ in the following lemma.

Lemma 3 (Monotonicity of {MK(θ)} and {MN
K (θ)} in K). We have the following:

(a) The sequence {MK(θ)} is monotone decreasing in K for all θ ∈ Θ. Moreover, {MK(θ̂K)} is

monotone decreasing in K. Specially, MK(θ̂K)≥M(θ∗).

(b) Given any {yi}i∈[N ], the sequence {MN
K (θ)} is monotone decreasing in K for all θ ∈Θ. More-

over, {MN
K (θ̂NK)} is monotone decreasing in K. Specially, MN

K (θ̂NK)≥MN(θ̂N).

Lemma 4. Suppose Assumptions 1 - 2 hold. Suppose also that f(x, θ) is strongly convex in x for

each θ ∈Θ, that is, ∀l ∈ [p], ∃λl > 0, ∀x,y ∈Rn,

fl(y, θ)≥ fl(x, θ) +∇fl(x, θ)T (y−x) +
λl
2
‖y−x‖22.

Then, ∀θ ∈Θ, ∀w,w0 ∈Wp,

‖S(w,θ)−S(w0, θ)‖2 ≤
2L

λ
‖w−w0‖2,

where L=
√
p ·maxl∈[p],θ∈Θ,x∈X(θ) |fl(x, θ)| is a finite number, and λ= minl∈[p]{λl}.

Lemma 5. Under Assumptions 1 - 2, we have that ∀y ∈Y,∀θ ∈Θ,

0≤ lK(y, θ)− l(y, θ)≤ 4(B+R)ζ

λ
·
√

2p

Λ− 1
,

where

K =
(Λ + p− 2)!

(Λ− 1)!(p− 1)!
, ζ = max

l∈[p],x∈X(θ),θ∈Θ
|fl(x, θ)|.

Furthermore,

0≤ lK(y, θ)− l(y, θ)≤ 16e(B+R)ζ

λ
· 1

K
1
p−1

.
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Proposition 5 (Uniform convergence of MK(θ) in K). Under the same conditions of

Lemma 4, MK(θ) uniformly converges to M(θ) in K for θ ∈Θ. That is, sup
θ∈Θ

|MK(θ)−M(θ)| −→ 0.

Next, we present a very mild assumption to bound random observations.

Assumption 3. The support Y of the distribution y is contained within a ball of radius R almost

surely, where R<∞. That is, P(‖y‖2 ≤R) = 1.

Proposition 6 (Uniform convergence of MN
K (θ) in K). Suppose Assumptions 1 - 3 hold.

If f(x, θ) is strongly convex in x for each θ ∈Θ, then MN
K (θ) uniformly converges to M(θ) in K

for θ ∈Θ and N . That is, ∀N , sup
θ∈Θ

|MN
K (θ)−MN(θ)| p−→ 0.

Definition 1 (Double-index convergence). Let {Xmn} be an array of double-index ran-

dom variables. Let X be a random variable. If ∀δ > 0,∀ε > 0, ∃N , s.t. ∀m,n≥N , P(|Xmn−X|>
ε)< δ. Then Xmn is said to converge in probability to X (denoted by Xmn

P
99KX).

Proposition 7 (Uniform convergence of MN
K (θ) in N and K). Under the same condi-

tions of Proposition 6, MN
K (θ) uniformly converges to M(θ) in N and K for all θ ∈Θ. That is,

sup
θ∈Θ

|MN
K (θ)−M(θ)| P

99K 0.

We next show the risk consistency of the estimators. We denote Θ∗ the set of parameters that

minimizes the risk and refer to it as the optimal set. Namely, Θ∗ = {θ∗ ∈Θ :M(θ∗) = minθ∈ΘM(θ)}.

Theorem 1 (Consistency of IMOP-EMP). Suppose Assumptions 1 - 2 hold. If f(x, θ) is

strictly convex in x for each θ ∈Θ, then M(θ̂N)
p−→M(θ∗).

Theorem 2 (Consistency of IMOP-WS). Suppose Assumptions 1 - 2 hold. If f(x, θ) is

strongly convex in x for each θ ∈Θ, then M(θ̂K)
P−→M(θ∗).

Theorem 3 (Consistency of IMOP-EMP-WS). Suppose Assumptions 1 - 3 hold. If f(x, θ)

is strongly convex in x for each θ ∈Θ, then M(θ̂NK)
P
99KM(θ∗).

4.2. Generalization Bound of IMOP-EMP-WS

Definition 2 (Rademacher random variables). Random variables σ1, . . . , σN are called

Rademacher random variables if they are independent, identically distributed and P(σi = 1) =

P(σi =−1) = 1/2 for i∈ [N ].

Let F be a class of functions mapping from Z to [a, b], and Z1, . . . ,ZN be independent and identically

distributed (i.i.d.) random variables on Z.

Definition 3. The Rademacher complexity of F is

RadN(F) =
1

N
E
[

sup
f∈F

∑
i∈[N ]

σif(Zi)

]
,

where the expectation is taken over σ and Z1, . . . ,ZN .
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Lemma 6. Let F be a class of functions mapping from Z to [a, b]. Let Z1, · · · ,ZN be i.i.d. random

variables on Z. Then, for any 0< δ < 1, with probability at least 1− δ, every f ∈F satisfies

E[f(Z)]≤ 1

N

∑
i∈[N ]

f(Zi) + 2RadN(F) + (b− a)

√
log(1/δ)

2N
.

Given K and θ, we define a function f(·, θ) by f(y, θ) = min
k∈[K]
‖y−xk‖22, where xk ∈ S(wk, θ) for

all k ∈ [K]. Now consider the class of functions F = {f(·, θ) : θ ∈Θ}. To bound the risk E[f(y, θ)]

using Lemma 6, we need to either compute the vaule of RadN(F) or find an upper bound of it.

Note that the computation of RadN(F) involves solving a difficult optimization problem over F . In

contrast, obtaining a bound of RadN(F) is relatively easier. Therefore, we seek to bound RadN(F)

in the following lemma.

Lemma 7. The Rademacher complexity of F is bounded by a function of sample size N ,

RadN
(
F
)
≤ K√

N

(
B2 + 2BR

)
.

Theorem 4 (Generalization bound). Suppose Assumptions 1 - 3 hold. For any 0 < δ < 1,

with probability at least 1− δ with respect to the observations,

MK(θ̂NK)≤MN
K (θ̂NK) +

1√
N

(
2K(B2 + 2BR) + (B+R)2

√
log(1/δ)/2

)
for each K.

5. Identifiability Analysis for IMOP

Definition 4 (Hausdorff semi-distance). Let X and Y be two nonempty set. We define

their Hausdorff semi-distance by

dsH(X,Y ) = sup
x∈X

inf
y∈Y

d(x, y).

Lemma 8. dsH(X,Y ) = 0 if and only if X ⊆ Y .

Definition 5 (Identifiability). A DMP is said to be identifiable at θ ∈Θ, if for all θ′ ∈Θ\θ,

dsH(XP (θ),XP (θ′))> 0.

5.0.1. Estimation Consistency of IMOP under Identifiability Let θ0 be the underlying

parameter of the DMP that generates the data. If DMP is identifiable at θ0, and the data is not

corrupted by noise, then M(θ) achieves its minimum uniquely at θ0. We are now ready to state

our result regarding the estimation consistency of θ̂NK .

