
Collapsed amortized variational inference for SNLDS

A. Appendix
A.1. Derivation of the gradient of the ELBO

The evidence lower bound objective (ELBO) of the model
is defined as:

L = Eqθ,φ(z,s|x) [log pθ(x, z, s)− log qθ,φ(z, s|x)]
= Eqφ(z|x)pθ(s|x,z)[log pθ(x, z)pθ(s|x, z)

− log qφ(z|x)pθ(s|x, z)]
= Eqφ(z|x) [log pθ(x, z)] +H(qφ(z|x)) (12)

where the first term is the model likelihood, and the second
is the conditional entropy for variational posterior of con-
tinuous hidden states. We can approximate the entropy of
qφ(z|x) as:

H(qφ(z|x)) = H(qφ(z1)) +

T∑
t=2

H(qφ(zt|z̃1:t−1))

where z̃t ∼ q(zt) is a sample from the variational posterior.
In other words, we compute the marginal entropy for the
output of the RNN inference network at each time step, and
then sample a single latent vector to update the RNN state
for the next step.

In order to apply stochastic gradient descent for end-to-end
training, the minibatch gradient for the first term in the
ELBO (Eq. 12) with respect to θ is estimated as

∇θEqφ(z|x) [log pθ(x, z)] = Eqφ(z|x) [∇θ log pθ(x, z)]

For the gradient with respect to φ, we can use the reparame-
terization trick to write

∇φEqφ(z|x) [log pθ(x, z)]
= Eε∼N [∇φ log pθ(x, zφ(ε,x))]

Therefore, the gradient is expressed as:

∇θL = Eqφ(z|x) [∇θ log pθ(x, z)] ,
∇φL = Eε∼N [∇φ log pθ(x, zφ(ε,x))] +∇φH(qφ(z|x)).

To compute the derivative of the log-joint likelihood
∇θ,φ log pθ(v), where we define v = (x1:T , z1:T) as the
visible variables for brevity. Therefore

∇ log p(v) =Ep(s|v) [∇ log p(v)]

=Ep(s|v) [∇ log p(v, s)]

− Ep(s|v) [∇ log p(s|v)]
=Ep(s|v) [∇ log p(v, s)]− 0

where we used the fact that log p(v) = log p(v, s) −
log p(s|v) and

Ep(s|v) [∇ log p(s|v)] =
∫
p(s|v)∇p(s|v)

p(s|v)

= ∇
∫
p(s|v) = ∇1 = 0.

For∇ log p(v, s), we use the Markov property to rewrite it
as:

∇ log p(v, s) =

T∑
t=2

∇ log p(xt|zt)p(zt|zt−1, st)p(st|st−1,xt−1)

+∇ log p(x1|z1)p(z1|s1)p(s1),

with the expectation being:

∇ log p(v) = Ep(s|v) [∇ log p(v, s)]

=
∑
k

p(s1 = k|v)∇ log p(x1|z1)p(z1|s1 = k)p(s1 = k)

+

T∑
t=2

∑
j,k

p(st−1 = j, st = k|v)∇ [log p(xt|zt)·

p(zt|zt−1, st = k)p(st = k|st−1 = j,xt−1)]

=

T∑
t=2

∑
j,k

γ2t (j, k)∇ logBt(k)At(j, k)

+
∑
k

γ11(k)∇ logB1(k)π(k).

Therefore we reach the Eq. 9.

An alternative derivation is by Jensen’s inequality,

∇ log p(v) = ∇
(
logEp(s|v) [p(v, s)]

)
≥ ∇

(
Ep(s|v) [log p(v, s)]

)
. (13)

In order to estimate the Eq. 9, we could maximize the lower
bound, Eq. 13, by applying the auto-differentiation over

Ep(s|v) [log p(v, s)] =
T∑
t=2

∑
j,k

γ2t (j, k) [logBt(k)At(j, k)]

+
∑
k

γ11(k) [logB1(k)π(k)]

In summary, one step of stochastic gradient ascent for the
ELBO can be implemented as Algorithm 1.

