
Towards Adaptive Residual Network Training: A Neural-ODE Perspective

Chengyu Dong 1 Liyuan Liu 2 Zichao Li 1 Jingbo Shang 1

Abstract
In pursuit of resource-economical machine learn-
ing, attempts have been made to dynamically ad-
just computation workloads in different training
stages, i.e., starting with a shallow network and
gradually increasing the model depth (and compu-
tation workloads) during training. However, there
is neither guarantee nor guidance on designing
such network grow, due to the lack of its theoret-
ical underpinnings. In this work, to explore the
theory behind, we conduct theoretical analyses
from an ordinary differential equation perspective.
Specifically, we illustrate the dynamics of network
growth and propose a novel performance measure
specific to the depth increase. Illuminated by our
analyses, we move towards theoretically sound
growing operations and schedulers, giving rise
to an adaptive training algorithm for residual net-
works, LipGrow, which automatically increases
network depth thus accelerates training. In our
experiments, it achieves comparable performance
while reducing ∼ 50% of training time.

1. Introduction
Residual networks have been advancing the state of the art
with deeper and deeper models (He et al., 2016a;b; Devlin
et al., 2019; Liu et al., 2020). The increasingly heavy train-
ing cost is impeding efficient iterations in both research and
industrial applications, thus ensuing as a major challenge.
To accelerate the training, various strategies have been pro-
posed (Chen et al., 2015; Huang et al., 2016; Chang et al.,
2017; Istrate et al., 2018) but mostly are heuristic.

In this paper, we present adaptive residual network train-
ing, which starts from optimizing a shallow network, and
gradually increases the depth as the training proceeds. The
network growing scheme in a residual architecture setting

1University of California, San Diego 2University of Illi-
nois at Urbana-Champaign. Correspondence to: Jingbo Shang
<jshang@eng.ucsd.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

is not new (Chang et al., 2017; Wen et al., 2019), but the
dynamics of growing is poorly understood. In particular, the
following questions, of our major interests but not exhaus-
tively enumerated, remain unclear: (1) Why the functions in
a shallow network can be successfully inherited by a deeper
network? In other words, why the network growing can be
feasible in the first place? (2) How the increasing depth and
continual optimization simultaneously affect the growing
performance? (3) What consequences will different transfor-
mations of the network make? (4) When is an appropriate
timing to grow the network?

In this work, we conduct theoretical analyses to explore
the dynamics of network grow, and make a step forward to
clarify these intriguing questions. Specifically, we view a
network with N residual blocks as an ordinary differential
equation (ODE) solver with N time steps. Inspired by the
global truncation error and embedded error introduced in
classic ODE theory (Ascher & Petzold, 1998), we align a
finite and discrete residual network with the optimal ODE
solution, and with a deeper network respectively, in order
to bound the growing performance both globally and lo-
cally. Analyses of the bounds shed insights on the design of
effective growing operator and scheduler.

In light of our analysis, we propose LipGrow, an adaptive
training algorithm for residual networks. After each epoch,
it calculates the Lipschitz constant of the residual blocks
and then decides whether it is the right timing to increase the
depth. Such process is completely automated and requires
no excessive and meticulous parameter tuning. In our exper-
iments on the CIFAR-10, CIFAR-100, and Tiny-ImageNet,
LipGrow1 reduces ∼ 50% of training time, while achieving
competitive or even better accuracy.

In summary, our major contributions are:

• We conduct theoretical analyses on the dynamics of net-
work growing, describe a novel performance measure,
and clarify the reason that such growing can be feasible.

• We propose an effective adaptive training algorithm for
residual networks, LipGrow, in light of our analyses;

• We empirically verified that LipGrow leads to about 50%
training time reduction while retaining the competitive or
even better performance.

1https://github.com/shwinshaker/LipGrow

https://github.com/shwinshaker/LipGrow

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

2. Network Grow in Neural ODE Perspective
Aiming to reduce the computation workload for model train-
ing, network grow adjusts the network structure while trying
to retain the performance of the final model. Although it
could be straightforward to design the structure transforma-
tion, analyzing the corresponding performance change is
challenging. Specifically, it requires us to describe the rela-
tionship between models before and after the transformation,
while these models have not only different parameters but
also different architectures.

Fortunately, the neural ODE perspective, as introduced be-
low, implies the existence of an “optimal" network, which
can be interpreted as a functional limit that finite residual
networks can converge to. Such convergence coincides with
the network sequence produced by the grow, and allows us
to conduct rigorous analysis and propose adaptive residual
network training. Furthermore, the performance metric can
now be defined in the functional space, allowing direct anal-
yses of the effect of functional transformation induced by
the grow, and functional state of the network engendered by
the optimization.

In this section, we first briefly review the neural ODE per-
spective, whereby the picture of network grow is exhibited.

2.1. Neural ODE

The residual network can be constructed as

z
(N)
n+1 = z(N)

n + h(N)f (N)
n (z(N)

n), (1)

where N denotes the depth of the residual network, n ∈
{0, ..., N − 1} is the index of the residual block, h(N) is a
fixed step size, z represents the feature map, f (N)

n represents
the n-th residual block function.