Theorem 5 (Consistency of θ̂NK). Suppose Assumptions 1 - 2 hold. Suppose also that f(x, θ)

is strongly convex in x for each θ ∈Θ, and that ∀y ∈ Y,y ∈XP (θ0). That is, there is no noise in

the data. If DMP is identifiable at θ0 ∈Θ, then θ̂NK
P
99K θ0.
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Definition 6 (Bijectivity). A DMP is said to be bijective at θ ∈Θ if XP (θ) =
⋃
w∈Wp

S(w,θ),

S(w,θ) is single valued for w almost surely, and ∀w1,w2 ∈Wp, w1 6=w2 implies S(w1, θ) 6= S(w2, θ).

With a slight abuse of notation, we let wy be the true weight for y, and wNKy be the estimated

weight for y given θ̂NK . More precisely, wNKy = arg minwk:k∈[K]{lK(y, θ̂NK)}. The following theorem

shows that the inferred preference converges in probability to the true preference if the DMP we

investigate enjoys the identifiability and the bijectivity defined above.

Theorem 6 (Consistency of wNKy ). Suppose the same conditions of Theorem 5 hold. If DMP

is bijective at θ0, then ‖wy−wNKy ‖2
P
99K 0 for y ∈Y almost surely.

6. Connections between IMOP, Clustering and Manifold Learning
6.1. Connection bewteen IMOP and Clustering

K-means clustering aims to partition the observations into K clusters such that the average squared

distance between each observation and its closest cluster centroid is minimized. Given observations

{yi}i∈[N ], a mathematical formulation of K-means clustering is presented in the following (Bagirov

2008, Aloise and Hansen 2009).

min
xk,zik

1
N

∑
i∈[N ]

‖yi−
∑
k∈[K]

zikxk‖22

s.t.
∑
k∈[K]

zik = 1, ∀i∈ [N ],

xk ∈Rn, zik ∈ {0,1}, ∀i∈ [N ], k ∈ [K],

K-means clustering

where K is the number of clusters, and {xk}k∈[K] are the centroids of the clusters.

Proposition 8. Given any K-means clustering problem, we can construct an instance of IMOP-

EMP-WS, such that solving the K-means clustering problem is equivalent to solving the instance

of IMOP-EMP-WS.

Lemma 9 (Aloise et al. (2009), Mahajan et al. (2012)). K-means clustering is NP-hard.

One should distinguish K-means clustering problem from K-means algorithm (a.k.a. Lloyd’s algo-

rithm) Lloyd (1982), where the later one is a fast heuristic to solve the former problem. Indeed,

K-means clustering problem is NP-hard to solve even for instances in the plane Mahajan et al.

(2012), or K = 2 in general dimension Aloise et al. (2009).

Theorem 7 (NP-hardness of IMOP). IMOP-EMP-WS is NP-hard to solve.

6.2. Connection between IMOP and Manifold Learning

Given a set of high-dimensional observations {yi}i∈[N ] in Rn, manifold learning attempts to find

an embedding set {xi}i∈[N ] in a low-dimensional space Rd (d< n), and the local manifold structure

formed by {yi}i∈[N ] is preserved in the embedded space Tenenbaum et al. (2000), Roweis and Saul
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(2000), Saul and Roweis (2003). Formally, given a set of data points {yi}i∈[N ], we are required to

find a mapping f :Rd→Rn and another set of points {xi}i∈[N ] in Rd such that

yi = f(xi) + εi, i∈ [N ], (1)

where εi represents random noise.

Theorem 8 (Pareto manifold). Under the same assumptions as Theorem 3, if ∀w1,w2 ∈Wp,

w1 6=w2 implies S(w1, θ) 6= S(w2, θ) for each θ ∈Θ, for each θ ∈Θ, we have that the Pareto optimal

set of DMP is a (p− 1)-dimensional manifold.

From this theorem, one can see that the Pareto optimal set of a DMP with two objectives is

a piecewise continuous curve, and the Pareto optimal set of a DMP with three objectives is a

piecewise continuous surface, etc.

Theorem 9. Suppose that both f(x, θ) and g(x, θ) are linear functions in x for all θ ∈Θ. Then,

XP (θ) is a piecewise linear manifold that has dimension not exceeding p− 1 for all θ ∈Θ.

Note that the feasible set for a multiobjective linear program is a polyhedron. Thus, one way to

interpret Theorem 9 is that the Pareto optimal set of such a program consists of Pareto optimal

faces of the polyhedron that are arc-wise connected. Therefore, the Pareto optimal set naturally

has a piecewise linear structure and forms a manifold. Note that each piece might have different

dimensions. In this case, the Pareto optimal set of a linear program is a special manifold that is

the disjoint union of topological manifolds with different dimensions.

7. Solutions Approaches to IMOP-EMP-WS
7.1. Solving IMOP through a Clustering-type Approach

For each k ∈ [K], we denote Ck the set of noisy decisions with zik = 1 after solving IMOP-EMP-WS

to optimal. That is, observations in Ck are closest to xk. Consequently, we partition {yi}i∈[N ] into

K clusters {Ck}k∈[K]. Let yk = 1
|Ck|

∑
yi∈Ck

yi be the centroid of cluster Ck, and denote V ar(Ck)

the variance of Ck. Through an algebraic calculation, we get

MN
K (θ) =

1

N

∑
i∈[N ]

‖yi−
∑
k∈[K]

zikxk‖22 =
1

N

∑
k∈[K]

|Ck|
(
‖yk−xk‖22 +V ar(Ck)

)
. (2)

We propose a procedure that alternately clusters the noisy decisions (assignment step) and find

θ and {xk}k∈[K] (update step) until convergence. Given θ and {xk}k∈[K], the assignment step can

be done easily as we discussed previously. Moreover, the update step can be established by solving

the problem as follows.

min
θ,xk′

1
N

∑
k∈[K]

|Ck|‖yk−
∑

k′∈[K] zkk′xk′‖22

s.t. xk′ ∈ S(wk′ , θ), ∀k′ ∈ [K],∑
k′∈[K]

zkk′ = 1, ∀k ∈ [K],

zkk′ ∈ {0,1}, ∀k ∈ [K], k′ ∈ [K].

Kmeans-IMOP
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The expectation-maximization (EM)-style algorithm is formally presented in the following.

Algorithm 1 Solving IMOP-EMP-WS through a Clustering-type Approach

Input: Noisy decisions {yi}i∈[N ], weight samples {wk}k∈[K].

1: Initialization: Partition {yi}i∈[N ] into K clusters using K-means clustering. Calculate

{yk}k∈[K]. Solve Kmeans-IMOP and get an initial estimation of θ and {xk}k∈[K].

2: while stopping criterion is not satisfied do

3: Assignment step: Assign each yi to the closest xk to form new clusters. Calculate their

centroids {yk}k∈[K].

4: Update step: Update θ and {xk}k∈[K] by solving Kmeans-IMOP.

5: end while

Output: An estimate of the parameter θ of DMP.

Lemma 10. Both the Assignment step and the Update step in Algorithm 1 decrease MN
K (θ).

Theorem 10 (Finite convergence). Suppose there is an oracle to solve Kmeans-IMOP. Algo-

rithm 1 converges to a (local) optimal solution of IMOP-EMP-WS in a finite number of iterations.

Proof. Since there is at most KN ways to partition {yi}i∈[N ] into K clusters, the monotonically

decreasing Algorithm 1 will eventually arrive at a (local) optimal solution in finite steps. �

7.2. An Enhanced Algorithm for Solving IMOP with Manifold Learning

Algorithm 2 An initialization with manifold learning

1: Input: Noisy decision {yi}i∈[N ], evenly sampled weights {wk}k∈[K].