Algorithm 1 SVI for Training SNLDS

1: Compute hxt from x1:T using a Bi-RNN;
2: Recursively sample zt ∼ q(zt|zt−1,x1:T) using RNN

over zt−1 and hxt ;
3: Run forward-backward messages to compute A, B, π,

γ1
1:T , γ2

1:T−1 from (x, z);
4: Compute∇θ,φ log p(x, z) from Eqn. 9;
5: Take gradient step.

Collapsed amortized variational inference for SNLDS

A.2. Gumbel-Softmax SNLDS

Instead of marginalizing out the discrete states with the
forward-backward algorithm, one could use a continuous
relaxation via reparameterization, e.g. the Gumbel-Softmax
trick (Jang et al., 2017), to infer the most likely discrete
states. We call this Gumbel-Softmax SNLDS.

We consider the same state space model as SNLDS:

pθ(x, z, s) = p(x1|z1)p(z1|s1)[
T∏
t=2

p(xt|zt)p(zt|zt−1, st)p(st|st−1,xt−1)

]
,

where st ∈ {1, . . . ,K} is the discrete hidden state, zt ∈ RL
is the continuous hidden state, and xt ∈ RD is the observed
output, as in Figure 2(a). The inference network for the
variational posterior now predicts both s and z and is defined
as

qφz,φs
(z, s|x) = qφz

(z|x)qφs
(s|x) (14)

where

qφz
(z1:T |x1:T) =

∏
t

q(zt|z1:t−1,x1:T)

=
∏
t

q(zt|ht)δ(ht|fRNN (ht−1, zt−1,h
b
t))

qφs
(s1:T |x1:T) =

∏
t

q(st|st−1,x1:T)

=
∏
t

qGumbel−Softmax(st|g(hbt , st−1), τ)

where ht is the hidden state of a deterministic recurrent
neural network, fRNN (·), which works from left (t = 0) to
right (t = T), summarizing past stochastic z1:t−1. We also
feed in hbt , which is a bidirectional RNN, which summarizes
x1:T . The Gumbel-Softmax distribution qGumbel−Softmax

takes the output of a feed-forward network g(·) and a soft-
max temperature τ , which is annealed according to a fixed
schedule.

The evidence lower bound (ELBO) could be written as

LELBO(θ,φ) = Eqφz
(z|x)qφs

(s|x) [log pθ(x, z, s)

− log qφz
(z|x)qφs

(s|x)
]

(15)

One step of stochastic gradient ascent for the ELBO can be
implemented as Algorithm 2.

A.3. Details on the bouncing ball experiment

The input data for bouncing ball experiment is a set
of 100000 sample trajectories, each of which is of 100
timesteps with its initial position randomly placed between
two walls separated by a distance of 10. The velocity
of the ball for each sample trajectory is sampled from

Algorithm 2 SVI for Training Gumbel-Softmax SNLDS

1: Use Bi-RNN to compute hxt from x1:T ;
2: Recursively sample zt ∼ q(zt|zt−1,x1:T) using RNN

over zt−1 and hxt ;
3: Recursively sample st with distribution
qGumbel−Softmax(st|g(hbt , st−1), τ), where g is a
feedforward network;

4: Compute the likelihood for eq. (15);
5: Take gradient step.

U([−0.5, 0.5]). The exact position of ball is obscured with
Gaussian noise N (0, 0.1). The training is performed with
batch size 32. The evaluation is carried on a fixed, held-
out subset of the data with 200 samples. For the inference
network, the bi-directional and forward RNNs are both 16 di-
mensional GRU. The dimensions of discrete and continuous
hidden state are set to be 3 and 4. For SLDS, we use linear
transition for continuous states. For SNLDS, we use GRU
with 4 hidden units followed by linear transformation for
continuous state transition. The model is trained with fixed
learning rate of 10−3, with the Adam optimizer (Kingma
& Ba, 2015), and gradient clipping by norm of 5 for 10000
steps.