Equation 1 resembles the Euler method for solving an ordi-
nary differential equation (ODE) (Haber & Ruthotto, 2017;
Weinan, 2017). Here f (N)

n (·) is only defined at discrete time
points t(N)

n = ts + (te − ts)(n/N), where ts and te are the
start and end time respectively. But we can always employ
a relaxation and define the residual functions continuously
along the time dimension (specific construction is elabo-
rated in the Appendix). We formulate the yielded ODE as

dz(N)(t)

dt
= f (N)(t, z(N)(t)). (2)

The learning objective can be defined as

ε(f (N)) = Ex∼DΦ(F (N)(x),y(x)),

where Φ is a smooth criterion function. We wish to find an
appropriate solution f∗(N), such that

f∗(N) = arg min
f(N)

ε(f (N)).

h h h

t

…
ts te

f(t)

Figure 1: Convergence of a sequence of residual networks. A
residual network can be viewed as a cascade of residual functions
exerted at discrete time points evenly spaced at a step size of h.
As the depth approaches infinity, it converges to a functional limit
that is smoothly defined in the time dimension.

The network function F (N) is connected to the ODE by

F (N)(x) ≡ z(N)(te) = z(N)(ts)+

∫ te

ts

f (N)(t, z(N)(t))dt.

2.2. Optimal ODE

As the depth of the ResNet goes to infinity, we assume it
approaches a continuous limit, which has been analyzed
in previous works. Specifically, Avelin & Nyström (2019)
prove that a ResNet with shared weights across blocks con-
verges to an autonomous ODE. Müller (2019) prove that the
continuous ODE can be approximated by a ResNet with fi-
nite depth. Lu et al. (2020) provides a new continuous limit
that guarantees the optimality of minimizers. In a network
grow scheme, the behaviour of the minimizer as the depth
increases is of particular interest. Thorpe & van Gennip
(2018) prove that, under specific regularity conditions, a
sequence of minimizers of finite ResNets converges to a
continuous limit, which itself minimizes ε(f (∞)).

Theorem 1 (Convergence of a sequence of minimizers). Let
f∗(N) be the minimizer of ε(f (N)), and {f∗(N)}N∈N be a
sequence of such minimizers. If

sup
N

(∥∥∥f∗(N)
0

∥∥∥2 +N
∑
n

∥∥∥f∗(N)
n − f∗(N)

n+1

∥∥∥2) < +∞,

then
lim

N→∞
f∗(N)(t) = f∗(t), ∀ t,

and f∗ is the minimizer of ε(f (∞)).

We now refer to the minimizer of a residual network in the
continuous limit as the optimal ODE. Theorem 1 shows the
convergence of discrete residual functions to the optimal
ODE, as illustrated in Figure 1. An important implication

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

of such convergence is that, the minimizers of two deep
residual networks are not too far from each other, which
demonstrates the feasibility of effective network grows.

Note that the regularity condition here requires adjacent
residual blocks to be similar, which is not trivial as the
depth goes to infinity. An effective network grow ought to
adhere to such regularity to benefit from the convergence.

2.3. Growing Performance Evaluation

The optimal ODE reasonably bounds the performance of
a network in a residual architecture given the maximized
capacity 2. Note that the optimal ODE is not necessarily
identical to the Bayesian optimal model as the input-output
relation may not exactly follow an ODE and the global op-
timal may be impossible to find by any realistic optimizer.
Therefore, to investigate the performance of a residual net-
work with finite depth, it is reasonable to align it with the
optimal ODE. The learning objective can be rewritten as

ε̃(f (N)) = Ex∼DΦ(F (N)(x),F∗(x)),

where the outputs are compared to the optimal ODE instead
of the true labels.

Given Φ as a smooth l-Lipschitz criterion function, it is
more convenient to investigate such difference in the feature
map space with any norm ‖ · ‖. Strictly speaking, since

Φ(F (N)(x),F∗(x)) ≤ l · ‖F (N)(x)−F∗(x)‖,

the learning objective can be alternatively defined as

e(N) ≡ Ex∼D‖F (N)(x)−F∗(x)‖.

Here, we refer e(N) as the global error to be minimized.

2.4. Co-optimization of Parameter and Depth

We now wish to properly bound the global error. A deep
network is a cascade of function blocks. With identical
inputs, the global error is an accumulation of the functional
difference induced in each block.

Theorem 2 (Upper Bound of Global Error). Assume the
maximum L∞ distance (denoted as ‖ · ‖∞) between f (N)

and f∗ is bounded. Namely,

sup
t

∥∥∥f∗(t)− f (N)(t)
∥∥∥
∞

= C(N,∗),

then the global error is bounded by

e(N) ≤ exp [L (f∗) (te − ts)]− 1

L (f∗)

[
M(z∗)

2
h(N) + C(N,∗)

]
,

(3)

2In an augmented sense. Practical realizations of continuous
ODE (Neural ODE), and discretized ODE (ResNet) always include
leading layers which lift the dimension (Dupont et al., 2019).