2: Apply any nonlinear manifold learning algorithm: yi ∈Rn→ xi ∈Rp−1,∀i∈ [N ].

3: Group {xi}i∈[N ] into K clusters by solving K-means clustering. Denote IK the set of labels of

{xi}i∈[N ]. Find the clusters {Ck}k∈[K] and centroids {yk}k∈[K] of {yi}i∈[N ] according to IK .

4: Solve Kmeans-IMOP and get θ̂ and {xk}k∈[K].

5: Run Step 2 - 5 in Algorithm 1.

Output: An estimate of the parameter θ of DMP.

Theorem 11. Suppose there is an oracle to solve Kmeans-IMOP. Algorithm 2 converges to a

(local) optimal solution of IMOP-EMP-WS in a finite number of iterations.
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8. Computational Experiments
8.1. Learning the Objective Functions of an MLP

Consider the following Tri-objective linear programming problem:

min {−x1,−x2,−x3}
s.t. x1 +x2 +x3 ≤ 5,

x1 +x2 + 3x3 ≤ 9,

x1, x2, x3 ≥ 0.

In this example, there are two efficient faces, one is the triangle defined by vertices (2,4,5), the

other one is the tetragon defined by vertices (1,3,5,4) as shown by Figure 1.

We generate the data as follows. First, N = 10000 Pareto optimal points {xi}i∈[N ] are uniformly

sampled on faces (2,4,5) and (1,3,5,4). Next, the observations {yi}i∈[N ] are obtained by adding

noise to each Pareto optimal point, where the noise has a jointly normal distribution with zero

mean and 0.52 units identity covariance. Namely, yi = xi + εi, where εi ∼ N (03,0.5
2I3) for each

i ∈ [N ]. We assume that the parameters to be learned are non-positive. In addition, we add the

normalization constraints 1Tc1 = −1,1Tc2 = −1 and 1Tc3 = −1 to prevent the arise of trivial

solutions, such as c1 = c2 = c3 = [0,0,0]T . Then, we uniformly choose the weights {wk}k∈[K] such

that wk ∈W3 for each k ∈ [K]. Here, we set K = 81.

Algorithms 1 - 2 are used to solve IMOP-EMP-WS. In Algorithm 1, we run K-means++ algo-

rithm 10 times to find the best clustering results. Centroids of the K = 81 clusters are plot-

ted in Figure 1b. In Algorithm 2, we use Kernel PCA (Schölkopf et al. 1997) to project the

data into a 2-dimension space, and then apply K-means++ clustering algorithm to find K =

81 clusters. Centroids of the K = 81 clusters are plotted in Figure 1c. As shown in Figures 1b

- 1c, Algorithm 2 provides the better estimation of the manifold before solving IMOP-EMP-

WS than Algorithm 1. Nevertheless, both solve IMOP-EMP-WS as they all recover the true

Pareto optimal set even with the initial estimation of the parameter in the Initialization step.

Thus, we won’t run the later steps in Algorithm 1. The estimating results using Algorithm

1 are ĉ1 = [0,0,−1]T , ĉ2 = [−0.3333,−0.3333,−0.3333]T and ĉ3 = [−0.2871,−0.2871,−0.4258]T

and ĉ3 = [−0.2871,−0.2871,−0.4258]T . The estimating results using Algorithm 2 are ĉ1 =

[−0.4,−0.4,−0.2]T , ĉ2 = [−0.2,−0.2,−0.6]T and ĉ3 = [−0.3333,−0.3333,−0.3333]T .

8.2. Learning the Preferences and Constraints of an MQP

We consider the following multiobjective quadratic programming problem.

min
x∈R2

+

(
f1(x) = 1

2
xTQ1x + cT1 x

f2(x) = 1
2
xTQ2x + cT2 x

)
s.t. Ax≥ b,

where parameters of the objective functions and the constraints are

Q1 =

[
1 0
0 2

]
,c1 =

[
3
1

]
,Q2 =

[
2 0
0 1

]
,c2 =

[
−6
−5

]
,A=

[
−3 1
0 −1

]
,b =

[
−6
−3

]
.
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Figure 1 Learning the Objective Functions of a Tri-objective Linear Program Using N = 10000 Observations. (a)

The Light Blue Dots Indicate the 1000 Observations Randomly Selected From the Data Set. Two Pareto Optimal

Faces are the Triangle (2,4,5), and the Tetragon (1,3,5,4). (b) Orange Dots Indicate the Centroids After Using

K-means Clustering. (C) Orange Dots Indicate the Centroids after Using Kernel PCA and K-means Clustering.

8.2.1. Learning the Objective Functions In the experiments, suppose c1 and c2 are

unknown, and the learner seeks to learn them given the noisy decisions. Assume that c1 and c2

are within range [−10,10]2. We generate the data in a way similar to the first set of experiments.

The only difference is that each element of the noise has a uniform distribution supporting on

[−0.25,0.25] with mean 0 for all i∈ [N ].

We would like to use Algorithm 1 to solve large-scale IMOP-EMP-WS. We note that the SR

approach can not handle cases when N ≥ 10 and K ≥ 11 in the Update step. Hence, the ADMM

approach (Algorithm 3) is applied to solve Kmeans-IMOP. The stopping criterion for Algorithm

1 is that the maximum iteration number reaches five. In the Initialization step, we run K-

means++ algorithm 50 times to find the best clustering results. When solving Kmeans-IMOP using

ADMM, we partition the observations in such a way that each group has only one observation.

We pick the penalty parameter ρ = 0.5 as the best out of a few trials. We use the initialization

c0
1 = c0

2 = vt,01 = vt,02 = 02 for the iterations. The tolerances of the primal and dual residuals are set

to be εpri = εdual = 10−3. The termination criterion is that either the norms of the primal and dual

residuals are smaller than 10−3 or the iteration number k reaches 50.

In Figure 2a, we report the prediction errors averaged over 10 repetitions of the experiments for

different N and K. Here, we use an independent validation set that consists of 105 noisy decisions

generated in the same way as the training data to compute the prediction error. We also calculate

the prediction error using the true parameter and M(θtrue) = 0.022742. More precisely, we evenly

generate K = 104 weight samples and calculate the associated Pareto optimal solutions on the true

Pareto optimal set. These Pareto optimal solutions are then used to find the prediction error of the

true parameter. We observe that the prediction error has the trend to decrease to M(θtrue) with
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the increase of the data size N and weight sample size K. This makes lots of sense because IMOP-

EMP-WS is risk consistent by Theorem 3 for this example. To further illustrate the performance of

the algorithm, we plot the change of assignments versus iteration in the Assignment step over 10

repetitions of the experiments with N = 5×104,K = 21 in Figure 2b. One can see the assignments

become stable in 5 iterations, indicating the fast convergence of our algorithm. Also, we plot the

estimated Pareto optimal set with N = 5× 104,K = 21 in the first repetition in Figure 2c. Here,

ĉ1 = [2.0023,0.0454]T and ĉ2 = [−5.7197,−4.6949]T . They are not equal to the true parameters as

this MQP is non-identifiable. However, our method still recovers the unknown parameters quite

well as the estimated Pareto optimal set almost coincides with the true one.
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Figure 2 Learning the Objective Functions of an MQP. (a) Prediction Error M(θ̂NK) for Different N and K. (b)

The Dotted Yellow Line is the Error Bar Plot of the Change of the Assignments in Five Iterations over 10

Repetitions. (c) We Pick the First Repetition of the Experiments with N = 5× 104 and K = 21. Purple Dots

Indicate the Data. The Estimated Pareto Optimal Set is Indicated by the Red Dotted Line. The Real Pareto

Optimal Set is Shown by the Yellow Line.