A.4. Details on the reacher experiment

Figure 7. Illustration of the observations in reacher experiment.
This is 2-D rendering of the observational vector, but the inputs to
the model are sequences of vectors, as in Kipf et al. (2019), not
images.

The observations in the reacher experiment are sequences
of 36 dimensional vectors, as described in Kipf et al. (2019).
First 30 elements are the target indicator, α, and location,
x, y, for 10 randomly generated objects. 3 out of 10 objects
start as targets, α = 1. The (x, y) location for 5 of the non-
target objects are set to (0, 0). A deterministic controller
moves the arm to the indicated target objects. Once a tar-
get is reached, the indicator is set to α = 0. (Depicted as
the yellow dot disappearing in Figure 7.) The remaining 6
elements of the observations are the two angles of reacher
arm and the positions of two arm segment tips. The train-
ing dataset consists of 10000 observation samples, each 50
timesteps in length.

This more complex task requires more careful training. The
learning rate schedule is a linear warm-up, 10−5 to 10−3

over 5000 steps, from followed by a cosine decay, with

Collapsed amortized variational inference for SNLDS

decay rate of 2000 and minimum of 10−5. Both entropy
regularization coefficient starts to exponentially decay after
50000 steps, from initial value 1000 with a decay rate 0.975
and decay steps 500. The temperature annealing follows
the same exponential but only starts to decay after 100000
steps. The training is performed in minibatches of size 32
for 300000 iterations using the Adam optimizer (Kingma &
Ba, 2015).

The model architecture is relatively generic. The contin-
uous hidden state z is 8 dimensional. The number of dis-
crete hidden states is set to 5 for training, which is larger
than the ground truth 4 (including states targeting 3 ob-
jects and a finished state). The observations pass through
an encoding network with two 256-unit ReLU activated
fully-connected nets, before feeding into RNN inference
networks to estimate the posterior distributions q(zt|x1:T).
The RNN inference networks consist of a 32-unit bidirec-
tion LSTM and a 64-unit forward LSTM. The emission
network is a three-layer MLP with [256, 256, 36] hidden
units and ReLU activation for first two layers and a linear
output layer. Discrete hidden state transition network takes
two inputs: the previous discrete state and the processed
observations. The observations are processed by the encod-
ing network and a 1-D convolution with 2 kernels of size
3. The transition network outputs a 5× 5 matrix for transi-
tion probability p(st|st−1) at each timestep. For SNLDS,
we use a single-layer MLP as the continuous hidden state
transition functions p(zt|zt−1, st), with 64 hidden units and
ReLU activation. For SLDS, we use linear transitions for
the continuous state.

A.5. Details on the Dubins path experiment

The Dubins path model4 is a simplified flight, or vehicle,
trajectory that is the shortest path to reach a target position,
given the initial position (x0, y0), the direction of motion θ0,
the speed constant V , and the maximum curvature constraint
θ̇ ≤ u. The possible motion along the path is defined by

ẋt = V cos(θt), ẏt = V sin(θt), θ̇t = u.

The path type can be described by three different
modes/regimes: ‘right turn (R)’ , ‘left turn (L)’ or ‘straight
(S).’

To generate a sample trajectory used in training or testing,
we randomly sample the velocity from a uniform distribu-
tion V ∼ U([0.1, 0.5]) (pixel/step), angular frequency from
a uniform distribution u/2π ∼ U([0.1, 0.15]) (/step), and
initial direction θ0 ∼ U([0, 2π)). The generated trajectories
always start from the center of image (0, 0). The dura-
tion of each regime is sampled from a Poisson distribution
with mean 25 steps, with full sequence length 100 steps.

4https://en.wikipedia.org/wiki/Dubins_
path

The floating-point positional information is rendered onto
a 28× 28 image with Gaussian blurring with 0.3 standard
deviation to minimize aliasing.

The same schedules as in the reacher experiment are used for
the learning rate, temperature annealing and regularization
coefficient decay.