20324456688092

Depth

0.04

0.05

0.06

0.06

0.07

ResNet

Error rate (train)
Error rate (test)

20324456688092

Depth

0.05

0.06

0.06

0.07

0.07

0.07

PreAct-ResNet

Error rate (train)
Error rate (test)

0.10

0.10

0.11

0.11

0.11

0.11

0.12

0.12

0.12

0.10

0.10

0.11

0.12

0.12

Figure 2: Relationship between Step Size and the Performance of
ResNet and Pre-Activation ResNet on the CIFAR-10 dataset.

whereM(z∗) = supt ‖z∗
′′(t)‖, andL(f∗) is the maximum

Lipschitz constant of f∗.

The functional difference term included in the theorem val-
idates our above intuition. A residual block in a finite net-
work is an impulse exerted at a specific time point that
approximates the cumulative effect of the optimal ODE
within a time interval. The approximation error is caused by
the relative functional difference and accumulatively leads
to the output difference considering all residual blocks.

Another interesting finding is that the global error is linearly
correlated with the step size. The fact that h(N) ∝ 1/N im-
mediately implies that the model performance consistently
improves as the network becomes deeper. This justifies
the crucial impact of depth in residual network learning.
We empirically verify this correlation on the CIFAR-10
dataset in Figure 2. Note that for pre-activation ResNet (He
et al., 2016b), both the training and test error linearly cor-
relates with stepsize. On the other hand, for the original
ResNet (He et al., 2016a), the correlation is less significant,
since it applies an additional non-linear transformation af-
ter the addition of residual thus not strictly subject to the
discrete ODE formula in Equation 1.

Theorem 2 demonstrates that the global error is an appropri-
ate evaluation metric for the network growing performance.
The effect of capacity augmentation, as revealed by the step
size, and the effect of parameter optimization, as revealed
by the functional error, are disentangled in the upper bound,
which implies the co-optimization nature of the network
growing. It sheds lights to effective growing method design.

3. Towards Effective and Automated Grow
Inspired by our analysis before, we propose to conduct
adaptive training in an automated manner.

3.1. Generic Adaptive Training

Algorithm 1 presents a generic adaptive training setup. In
each epoch, the model is first updated in the conventional

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

training manner. After that, if the growing scheduler S
decides to increase the depth of the network, the growing
operator G will initialize a deeper network based on the
current network for continual training. Following this setup,
the adaptive training algorithm design is nailed down to
specific choices of S and G.

Algorithm 1 Generic Adaptive Training

Require: Growing scheduler S, Growing operator G,
Dataset D, Optimizer (w. loss) A.

1: while within training budget do
2: for x,y ∈ D do
3: f := A(f,x,y) (Conventional Parameter Update)
4: if S(f) then
5: f := G(f) (Increase the Depth of the Network)
6: end if
7: end for
8: end while

Return: Final network f

In our problem, for a desired deep model, we are interested
in maximizing its performance through adaptive training,
or equivalently minimizing the training cost while the per-
formance is comparable. Therefore, it is different from
Neural Architecture Search, which aims at selecting the
final architecture.

3.2. How to Grow – Minimize Functional Difference

The specific initialization method in the growing operator
G is important to ensure an effective training. In the broad
topic of network transformation, multiple strategies are em-
ployed, including identity initialization (Chen et al., 2015)
or its generalized version known as network morphism (Wei
et al., 2016; Jin et al., 2018), random initialization (Wen
et al., 2019), initialization with partial training (Istrate et al.,
2018), and duplication (Chang et al., 2017).

In terms of the performance of the final model, and for resid-
ual network particularly, the bound of global error provided
by Theorem 2 implies that it is important to investigate the
functional difference induced by the initialization. Specifi-
cally, the residual functions of a deeper network f (N

+) after
growing differ from the optimal ODE by

C(N+,∗) = sup
t
‖f∗(t)− f (N

+)(t)‖∞.

Towards minimizing such functional difference, we propose
a simple cloning method, which clones the residual blocks
of the previous network to the new network. However, the
residual functions in a finite depth network are defined at
a set of discrete time points. Directly cloning from the
corresponding time points may only be trivial since the sets
of time points in two networks are not necessarily aligned.

The best choice is then cloning from the nearest time points,
namely for every desired time point t+ ∈ {t(N

+)
n } in the

new network, a non-trivial time point t ∈ {t(N)
n } is found in

the previous network such that t ≡ χ(t+) = arg mint |t−
t+|, and the corresponding residual function is cloned as
f (N

+)(t+) := f (N)(χ(t+)).

Now the functional difference can be bounded, since

C(N+,∗) ≤ C∗t + C(N,∗),

where the second term C(N,∗) is the functional difference
carried over from the previous network, which only depends
on the optimizer A, and should be close to 0 if the opti-
mization of the previous network is effective. The first term
C∗t ≡ supt ‖f∗(t) − f∗(χ(t))‖∞ should also be close to
0, if the network is sufficiently deep. Therefore it can be
concluded, as the network becomes increasingly deep, the
residual functions of the network after growth are guaran-
teed to be close to the optimal ODE.

Such cloning method also maintains the regularity condition
in Theorem 2. Since all of the residual functions are cloned
from previous network, the sum of the differences between
adjacent residual functions will at most be equal, which
ensures efficient continual optimization after the grow given
relative close network minimizers.

The deficiency of other initialization methods can be quali-
tatively analyzed in the same way (See Appendix).