We next compare the performance of Algorithm 1 and Algorithm 2. We find that the manifold

learning based method generally performs better when the data has lots of noise. Specifically, in

the third set of experiments, suppose c1 and c2 are unknown, and the learner seeks to learn them

given the noisy decisions. Assume that c1 and c2 are within range [−10,10]2. We generate the data

in a way similar to the previous two sets of experiments. The difference is that each element of the

noise has a uniform distribution supporting on [−1,1] with mean 0 for all i∈ [N ].

To further illustrate the performance of the two algorithms, we plot the centroids obtained in

two algorithms when N = 1000 and K = 6 in Figure 3a, 3b, and 3c, respectively. Figures 3b and

3c shows clearly that the principal points (centroids) in Algorithm 2 almost lie on and recover the

true Pareto optimal set, while centroids in Algorithm 1 lie around the true Pareto optimal set.

This explains why Algorithm 2 would give us better estimation results. Also, we can see in Figures

3b and 3c that the estimated Pareto optimal set almost coincides with the true Pareto optimal set.
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Figure 3 (a) Estimation Result for Algorithm 1. Purple Dots Indicate the Noisy Decisions. The Real Pareto

Optimal Set is Shown by the Yellow Line. Blue Diamonds are the Centroids Obtained in the Initialization Step.

The Estimated Pareto Optimal Set is Indicated by the Red Dotted Line. (b) Estimation Result for Algorithm 2

Using tSNE. Blue Diamonds are the Centroids Obtained through Manifold Learning and Clustering in Step 3. (c)

Estimation Result for Algorithm 2 Using Factor Analysis. Blue Diamonds are the Centroids Obtained through

Manifold Learning and Clustering in Step 3.

Table 2 11 sectors for the assets

Materials Communication Consumer Cyclical Consumer Defensive Energy Financial Services

Healthcare Industrial Real Estate Technology Utilities

8.3. Experiments with Real Data: Learning the Expected Returns

We consider various decisions arising from different investors in a stock market. Specifically, we

consider a portfolio selection problem. The classical Markovitz mean-variance portfolio selection

Markowitz (1952) is

min
x

(
f1(x) =−rTx
f2(x) = xTQx

)
s.t. 0≤ xi ≤ bi,∀i∈ [n],

n∑
i=1

xi = 1,

where r∈Rn+ is a vector of individual security expected returns, Q∈Rn×n is the covariance matrix

of securities returns, x is a portfolio specifying the proportions of capital to be invested in the

different securities, and bi is an upper bound put on the proportion of security i∈ [n].

Dataset: Stock price data is scraped from S&P 500 Index. Quarterly portfolio data is scraped

from the mutual fund VHCAX (Vanguard Capital Opportunity Fund Admiral Shares) from March

2010 to December 2019. The assets are grouped into 11 sectors.

We first learn the average quarterly returns r for the 11 sectors from the portfolio data. We treat

the learned returns as the market equilibrium returns. Note that the Black-Litterman model is an

asset allocation approach that allows investment analysts to incorporate subjective views (based

on investment analyst estimates) into market equilibrium returns. By blending analyst views and



Authors’ names blinded for peer review
14 Article submitted to ; manuscript no.

1.0 1.5 2.0 2.5 3.0 3.5

Standard Deviation of Portfolio Returns

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

M
ea

n
of

P
or

tf
ol

io
R

et
ur

ns
True efficient frontier

Estimated efficient frontier: K = 3

Estimated efficient frontier: K = 6

Estimated efficient frontier: K = 11

Estimated efficient frontier: K = 21

Figure 4 The efficient frontier and estimated efficient frontier.

equilibrium returns instead of relying only on historical asset returns, the Black-Litterman model

provides a systematic way to estimate the mean of asset returns. Our market views of the 11 sectors:

Energy, Healthcare, Technology and Utilities have higher returns than the equilibrium returns. We

therefore add an additional return that follows the uniform distribution U(0,0.1) to each of the 4

sectors. We then seek to learn the blended expected return for each of the 4 sectors.

As we can see from Figure 4, the estimated efficient frontier almost coincides with the true

efficient frontier, meaning that our model for IMOP indeed learns the expected returns well.

Appendix A: Omitted Proofs

A.1. Proof of Lemma 1

Proof. Since g(x, θ) is continuous and thus l.s.c. on Rn×Θ by ASSUMPTION 2, X(θ) is u.s.c. for each

θ ∈ Θ by Theorem 10 in Hogan (1973). From ASSUMPTION 1, we know that g(x, θ) is convex in x for

each θ ∈Θ. From ASSUMPTION 2, X(θ) has a nonempty relatively interior. Namely, there exists a x̄∈Rn

such that g(x̄, θ)< 0. Then, X(θ) is l.s.c. for each θ ∈Θ by Theorem 12 in Hogan (1973). Hence, X(θ) is

continuous on Θ. �

A.2. Proof of Lemma 2

Proof. First, we will show that XP (θ) is u.s.c. on Θ. Since f(x, θ) is strictly convex in x for each θ ∈Θ,

the Pareto optimal set XP (θ) coincides with the weakly Pareto optimal set. In addition, we know that X(θ)

is continuous on Θ by Lemma 1. Also, note the pointed convex cone we use throughout this paper has the

same meaning as the domination structure D in Tanino and Sawaragi (1980), and we set D = Rp+. To this

end, we can readily verify that the sufficient conditions for upper semicontinuity in Theorem 7.1 of Tanino

and Sawaragi (1980) are satisfied. Thus, XP (θ) is u.s.c..
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Next, we will show that XP (θ) is l.s.c. on Θ. Theorem 7.2 of Tanino and Sawaragi (1980) provides the

sufficient conditions for the lower semicontinuity of XP (θ). All of these conditions are naturally satisfied

under Assumptions 1 - 2 except the one that requires f(x, θ) to be one-to-one, i.e., injective in x. Next, we

will show that the one-to-one condition can be safely replaced by the strict quasi-convexity of f(x, θ) in x.

Theorem 7.2 of Tanino and Sawaragi (1980) is a direct result of part (ii) in Lemma 7.2 of Tanino and

Sawaragi (1980). To complete our proof, we only need to sightly modify the last part of the proof in Lemma

7.2. In what follows we will use notations in that paper.

Since strict convexity implies strict quasi-convexity, f is strictly quasi-convex. Suppose that f(x̄, û) =

f(x̂, û) does not imply x̄= x̂. Let z = x̄+x̂
2

. By the strict quasi-convexity of f , we have

f(z, û) = f(
x̄+ x̂

2
, û)<max{f(x̄, û), f(x̂, û)}= f(x̂, û).

This contradicts the fact that x̂∈M(û), where M(û) is the Pareto optimal set given û. Hence, x̄ must be

equal to x̂. The remain part of the proof is the same as that of Lemma 7.2. �

A.3. Proof of Proposition 3

Proof. We apply Theorem 2 of Jennrich (1969) in our proof. We start by checking that the three

conditions for using this theorem are satisfied. First, by Lemma 2, XP (θ) is continuous. Then, applying

Berge Maximum Theorem (Berge 1963) to IMOP-EMP implies that the empirical risk MN(θ) is continuous.