The network architecture is similar to the reacher task except
for the encoder and decoder networks. Each observation
is encoded with a CoordConv (Liu et al., 2018b) network
before passing into RNN inference networks, the archicture
is defined in Table 3. The emission network p(xt|zt) also
uses a CoordConv network as described in Table 4. The con-
tinuous hidden state z in this experiment is 4 dimensional.
The number of discrete hidden states s is set to be 5, which
is larger than ground truth 3. The inference networks are
a 32-unit bidirection LSTM and a 64-unit forward LSTM.
The discrete hidden state transition network takes the output
of observation encoding network in the same manner as
the reacher task. For SNLDS, we use a two-layer MLP as
continuous hidden state transition function p(zt|zt−1, st),
with [32, 32] hidden units and ReLU activation. For SLDS,
we use linear transition for continuous states.

See Figure 8 for an illustration of the reconstruction abilities
(of the observed images) for the SLDS and SNLDS models.
They are visually very similar; however, the SNLDS has a
more interpretable latent state as described in Section 5.3.

Input SNLDS SLDS

Figure 8. Image sequence reconstruction for Dubins path. The
sequence is averaged with early timepoints scaled to low intensity,
late timepoints unchanged to indicate direction.

A.6. Regularization and Multi-steps Training

Training our SNLDS model with a powerful transition
network but without regularization will fit the dynamics
p(zt|zt−1, st) with a single state. With randomly initialized
networks, one state fits the dynamics better at the beginning
and the forward-backward algorithm will cause more gradi-
ents to flow through that state than others. The best state is
the only one that gets better.

To prevent this, we use regularization to cause the model to
select each mode with uniform likelihood until the inference
and emission network are well trained. Thus all discrete
modes are able to learn the dynamics well initially. When

https://en.wikipedia.org/wiki/Dubins_path
https://en.wikipedia.org/wiki/Dubins_path

Collapsed amortized variational inference for SNLDS

Table 3. CoordConv encoder Architecture. Before passing into the following network, the image is padded from [28, 28, 1] to [28, 28, 3]
with the pixel coordinates.

Layer Filters Shape Activation Stride Padding
1 2 [5, 5] relu 1 same
2 4 [5, 5] relu 2 same
3 4 [5, 5] relu 1 same
4 8 [5, 5] relu 2 same
5 8 [7, 7] relu 1 valid
6 8 2 (Kernel Size) None 1 causal

Table 4. CoordConv decoder Architecture. Before passing into the following network, the input zt is tiled from [8] to [28, 28, 8], where 8
is the hidden dimension, and is then padded to [28, 28, 10] with the pixel coordinates.

Layer Filters Shape Activation Stride Padding
1 14 [1, 1] relu 1 valid
2 14 [1, 1] relu 1 valid
3 28 [1, 1] relu 1 valid
4 28 [1, 1] relu 1 valid
5 1 [1, 1] relu 1 same

Figure 9. Comparing the average Pearson correlations among
the weights from individual dynamical transition modes,
p(zt|zt−1, st = k), trained on Dubins Paths. Run 0 (green) is
trained without regularization. Run 1 (blue) has its entropy co-
efficient starting to exponentially decay at step 50, 000, and the
temperature starting to anneal at step 100, 000.

the regularization decays, the transition dynamics of each
mode can then specialize. One effect of this regularization
strategy is that the weights for each dynamics module are
correlated early during training and decorrelate when the
regularization decays. The regularization helps the model to
better utilize its capacity, and the model can achieve better
likelihood, as demonstrated in Section 5.5 and Figure 6.

Multi-steps training has been used by previous models, and
it serves the same purpose as our regularization. SVAE
first trains a single transition model, then uses that one set
of parameters to initialize all the transition dynamics for
multiple states in next stage of training. rSLDS training
begins by fitting a single AR-HMM for initialization, then
fits a standard SLDS, before finally fitting the rSLDS model.
We follow these implementations of both SVAE and rSLDS

in our paper. Both multi-step training and our regularization
ensure the hidden dynamics are well learned before learning
the segmentation. What makes our regularization approach
interesting is that it allows the model to be trained with a
smooth transition between early and late training.