3.3. When to Grow – Bound Temporal Error

In this section, we explore to determine a proper timing of
the grow. Theorem 2 bounds the performance of a network
w.r.t. the optimal ODE, which disentangles the effects of
capacity increase and parameter optimization, however, it is
not a practical guide to the grow schedule since the optimal
ODE is never known beforehand. In fact, in a growing
scheme, the only known network is the one that is currently
being optimized. It is necessary to bound the performance
of a future network F (N+) w.r.t. the current network F (N),
where N+ > N . It can be formulated as

e(N
+) ≤ e(N) + e(N,N+),

where

e(N,N+) ≡ Ex∼D‖F (N+)(x)−F (N)(x)‖.

e(N,N+) is the error introduced in the outputs due to the
grow, which we refer as temporal error.

Theorem 3 (Upper Bound of Temporal Error). Assume the
maximum L∞ distance (denoted as ‖ · ‖∞) between f (N)

and f (N
+) is bounded. Namely,

sup
t

∥∥∥f (N)(t)− f (N
+)(t)

∥∥∥
∞

= C(N,N+), (4)

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

then the temporal error is bounded by

e(N,N+) ≤
exp

[
L(f (N))(te − ts)

]
− 1

L(f (N))
·
[
C(N,N+)+

(5)

0.25 ·M(f (N
+)) · L(f (N)) · h(N)

]
,

where M(f (N)) = supt ‖f (N)(t)‖∞, and L(f (N)) is the
maximum Lipschitz constant of f (N).

It can be observed that the temporal error depends on the
functional difference, which can be further bound by

C(N,N+) ≤ C(N,N+←N) + C(N+,N+←N),

where C(N,N+←N) ≡ supt ‖f (N)(t) − f (N
+←N)(t)‖∞,

which is the relative functional error introduced by the
growth and should be 0 when using our cloning initializa-
tion; C(N+,N+←N) ≡ supt ‖f (N

+)(t) − f (N+←N)(t)‖∞,
which is introduced by the optimizer after the growth. and
F (N+←N) is the network right after the growth.

Our cloning initialization does introduce part of the temporal
error due to the accumulated difference between correspond-
ing feature maps, which is controlled by the maximum Lips-
chitz constant L(f (N)). Theorem 3 shows that the bound of
the temporal error monotonously correlated with L(f (N)).
Intuitively, the temporal error measures the stability of the
network functionality w.r.t. the growing transformation. A
large Lipschitz constant weakens the stability as it amplifies
the error propagating through the network, although it does
benefit the expressivity of the network. Empirical evidence
of the correlation between growing performance and the
Lipschitz constant is presented in Appendix.

In summary, the Lipschitz constant serves as an important
indicator of the performance in a network grow scheme. The
growing scheduler can be designed to control the Lipschitz
constant such that it will not become too large.

4. LipGrow
Here, we elaborate the implementation details of LipGrow,
which is summarized in Algorithm 2.

4.1. Cloning Initialization as Growing Operator

To initialize a residual network with depth N+ from a net-
work with depth N , the mapping χ is first captured by a
one-dimensional nearest neighbour search, which can be
easily calculated. Specifically, χ(t

(N+)
n+) = t

(N)
n , where

n = bN(t
(N+)
n+ − ts)/(te − ts) + 1/2c. The corresponding

residual blocks are then cloned. The first residual block in
each subnetwork will only be cloned to its counterpart in
the new network, since it contains a downsampling layer.

Other residual blocks that are assigned to the first residual
block will be cloned from the block right behind it.

Implicit Step Size. To ensure a roughly constant mag-
nitude of the sum of the residuals, we have to scale the
step size after the growth. To avoid significant modifi-
cation to the model architecture, we propose to scale the
weights and bias of conv and bn layers by N/N+, af-
ter the block cloning. Typically, layers are constructed
as conv-bn-relu-conv-bn-relu in a basic residual
block.

This implementation is equivalent to introducing an explicit
step size and scaling the residual output of each block, as
long as the activation function is ReLU. Note that based
on this way, nothing needs to be changed for the architec-
ture setting, which eases the adaptation to existing models.
Moreover, we observe that this way is slightly better than
introducing explicit step size in our experiments. Note that,
within a block the scaling effect of previous layers will be
cancelled out by subsequent batch normalization due to the
standard deviation term. But intuitively we desire an equal
scaling of all weights. Implementations thus may vary for
specific layer orders.

Choice of N+. In practice, the total number of training
epochs is typically around a few hundreds. The number
of growths is thus limited if the network needs to be suffi-
ciently optimized in each stage. To facilitate the efficiency
of the training and balance the optimization of each residual
function, we choose the depth to be doubled in each grow
and thus the number of blocks exponentially increase during
the adaptive training. In this case, our initialization degener-
ates to the interpolation introduced by Chang et al. (2017),
where every residual block will have a clone after it.

4.2. Lipschitz Tolerated Growing Scheduler

In our scenario, Lipschitz constant serves as an upper bound
for the growing risk. In numerical analysis, the typical
way to control such a risk is referring to an user-defined
tolerance. Inspired by this idea, we define a risk tolerance as
rtol. Each time the scaled Lipschitz (see below) exceeds rtol,
the grow will be triggered. Consequently, network depth
will be increased, and the stepsize will be scaled.