Second, by Assumption 2, Θ is a compact set. Third, ∀y ∈Y,minx∈XP (θ)‖y−x‖22 ≤ ‖y‖22 +B2 +2B‖y‖2 and

the right-hand side is integrable with respect to y under Assumption 2. Consequently, all three conditions

are satisfied and the proof is concluded. �

A.4. Proof of Proposition 4

Proof. Similar to Proposition 3, the key step is to show the continuity of MN
K (θ) in θ for each K. It

suffices to show that
⋃
k∈[K] S(wk, θ) is continuous in θ for all K. First, let us establish the continuity of

S(wk, θ) in θ for each k ∈ [K]. Note that the feasible region X(θ) is irrelevant to w. Thus, applying the Berge

Maximum Theorem (Berge 1963) to (WP) implies that S(wk, θ) is upper semicontinuous in θ. Hence, S(wk, θ)

is continuous in θ as it is a single-valued set. Second, let us show the continuity of
⋃
k∈[K] S(wk, θ) in θ. By

Propositions 2 and 4 of Hogan (1973), we know that a finite union of continuous sets, i.e.,
⋃
k∈[K] S(wk, θ),

is continuous in θ. Finally, applying Theorem 2 of Jennrich (1969) yields the uniform convergence of MN
K (θ)

to MK(θ) in N . �

A.5. Proof of Lemma 3

Proof. (a) Let K2 ≥K1. Under our setting, K2 ≥K1 implies {wk}k∈[K1] ⊆ {wk}k∈[K2]. By the definition

of lK(y, θ), we have lK1
(y, θ)≥ lK2

(y, θ) for all y ∈ Y, and thus MK1
(θ)≥MK2

(θ) for all θ ∈Θ. Therefore,

{MK(θ)} is monotone decreasing in K.

Recall the definition of θ̂K , we know θ̂K2
minimizes MK2

(θ). Therefore, MK2
(θ̂K1

)≥MK2
(θ̂K2

). In addition,

MK1
(θ̂K1

)≥MK2
(θ̂K1

) by the first part of (a). Consequently,

MK1
(θ̂K1

)≥MK2
(θ̂K1

)≥MK2
(θ̂K2

).
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Therefore, MK1
(θ̂K1

)≥MK2
(θ̂K2

) for K2 ≥K1.

Similarly, we can readily show that MK(θ̂K)≥M(θ∗) by noting that

MK(θ̂K)≥M(θ̂K)≥M(θ∗).

The first inequality is a direct result of the first part of (a); the second inequality follows from the fact that

θ∗ minimizes M(θ) by definition.

(b) Let K2 ≥K1. By the definition of lK(y, θ), we have lK1
(yi, θ) ≥ lK2

(yi, θ) for all i ∈ [N ], and thus

MN
K1

(θ)≥MN
K2

(θ) for all θ ∈Θ. Therefore, {MN
K (θ)} is monotone decreasing in K.

Recall the definition of θ̂NK in Table ??, we know θ̂NK2
minimizes MN

K2
(θ). Therefore, MN

K2
(θ̂NK1

)≥MN
K2

(θ̂NK2
).

In addition, MN
K1

(θ̂NK1
)≥MN

K2
(θ̂NK1

) by the first part of (b). Consequently,

MN
K1

(θ̂NK1
)≥MN

K2
(θ̂NK1

)≥MN
K2

(θ̂NK2
).

Hence, MN
K1

(θ̂NK1
)≥MN

K2
(θ̂NK2

) for K2 ≥K1.

Finally, we can show MN
K (θ̂NK)≥MN(θ̂N) by noting that MN

K (θ̂NK)≥MN(θ̂NK)≥MN(θ̂N). �

A.6. Proof of Lemma 4

Proof. ∀w ∈Wp, one can readily check that wT f(·, θ) is strongly convex for each θ and thus

wT f(y, θ)≥wT f(x, θ) +∇wT f(x, θ)T (y−x) +
λ

2
‖y−x‖22.

Thus, the second-order growth condition holds for wT f(·, θ) for all θ ∈Θ. That is,

wT f(x, θ)≥wT f(S(w,θ), θ) +
λ

2
‖(S(w,θ)−x‖22. (3)

In addition, ∀w,w0 ∈Wp, we have

|wT f(x, θ)−wT0 f(x, θ)| = |(w−w0)T f(x, θ)|
≤ ‖w−w0‖2‖f(x, θ)‖2 (Cauchy-Schwarz inequality)

≤L‖w−w0‖2.
(4)

A.7. Proof of Lemma 5

Proof. By definition,

lK(y, θ)− l(y, θ) = min
x∈

⋃
k∈[K]

S(wk,θ)
‖y−x‖22− min

x∈XP (θ)
‖y−x‖22 ≥ 0.

Let ‖y−S(wy
K , θ)‖22 = min

x∈
⋃

k∈[K]

S(wk,θ)
‖y−x‖22, and ‖y−S(wy, θ)‖22 = min

x∈XP (θ)
‖y−x‖22. Let wKy be the closest

weight sample among {wk}k∈[K] to wy. Then,

lK(y, θ)− l(y, θ) = ‖y−S(wy
K , θ)‖22−‖y−S(wy, θ)‖22

≤ ‖y−S(wKy , θ)‖22−‖y−S(wy, θ)‖22
=
(
2y−S(wKy , θ)−S(wy, θ)

)T
(S(wy, θ)−S(wKy , θ))

≤ ‖2y−S(wKy , θ)−S(wy, θ)‖2‖S(wy, θ)−S(wKy , θ)‖2
≤ 2(B+R)‖S(wy, θ)−S(wKy , θ)‖2
≤ 4(B+R)ζ

√
p

λ
· ‖wy−wKy ‖2,

(5)
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where ζ = max
l∈[p],x∈X(θ),θ∈Θ

|fl(x, θ)|. The third inequality is due to Cauchy Schwarz inequality. Under Assump-

tions 1 - 2, we can apply Lemma 4 to yield the last inequality.

Next, we will show that ∀w ∈Wp, the distance between w and its closest weight sample among {wk}k∈[K]

is upper bounded by the function of K and p and nothing else. More precisely, we will show that

sup
w∈Wp

min
k∈[K]

‖w−wk‖2 ≤
√

2

Λ− 1
. (6)

Here, Λ is the number of evenly spaced weight samples between any two extreme points of Wp.

Note that {wk}k∈[K] are evenly sampled from Wp, and that the distance between any two extreme points

of Wp equals to
√

2. Hence, the distances between any two neighboring weight samples are equal and can

be calculated as the distance between any two extreme points of Wp divided by Λ− 1. Proof of (6) can be

done by further noticing that the distance between any w and {wk}k∈[K] is upper bounded by the distances

between any two neighboring weight samples.

Combining (5) and (6) yields that

0≤ lK(y, θ)− l(y, θ)≤ 4(B+R)ζ

λ
·
√

2p

Λ− 1
, (7)

Then, we can prove that the total number of weight samples K and Λ has the following relationship:

K =

(
Λ + p− 2
p− 1

)
(8)

Proof of (8) can be done by induction with respect to p. Obviously, (8) holds when p= 2 as K = Λ. Assume

(8) holds for the ≤ p− 1 cases. For ease of notation, denote

KΛ
p =

(
Λ + p− 2
p− 1

)
.