Since the magnitudes of Lipschitz constants at different
depths are distinct, we will scale the Lipschitz by the value
obtained at the first epoch of training. After growing, the
scaling basis will be reset since the depth changes. We
average the Lipschitz across blocks, and use a smoothing
window of 10 epochs to reduce noise. A certain number of
epochs 3 will be reserved for the final model if the desired
depth is not reached yet (sometimes the Lipschitz is low all

330 epochs for a total of 164 epochs (CIFAR-like); 20 epochs
for a total of 90 epochs (ImageNet-like)

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

Algorithm 2 Our LipGrow Algorithm

Require: Dataset D, Optimizer (w. loss) A, Tolerance rtol.
1: L0 = L(F) (Calculate the Lipschitz constant of F)
2: while within training budget do
3: for x,y ∈ D do
4: F = A(F ,x,y) (Conventional Parameter Up-

date)
5: if L(F)/L0 > rtol then
6: F := Clone(F) (Initialize a Deeper Network w.

Cloning)
7: L0 = L(F) (Calculate the Lipschitz constant

of F)
8: end if
9: end for

10: end while
Return: Final network F

the time, and we grow very late to maximize the efficiency).

4.3. Efficient Calculation of Lipschitz

We first show how to calculate the Lipschitz constant of
residual networks and then discuss its overhead.

A residual network contains a few residual blocks, and each
residual block have a few layers. As these layers are com-
posed sequentially, the Lipschitz constant of the composed
function is simply the multiplication of the Lipschitz con-
stant of its every component. Since a residual block contains
(1) convolutional layers, (2) activation layer, typically ReLU,
and (3) batch normalization, here, we show the calculations
of these three types as follows.

Convolutional Layers. Convolutional layers are essentially
linear operations, whose Lipschitz constants should be ap-
proached by their operator norms.

Lip(fconv) = max
X,X 6=0

‖WfX‖
‖X‖

(6)

Exact calculation of operator norm involves SVD and
Fourier transformation (Sedghi et al., 2018), but it will intro-
duce 10 times overhead in our experiments. The precision is
after all not our major concern. Therefore, we perform the
power iteration method (Yoshida & Miyato, 2017; Tsuzuku
et al., 2018; Gouk et al., 2018) to estimate the operator norm
approximately.

ReLU. Its Lipschitz constant is 1 (Tsuzuku et al., 2018).

Batch Normalization. Batch normalization performs the
following linear transformation

fBN(xi) := γi
xi − µi√
σ2
i + ε

+ βi.

Therefore the Lipschitz constant is simply calculated

as (Tsuzuku et al., 2018)

Lip(fBN) = max
i

|γi|√
σ2
i + ε

.

Overhead. The majority of the overhead is introduced by
the iteration method for convolutional layers. In our im-
plementation, we run 100 iterations4 for every convolution
filter in every epoch. Such overhead is negligible compared
to the total training time (Gouk et al., 2018).

In our experiments, we observe that the empirical overhead
for each epoch is only a few seconds, as shown in Table 1.
It is worth mentioning that the overhead is only related to
the number and dimension of convolution filters, and is not
relevant to the dataset size.

4.4. Adaptive Learning Rate Scheduler

To incorporate adaptive growing, the learning rate scheduler
needs some special design. In Chang et al. (2017), cosine
annealing scheduler with restarts (Loshchilov & Hutter,
2016) is adopted to facilitate multi-depth training, where the
restart epochs are aligned with the manually selected epochs
when the depth is increased. However, since we never know
the growing epochs beforehand in our adaptive scenario, we
propose a variant as follows.

Adaptive Cosine Annealing Learning Rate Scheduler.
After each growth, the cycle in a standard cosine learning
rate scheduler is reset as the number of epochs left, namely

η = ηmin +
1

2
(ηmax − ηmin)

(
1 + cos

(
Tcur − Tgrow

Ttot − Tgrow
π

))
,

where ηmin and ηmax are the minimum and maximum learn-
ing rates, respectively. Tcur is the current epoch, Ttot is the
total epochs, and Tgrow refers to the epoch of the last growth.
At the beginning of the training, Tgrow = 0.

Experiments are conducted comparing our proposed sched-
uler, cosine annealing and cosine annealing with restarts in
Appendix. Generally they all have similar performance.

5. Experiments
We conduct experiments on three benchmark datasets,
CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) 5, and
Tiny-ImageNet6. We follow their standard train, validation,
and test splits in our experiments.

4One can greatly reduce the number of iterations if the overhead
is really a concern. As mentioned in (Yoshida & Miyato, 2017), 1
iteration is often sufficient.

5www.cs.toronto.edu/~kriz/cifar.html
6www.kaggle.com/c/tiny-imagenet

www.cs.toronto.edu/~kriz/cifar.html
www.kaggle.com/c/tiny-imagenet

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

Table 1: Overhead Caused by Lipschitz Constant Calculations.

Convolution Filters 18 24 30 36 42 48 54 60 66 72

Overhead(secs)/Epoch 0.4 0.6 0.7 0.9 0.9 1.0 1.1 1.4 1.5 1.7

Table 2: Evaluation Results on the CIFAR datasets.