Then, for the p case, we note that the weight samples can be classified into two categories: wp = 0;wp > 0.

For wp = 0, the number of weight samples is simply KΛ
p−1. For wp > 0, the number of weight samples is KΛ−1

p .

Thus,

K =KΛ
p−1 +KΛ−1

p . (9)

Iteratively expanding KΛ−1
p through the same argument as (8) and using the fact that(

n
k

)
=

(
n− 1
k− 1

)
+

(
n− 1
k

)
,

we have
K =KΛ

p−1 +KΛ−1
p =KΛ

p−1 +KΛ−1
p−1 +KΛ−2

p

...
=KΛ

p−1 +KΛ−1
p−1 + · · ·+K2

p−1 +K1
p

=

(
Λ + p− 3
p− 2

)
+

(
Λ + p− 4
p− 2

)
+ · · ·+

(
p− 1
p− 2

)
+

(
p− 1
p− 1

)
= (Λ+p−2)!

(Λ−1)!(p−1)!

(10)

To this end, we complete the proof of (8).

Furthermore, we notice that

K =
(Λ + p− 2)!

(Λ− 1)!(p− 1)!
≤ (Λ + p− 2)p−1

(p− 1)!
<

(
Λ + p− 2

p− 1

)p−1

· ep−1.

Then, when Λ≥ p(K ≥ 2p−1), through simple algebraic calculation we have

e

K
1

p−1

>
p− 1

Λ + p− 2
>

1

4
· p

Λ− 1
(11)

We complete the proof by combining (7) and (11) and noticing that
√

2p≤ p. �
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A.8. Proof of Proposition 5

Proof. Note that ∀θ ∈Θ, S(w,θ) is single-valued due to the fact that f is strongly convex. ∀y ∈ Y, let

xy ∈XP (θ) be the nearest point to y. By Proposition 2, there exists a wy ∈Wp such that xy = S(wy, θ). Let

wKy be the nearest one to wy among the weight samples {wk}k∈[K]. Then,

MK(θ) =E
(
lK(y, θ)

)
≤E

(
‖y−S(wKy , θ)‖22

)
=E

(
‖y−S(wy, θ)‖22

)
+E

(
‖S(wy, θ)−S(wKy , θ)‖22

)
+2E

(〈
y−S(wy, θ), S(wy, θ)−S(wKy , θ)

〉)
≤E

(
‖y−S(wy, θ)‖22

)
+E

(
‖S(wy, θ)−S(wKy , θ)‖22

)
+2E

(
‖y−S(wy, θ)‖2‖S(wy, θ)−S(wKy , θ)‖2

)
(Cauchy Schwarz inequality)

=M(θ) +E
(
‖S(wy, θ)−S(wKy , θ)‖22

)
+2E

(
‖y−S(wy, θ)‖2‖S(wy, θ)−S(wKy , θ)‖2

)
,

(12)

where the first inequality is due to the fact that lK(y, θ) = mink∈[K]{‖y − xk‖22 : xk = S(wk, θ)} ≤ ‖y −
S(wKy , θ)‖22.

Let AK := supy∈Y,θ∈Θ‖S(wy, θ)−S(wKy , θ)‖2. Then,

E
(
‖S(wy, θ)−S(wKy , θ)‖22

)
≤A2

K . (13)

Moreover,

E
(
‖y−S(wy, θ)‖2‖S(wy, θ)−S(wKy , θ)‖2

)
≤AKE

(
‖y−S(wy, θ)‖2

)
≤AKE

(
‖y‖2 + ‖S(wy, θ)‖2

)
≤AKE

(
‖y‖2 +B

)
.

(14)

Note that E
(
‖y‖2 +B

)
in (14) is a finite number under our assumptions. Putting (13) and (14) into (12),

and further noticing that MK(θ)≥M(θ) by part (a) of Lemma 3, we have

0≤MK(θ)−M(θ)≤AK
(
AK + 2B+ 2E

(
‖y‖2

))
. (15)

By (15), we will conclude the proof if we can show AK −→ 0 in K. By Lemma 4,

AK ≤
2L

λ
sup
y∈Y
‖wy−wKy ‖2. (16)

(16) implies that we only need to show ‖wy − wKy ‖22 −→ 0 in K for any y ∈ Y. It suffices to show that

given any w ∈Wp, the nearest wk to w among {wk}k∈[K] can be arbitrarily small as K→∞. This is readily

satisfied since we evenly sample {wk}k∈[K] from Wp. �
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A.9. Proof of Proposition 6

Proof. We use notations here similar to those in Proposition 5. We have

MN
K (θ) = 1

N

∑
i∈[N]

min
k∈[K]

‖yi−xk‖22

≤ 1
N

∑
i∈[N]

‖yi−S(wKyi
, θ)‖22

= 1
N

∑
i∈[N]

‖yi−S(wyi
, θ)‖22 + 1

N

∑
i∈[N]

‖S(wyi
, θ)−S(wKyi

, θ)‖22

+ 2
N

∑
i∈[N]

〈
yi−S(wyi

, θ), S(wyi
, θ)−S(wKyi

, θ)
〉

≤ 1
N

∑
i∈[N]

‖yi−S(wyi
, θ)‖22 + 1

N

∑
i∈[N]

‖S(wyi
, θ)−S(wKyi

, θ)‖22

+ 2
N

∑
i∈[N]

‖yi−S(wyi
, θ)‖2‖S(wyi

, θ)−S(wKyi
, θ)‖2 (Cauchy Schwarz inequality).

(17)

Moreover, by part (b) of Lemma 3, we have MN
K (θ)−MN(θ)≥ 0. To this end, through a similar argument

as in the proof of Proposition 5, we have

0≤MN
K (θ)−MN(θ)≤AK

(
AK + 2B+ 2R

)
, (18)

where the last inequality follows from the fact that maxi∈[N],θ∈Θ‖S(wyi
, θ)−S(wKyi

, θ)‖2 ≤AK .

The remaining proof is exactly the same as that of Proposition 5. �

A.10. Proof of Proposition 7

Proof. ∀θ ∈Θ, |MN
K (θ)−M(θ)| P

99K 0 if and only if ∀δ > 0,∀ε > 0, ∃J , s.t. ∀N,K ≥ J ,

P(|MN
K (θ)−M(θ)|> ε)< δ. (19)

To prove the above statement, we first note that

P(|MN
K (θ)−M(θ)|> ε) = P(|MN

K (θ)−MN(θ) +MN(θ)−M(θ)|> ε)
≤ P(|MN

K (θ)−MN(θ)|+ |MN(θ)−M(θ)|> ε)
≤ P(|MN

K (θ)−MN(θ)|> ε/2) +P(|MN(θ)−M(θ)|> ε/2).

(20)

For the first term on the last line of (20), by Proposition 6, ∃K1, s.t. ∀K ≥K1, ∀N ,

P(|MN
K (θ)−MN(θ)|> ε/2)< δ/2. (21)

For the second term on the last line of (20), by Proposition 3, ∃N1, s.t. ∀N ≥N1,

P(|MN(θ)−M(θ)|> ε/2)< δ/2. (22)

Now, let J = max{N1,K1}. Putting (21) and (22) in (20), we have ∀N,K ≥ J ,

P(|MN
K (θ)−M(θ)|> ε)< δ. (23)

Hence, we complete the proof. �

A.11. Proof of Theorem 1

Proof. Let θ∗ ∈Θ∗, and θ̂N ∈ arg min{MN(θ) : θ ∈Θ}. Then, M(θ̂N)−M(θ∗)≥ 0. Also,

M(θ̂N)−M(θ∗) =M(θ̂N)−MN(θ̂N) +MN(θ̂N)−M(θ∗)

≤M(θ̂N)−MN(θ̂N) +MN(θ∗)−M(θ∗)

≤ 2 sup
θ∈Θ
|MN(θ)−M(θ)|,

where the first inequality follows the fact that MN(θ̂N)≤MN(θ∗).

Hence, applying Proposition 3 yields that M(θ̂N)−M(θ∗)
p−→ 0. �
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A.12. Proof of Lemma 6

Proof. Let G be a class of functions g mapping from Z to R, where

g(Z) =
f(Z)− a
b− a . (24)

Note that g(Z)∈ [0,1]. By Theorem 3.1 in Mohri et al. (2012), we have

E[g(Z)]≤ 1

N

∑
i∈[N]

g(Zi) + 2RadN(G) +

√
log(1/δ)

2N
. (25)

Using part 3 in Theorem 12 of Bartlett and Mendelson (2002), and the translation invariant property, i.e.,

RadN(F − a) =RadN(F), we have

RadN(G) =RadN

(F − a
b− a

)
=
RadN(F)

b− a . (26)

Plugging (24) and (26) in (25) yields the main result. �

A.13. Proof of Lemma 7

Proof. By the definition of Rademacher complexity, we have

RadN
(
F
)

= 1
N
E
[

sup
f∈F

∑
i∈[N]

σif(yi, θ)

]
= 1

N
E
[

sup
θ∈Θ

∑
i∈[N]

σi min
k∈[K]

‖yi−xk‖22
]

= 1
N
E
[

sup
θ∈Θ

∑
i∈[N]

σi min
k∈[K]

(
‖yi‖22− 2〈yi,xk〉+ ‖xk‖22

)]
= 1

N
E
[

sup
θ∈Θ

∑
i∈[N]

σi min
k∈[K]

(
− 2〈yi,xk〉+ ‖xk‖22

)]
.

Note the fact P(‖x‖2 ≤B) = 1 by Assumption 2. Through a similar argument in statement (ii) of Lemma

4.3 in Biau et al. (2008), we get

1

N
E
[

sup
θ∈Θ

∑
i∈[N]

σi min
k∈[K]

(
− 2〈yi,xk〉+ ‖xk‖22

)]
≤ 2K

(
1

N
E
[

sup
‖x‖2≤B

∑
i∈[N]

σi〈yi,x〉
]

+
B2

2
√
N

)
. (27)

The first term on the right-hand side of (27) can be upper bounded in the following way:

1
N
E
[

sup
‖x‖2≤B

∑
i∈[N]

σi〈yi,x〉
]

= 1
N
E
[

sup
‖x‖2≤B

〈 ∑
i∈[N]

σiyi,x〉
]

≤ 1
N
E sup
‖x‖2≤B

‖x‖2‖
∑
i∈[N]

σiyi‖2 (Cauchy-Schwarz inequality)

≤ B
N
E‖ ∑

i∈[N]

σiyi‖2

≤ B
N

√
E‖ ∑

i∈[N]

σiyi‖22 (Jensen’s inequality)

= B
N

√
NE‖y‖22

≤ BR√
N

(P(‖y‖2 ≤R) = 1).

(28)

Plugging the result of (28) in (27), we get the bound for the Rademacher complexity of F . �
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A.14. Proof of Theorem 4

Proof. We specialize Lemmas 6 and 7 to prove the theorem. Note that

0≤ f(y, θ) = min
k∈[K]

‖y−xk‖22 ≤ (B+R)2.

Let a= 0, b= (B+R)2 in Lemma 6. Then, combining the results in Lemmas 6 and 7 yields this theorem.

�

A.15. Proof of Lemma 8

Proof. Sufficiency: dsH(X,Y ) = 0 implies that infy∈Y ‖x− y‖2 = 0,∀x ∈X. That is, ∃y ∈ Y , st. x = y.

Hence, X ⊆ Y . Necessity: X ⊆ Y implies that ∀x∈X, ∃y ∈ Y , s.t. y= x. Thus, infy∈Y ‖x−y‖2 = 0. Therefore,

dsH(X,Y ) = 0. �

A.16. Proof of Theorem 5

Proof. First, we show that θ0 minimizes M(θ) among Θ. This is readily true since M(θ0) = 0 by noting

that there is no noise in the data. By Theorem 3, a direct result is M(θ̂NK)
P
99KM(θ0) = 0. Second, we show

that θ0 is the unique solution that minimizes M(θ) among Θ. ∀θ′ ∈Θ\θ, M(θ) = Ey∈XP (θ0)

(
minx∈XP (θ)‖y−

x‖22
)
> 0 as dsH(XP (θ),XP (θ′))> 0. Consequently, we have M(θ)>M(θ0) = 0. Finally, since DMP is identifi-

able at θ0, then ∀ε > 0, ∃δ > 0, s.t. M(θ)−M(θ0)> δ for every θ with d(θ, θ0)> ε. Thus, the event {d(θ̂NK , θ0)>

ε} is contained in the event {M(θ̂NK)−M(θ0)> δ}. Namely, P(d(θ̂NK , θ0)> ε)≤ P(M(θ̂NK)−M(θ0)> δ). We

complete the proof by noting that the probability of the right term converges to 0 as M(θ̂NK)
P
99KM(θ0). �

A.17. Proof of Theorem 6

Proof. First, note that

‖S(wNKy , θ0)−S(wy, θ0)‖2 = ‖S(wNKy , θ0)−S(wNKy , θ̂NK) +S(wNKy , θ̂NK)−S(wy, θ0)‖2
≤ ‖S(wNKy , θ0)−S(wNKy , θ̂NK)‖2 + ‖S(wNKy , θ̂NK)−S(wy, θ0)‖2.

(29)

By Theorem 5, we have θ̂NK
P
99K θ0. Note that S(w,θ) is continuous in θ ∈ Θ. By continuous mapping

theorem, the first term in the last line of (29) ‖S(wNKy , θ0)−S(wNKy , θ̂NK)‖2
P
99K 0.

By the argument in the proof of Theorem 5, the second term in the last line of (29)

‖S(wNKy , θ̂NK) − S(wy, θ0)‖2
P
99K 0 almost surely. Otherwise, M(θ̂NK) = Ey∈XP (θ0)

(
minx∈XP (θ̂N

K
)‖y − x‖22

)
=

Ey∈XP (θ0)‖S(wNKy , θ̂NK)−S(wy, θ0)‖22 > 0, and thus will not converge to M(θ0).

Putting the above two results into (29) yields ‖S(wNKy , θ0)−S(wy, θ0)‖2
P
99K 0 almost surely.

Next, note that S(w,θ0) is continuous in w, and that MOP (θ0) is bijective. Then, we have that S(·, θ0) :

Wp→XP (θ0) is a one-to-one correspondence. Thus, S(·, θ0) is a homeomorphism by the inverse mapping

theorem (Sutherland 2009), meaning that the inverse map S−1(·, θ0) :XP (θ0)→Wp is also continuous. There-

fore, ‖S(wNKy , θ0)−S(wy, θ0)‖2
P
99K 0 implies that ‖wy −wNKy ‖2

P
99K 0 by the continuous mapping theorem.