Method Final Model
CIFAR-10 CIFAR-100

Val Test PPE (×106) Val Test PPE (×106)

Vanilla

ResNet-14 91.57± 0.10 91.57± 0.25 0.18 67.39± 0.31 67.50± 0.74 0.18
ResNet-20 92.50± 0.26 92.22± 0.62 0.27 68.68± 0.45 69.75± 0.13 0.26
ResNet-50 93.23± 0.24 93.59± 0.30 0.76 70.86± 0.60 71.40± 0.58 0.76
ResNet-74 93.25± 0.15 93.76± 0.26 1.15 72.61± 0.38 73.16± 0.40 1.15

LipGrow ResNet-50 92.89± 0.26 92.99± 0.33 0.33± 0.02 70.63± 0.26 71.70± 0.67 0.41± 0.03
ResNet-74 93.53± 0.31 93.46± 0.69 0.54± 0.06 72.47± 0.18 72.75± 0.59 0.54± 0.01

Table 3: Evaluation Results on the Tiny-ImageNet dataset.

Method Tiny ImageNet (ResNet-66 model)

Val Test PPE (×106)

Vanilla 50.13± 0.77 48.18± 0.21 48.90
LipGrow 50.54± 0.16 48.87± 0.40 25.54± 0.66

5.1. Compared Methods

We mainly compare LipGrow with the vanilla-ResNets (re-
ferred as Vanilla), which are trained from scratch without
adjusting its depth (i.e., it directly trains a deep residual
network from scratch). More experiments are conducted
to compare LipGrow with a hand-tuned growing scheduler
(referred as Hand-Tuned) in Section 5.5.

5.2. Experimental Settings

For the CIFAR datasets, we employ the ResNet model,
which consists of 3 subnetworks7, while for the Tiny-
ImageNet dataset, we use the one consisting of 4 subnet-
works. Accordingly, we experimented ResNet-12, ResNet-
20, ResNet-50 and ResNet-74 on the CIFAR10 and CI-
FAR100 datasets, and ResNet-66 on the Tiny-ImageNet
dataset.

All models on the CIFAR datasets are trained for 164 epochs,
and evaluated on a single Nvidia GeForce GTX 1080 Ti
GPU. All models on the Tiny-ImageNet dataset are trained
for 90 epochs, and evaluated on a single Nvidia Quadro
RTX 8000 GPU. We use a batch size of 128 for training,
and 100 for validation. Weight decay and momentum are
set to be 2 × 10−4 and 0.9, respectively. All statistics in
experiments are based on 3 runs.

Towards a fair comparison with our method, we apply our
proposed learning rate scheduler as well as implicit initial-

7A subnetwork denotes a cascade of layers in a residual network
where the output activations are of the same dimension.

0 25 50 75 100 125 150 175

Wall time (mins)

0.0

0.2

0.4

0.6

0.8

Er
ro

r r
at

e

Vanilla (val)
Vanilla (train)

LipGrow (val)
LipGrow (train)

Figure 3: Training and Validation Error Rates w.r.t. Wall Training
Time. The model is ResNet-74 trained on the CIFAR-10. We
compare our LipGrow with vanilla training. All timings are based
on a single Nvidia GeForce GTX 1080 Ti GPU.

ization to both Vanilla and Hand-Tuned.

In our adaptive growing strategy, the tolerance rtol is the
only hyper-parameter that needs to be tuned. It is typically
chosen around 1.4, with only a marginal dependence on
dataset8. Further experiments are conducted to explore
the sensitivity of rtol. According to our experiments, this
tolerance value is largely universal (detailed discussions are
included in the appendix).

5.3. Evaluation Results

In addition to the validation and test accuracy, towards effi-
ciency evaluation, we introduce the parameters per epoch
(PPE) metric. It is defined as the number of model pa-
rameters per epoch. For example, a fixed model of 1M
parameters will result in 1M PPE. This is one of the fairest
metrics reflecting the computation load (memory and pro-
cessor) yet independent to hardware settings and utilization,
since we desire to train a model with as few parameters as

81.4 for CIFAR and 1.3 for Tiny-Imagenet

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

20 40 60 80 100

Epoch of the 1st Growth

0.080

0.085

0.090

0.095

M
in

 E
rr

or
 R

at
e

(v
al

)

0.302

0.304

0.306

0.308

0.310

0.312CIFAR-10
CIFAR-100

Figure 4: Grid Search vs. LipGrow in finding epochs for the
first growth. Dashed lines refer to the minimum final error rate
achieved by the corresponding scheduler. Solid lines describe the
first epochs found by LipGrow (mean and std for 3 runs). X-axis
is the epoch index of the growing timing of different growing
schedulers. The model is ResNet-50 trained on the CIFAR-10 and
CIFAR-100 datasets.

possible within a fixed budget of training epochs.

Results are presented in Tables 2 and 3. The model in the
table denotes the final depth after grow. Each network will
be grown for exactly 2 times, and each time the depth will be
doubled. Therefore the growing path can be easily inferred
by N = 2m(N0− 2) + 2, where N0 is the initial depth, and
m is the number of grows.

LipGrow can reach comparable validation and test accuracy
as Vanilla, while reducing the computation load by more
than 50%. Moreover, LipGrow allows an automatic choice
of the growing epochs, thus saving vast time to explore
proper decisions, which may not be less computationally
heavy than training a deep network from scratch. Section 5.5
offers more comparisons with Hand-Tuned.

To reflect the real-world training time, we visualize the
learning curve w.r.t. the wall clock time of training in Fig-
ure 3, given the same computational environment. LipGrow
demonstrates significant training speedup, while achieving
similar performance in the end. This observation is consis-
tent with our PPE measurements in Tables 2 and 3, which
further verifies the effectiveness of our proposed method.

5.4. Effectiveness of LipGrow Growing Scheduler

To explore the effectiveness of LipGrow growing sched-
uler, we did grid search to evaluate the growing timing
decided by LipGrow. Specifically, we conduct experiments
with ResNet-50 on CIFAR-10 and CIFAR-100 and first run
LipGrow multiple times and record both its first growing
time and the final performance. Then, we conduct grid
search on the growing time and record the corresponding
final performance. The results are visualized in Figure 4.
The first growth epochs chosen by LipGrow are nearly the
optimal epochs based on the grid search results, although it
could be some local optimal. Specifically, on CIFAR-10, the

growing timing decided by LipGrow is near optimal, while
on CIFAR-100, the growing timing decided by LipGrow
nears a local optimal and fails to reach a better timing. This
behavior is reasonable as LipGrow decides the growing on-
the-fly, which leads to better training efficiency (i.e., it does
not require to conduct training multiple times for growing
scheduler tuning). It also shows that the growth epochs cho-
sen by LipGrow across different runs are relatively stable.

5.5. Adaptive vs. Hand-Tuned

In the end, we compare LipGrow with Hand-Tuned grow-
ing scheduler. Specifically, we first sample a set of differ-
ent growing schedulers, evaluate the model performance
trained with these sampled schedulers, and visualize their
required training cost (i.e., PPE) and best accuracy in Fig-
ure 5. Besides, we also list the Hand-Tuned scheduler rec-
ommended by Chang et al. (2017), which achieves a better
performance with more training cost. It is worth mentioning
that, all these compared methods require a trial-and-error
approach, which contradicts to the goal of adaptive training
(i.e., cost of tuning growing scheduler is enough to train
with a static depth). As depth balances model performance
and training cost, choosing a growing scheduler can be
viewed as a multi-objective optimization problem and all
points achieving Pareto-efficiency are Pareto-optimal (i.e.,
no other scheduler can achieve better performance with less
training cost). Specifically, although LipGrow and Hand-
Tuned achieve comparable performance (i.e., LipGrow is
more efficient while Hand-Tuned performs better), LipGrow
achieves Pareto-optimal and Hand-Tuned can be further im-
proved. It verifies the potential of deciding growing timing
in a greedy manner and the effectiveness of LipGrow.

Figure 5: Validation Accuracy on CIFAR10 vs. Required PPE
based on Different Choices of the Growing Epochs. Pareto-optimal
schedulers (balancing cost and performance) are marked as star.
Specifically, LipGrow achieves Pareto-optimal and Hand-Tuned
can be further improved.

6. Related work
Here, we review the literature of three related topics.

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

Dynamic System View of Residual Network. Deep
residual network can be viewed as a discretized ODE (Haber
& Ruthotto, 2017; Weinan, 2017; Ruthotto & Haber, 2018).
To this end, various perspectives and methods from nu-
merical analysis are employed to improve the architec-
ture (Lu et al., 2017; Ciccone et al., 2018), reduce training
time (Chang et al., 2017), reduce memory overload (Chen
et al., 2018), enable inversability (Chang et al., 2018),
and adapt to other models (e.g., recurrent neural net-
works (Chang et al., 2019), Transformers (Lu et al., 2019)).

In particular, Chen et al. (2018) explicitly parameterize time
in the residual architecture and use ODE solver to perform
transformations. This modification can adaptively trade off
precision for efficiency by controlling the number of evalua-
tions. Nevertheless, applications to practical learning tasks
will be limited since the blackbox ODE solver and typical
downsample layers are mutually incompatible, which re-
quires a completely new design of the model architecture.
In contrast, our adaptive method views the trade-off in situ,
thus can be seamlessly applied to state-of-the-art models.

Network Grow and Neural Architecture Search.
Adaption of network architecture under specific situations is
of constant interest. Early work has already proven the diffi-
culty of training very deep neural networks (Glorot & Ben-
gio, 2010). To circumvent this problem and improve training
stability, easy shallow networks are often first trained, and
then merged into deep networks (Simonyan & Zisserman,
2014). DropIn (Smith et al., 2016) further explores this
idea by incrementally including new layers, making the
train of deeper network possible and achieve better perfor-
mance. As a counterpart, Huang et al. (2016) suggests to
randomly disable network blocks during training, which
can be interpreted as a DropOut on the network level. This
trick significantly reduces the training time and improves
the performance at the same time, though careful hyper-
parameter engineering is required. Multi-level residual net-
work (Chang et al., 2017) is the closest one linked to our
work, which explores the possibility of augmenting network
depth in a dynamic system of view, whereas proper time
to the perform the augmentation is unknown beforehand.
AutoGrow (Wen et al., 2019) attempts to automate the dis-
cover of proper depth to achieve near-optimal performance
on different datasets. Several growing strategies are tested,
yet the preferred one is a manually-tuned periodic setting.