�
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A.18. Proof of Proposition 8

Proof. Denote {yi}i∈[N] these points, denote K the number of clusters, and denote {xk}k∈[K] the set

of optimal centroids. We then construct an equivalent instance of IMOP-EMP-WS as follows. Note that an

IMOP is determined by a DMP, the parameter space of θ, and a set of weight samples {wk}k∈[K].

First, let us consider the DMP whose objective functions are quadratic and feasible region is a ball in Rn

that has the following form

min
x∈Rn


1
2
xTx + cT1 x

...
1
2
xTx + cTKx


s.t. ‖x‖2 ≤ 2 max

i∈[N]
‖yi‖2,

MQP

where cl ∈Rn for l ∈ [K]. The task of IMOP for MQP is to learn {cl}l∈[K] given {yi}i∈[N]. Since the objective

functions and the constraint are convex, MQP is a convex DMP.

Second, we let Θ be the parameter space that consists of cl ∈Rn such that ‖cl‖2 ≤maxi∈[N]‖yi‖2 for each

l ∈ [K]. One can readily check Θ defined in such a way is a convex and compact set.

Assume {xk}k∈[K] are the optimal centroids for {yi}i∈[N] in K-means clustering. Since each of the optimal

centroid is the mean of the points in that cluster, we have xk ≤maxi∈[N]‖yi‖2. Now, let ck =−xk, which is

achievable because ‖ck‖2 ≤maxi∈[N]‖yi‖2 for each k ∈ [K].

Third, we select {wk}k∈[K] in the following way: the K weights are the K vertices of WK .

With a slight abuse of notation, let xk = S(wk,c1, . . . ,cK) be the optimal solution of WP for MQP for

each k ∈ [K]. This mild abuse of notation allows us to express our results in a unified manner. It will be clear

from context whether we are treating K-means clustering problem or IMOP-EMP-WS, and consequently be

clear which definition of xk we mean. Since the objective functions in MQP are strictly convex, each xk is a

Pareto optimal point by Proposition 1.

Now, we are ready to show the equivalence between K-means clustering and the constructed IMOP. Note

that the only difference between the two problems is that {xk}k∈[K] for IMOP are restricted to be Pareto

optimal points for some DMP, while no restriction is put on {xk}k∈[K] for K-means clustering. Thus, the

optimal value of the K-means clustering provides a lower bound for the optimal value of the constructed

IMOP. Then, it suffices to show that they have the same optimal value, which can be done by proving that

the previously defined {ck}k∈[K] and the optimal centroids {xk}k∈[K] solve IMOP-EMP-WS.

Since the K weights are vertices of the simplex WK , each Pareto optimal point xk corresponds to the

unique optimal solution for one single objective optimization problem. More specifically,

xk = arg min
x
{1

2
xTx + cTk x : ‖x‖2 ≤ 2 max

i∈[N]
‖yi‖2}. (30)

One can readily check that the previously defined ck =−xk indeed make the optimal centroid xk of the

K-means clustering problem also an optimal solution in (30). It shows that the construed IMOP-EMP-WS

is solved bt {ck}k∈[K] and the optimal centroids {xk}k∈[K].

To this end, we have shown that the optimal values of IMOP-EMP-WS we constructed and K-means

clustering are indeed equal. Therefore, solving the IMOP-EMP-WS we constructed provides an optimal

partition of {yi}i∈[N] for the K-means clustering. �
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A.19. Proof of Theorem 8

Proof. Under our assumptions, for each Pareto optimal point y, ∃w ∈Wp, s.t. y ∈ S(w,θ) by PROPO-

SITION 2. Recall that w ∈ Rp+,1Tw = 1, thus w lies in a (p− 1)-d manifold with boundary. We show that

the mapping S(w,θ) :w→ y for fixed θ is continuous in w in Lemma 4. Also, ∀w1,w2 ∈Wp, w1 6=w2 implies

S(w1, θ) 6= S(w2, θ) for each θ ∈Θ. Then, we have that S(·, θ) : Wp→XP (θ) is a one-to-one correspondence.

Thus, S(·, θ) is a homeomorphism by the inverse mapping theorem (Sutherland 2009), meaning that the

inverse map S−1(·, θ) :XP (θ)→Wp is also continuous. By the definition of manifold, the Pareto optimal set

is a (p− 1)-d manifold with boundary. �

A.20. Proof of Lemma 10

Proof. First, MN
K (θ) decreases in the Assignment step since each yi is assigned to the closest xk. So

the distance yi contributes to MN
K (θ) decreases. Second, MN

K (θ) decreases in the Update step because the

new θ and {xk}k∈[K] are the ones for which MN
K (θ) attains its minimum. �

Appendix B: Omitted Algorithms

B.1. ADMM for IMOP

IMOP-EMP-WS is closely related to the global consensus problem discussed heavily in Boyd et al. (2011),

but with the important difference that IMOP-EMP-WS is a nonconvex problem. In order to use ADMM, we

first partition {yi}i∈[N] equally into T groups, and denote {yi}i∈[Nt] the observations in t-th group. Then,

we introduce a set of new variables {θt}t∈T , typically called local variables, and transform IMOP-EMP-WS

equivalently to the following problem:

min
θ∈Θ,θt∈Θ

∑
t∈T

∑
i∈[Nt]

lK(yi, θ
t)

s.t. θt = θ, ∀t∈ [T ].
(31)

ADMM for problem (31) can be derived directly from the augmented Lagrangian

Lρ(θ,{θt}t∈[T ],{vt}t∈[T ]) =
∑
t∈[T ]

( ∑
i∈[Nt]

lK(yi, θ
t)+< vt, θt− θ >+(ρ/2)‖θt− θ‖22

)
,

where ρ> 0 is an algorithm parameter, vt is the dual variable for the constraint θt = θ.

Let θ
k

= 1
|T |

∑
t∈T θ

t,k. As suggested in Boyd et al. (2011), the primal and dual residuals are

rkpri =
(
θ1,k− θk, . . . , θ|T |,k− θk

)
, rkdual =−ρ

(
θ
k− θk−1

, . . . , θ
k− θk−1

)
,

so their squared norms are

‖rkpri‖22 =
∑
t∈T

‖θt,k− θk‖22, ‖rkdual‖22 = |T |ρ2‖θk− θk−1‖22.

‖rkpri‖22 is |T | times the variance of {θt,k}t∈T , which can be interpreted as a natural measure of (lack of)

consensus. Similarly, ‖rkdual‖22 is a measure of the step length. These suggest that a reasonable stopping

criterion is that the primal and dual residuals must be small.

The resulting ADMM algorithm in scaled form is formally presented in the following.
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Algorithm 3 ADMM for IMOP-EMP-WS

Input: Noisy decisions {yi}i∈[N ], weight samples {wk}k∈[K].

1: Set k= 0 and initialize θ0 and vt,0 for each t∈ T .

2: while stopping criterion is not satisfied do

3: for t∈ [T ] do

4: θt,k+1← arg minθt
{∑

i∈Nt lK(yi, θ
t) + (ρ/2)‖θt− θk + vt,k‖22

}
.

5: end for

6: θk+1← 1
|T |

∑
t∈T

(
θt,k+1 + vt,k

)
.

7: for t∈ [T ] do

8: vt,k+1← vt,k + θt,k+1− θk+1.

9: end for

10: k← k+ 1.

11: end while
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