Network Morphism (Wei et al., 2016; 2017) is another line
of work that manages to transform a layer to multiple lay-
ers with the represented function intact. Net2net (Chen
et al., 2015) is a successful application of this idea to knowl-
edge transfer. Nevertheless, when applied to optimization
procedure, it is unclear whether network morphism can pre-
serve general optimization flow. Degraded performance is
reported when comes to practical training (Wen et al., 2019).

Similar ideas can also be discovered in many network ar-
chitectures, including progressive growing of GAN (Karras
et al., 2017), Adaptive Computation Time (Graves, 2016;
Jernite et al., 2016) for RNN, etc. Neural architecture search
(NAS) (Stanley & Miikkulainen, 2002; Zoph & Le, 2016)
is also a generic way to conduct architecture optimization.
Typically it aims to improve the inference performance at
the cost of more expensive training, while our proposed
LipGrow aims to accelerate training.

Lipschitz Constant in Deep Neural Networks. Lips-
chitz constant is widely discussed in learning theory, es-
pecially for deep learning which often incorporates a large
composition of functions. Towards Lipschitz continuity,
general stability is often a major concern, which involves
adversarial robustness (Cisse et al., 2017), generalizabil-
ity (Bartlett et al., 2017), stability of GAN (Qi, 2019), hype-
parameter insensitivity (Gouk et al., 2018), to name a few.

Specific to residual networks, Behrmann et al. (2018) en-
force the Lipschitz constraint so as to extend ResNet to the
generative model. This work offers a similar view of ResNet
as an ODE discretization.

7. Conclusions and Future Work
In this paper, we study the depth of residual networks and
explore to increase it during training in an adaptive way, so
that we can reduce the total training time while retaining
the model capacity and performance. From a neural ODE
perspective, we discuss the global error with respect to the
optimal ODE, and elucidate the contributions of capacity
augmentation and parameter optimization in a network grow
scheme. We also present the temporal error as the signal of
network growth to control the growing risk. Thereby we pro-
pose LipGrow, leveraging the theoretical analyses to guide
the network growth. Extensive experiments demonstrate
that LipGrow can achieve better or comparable performance
while reducing ∼ 50% of training time.

For future work, potential improvements of our algorithm
can be explored. For example, although the decision of
LipGrow is based on theoretical derivation, it is still a greedy
algorithm focusing on the temporal risk and can be trapped
in the local optimal. Thus, it would be beneficial to defin-
ing an unified objective incorporating both the performance
measure and training cost, upon which an algorithm that
maximizes the performance yield bounded by pre-specified
training budgets is possible. Last but not least, theoretical
guidance presented in our work can be extended to other
practical applications involving functional transformation
such as Neural Architecture Search and network pruning.
Hopefully we can step towards better understanding of the
current heuristics in AutoML community, and provides the-
oretically sound suggestions to optimize the performance.

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

References
Ascher, U. M. and Petzold, L. R. Computer methods for

ordinary differential equations and differential-algebraic
equations, volume 61. Siam, 1998.

Avelin, B. and Nyström, K. Neural odes as the deep limit
of resnets with constant weights, 2019.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. Spectrally-
normalized margin bounds for neural networks. In Ad-
vances in Neural Information Processing Systems, pp.
6240–6249, 2017.

Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D.,
and Jacobsen, J.-H. Invertible residual networks. arXiv
preprint arXiv:1811.00995, 2018.

Chang, B., Meng, L., Haber, E., Tung, F., and Begert, D.
Multi-level residual networks from dynamical systems
view. ArXiv, abs/1710.10348, 2017.

Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D.,
and Holtham, E. Reversible architectures for arbitrarily
deep residual neural networks. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

Chang, B., Chen, M., Haber, E., and Chi, E. H. Antisym-
metricrnn: A dynamical system view on recurrent neural
networks. arXiv preprint arXiv:1902.09689, 2019.

Chen, T., Goodfellow, I., and Shlens, J. Net2net: Accelerat-
ing learning via knowledge transfer, 2015.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. In Advances
in neural information processing systems, pp. 6571–6583,
2018.

Ciccone, M., Gallieri, M., Masci, J., Osendorfer, C., and
Gomez, F. Nais-net: Stable deep networks from non-
autonomous differential equations. In Advances in Neural
Information Processing Systems, pp. 3025–3035, 2018.

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and
Usunier, N. Parseval networks: Improving robustness to
adversarial examples. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pp.
854–863. JMLR. org, 2017.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 4171–4186,
2019.

Dupont, E., Doucet, A., and Teh, Y. W. Augmented neural
odes. In NeurIPS, 2019.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256, 2010.

Gouk, H., Frank, E., Pfahringer, B., and Cree, M. Regulari-
sation of neural networks by enforcing lipschitz continu-
ity. arXiv preprint arXiv:1804.04368, 2018.

Graves, A. Adaptive computation time for recurrent neural
networks. arXiv preprint arXiv:1603.08983, 2016.

Haber, E. and Ruthotto, L. Stable architectures for deep
neural networks. Inverse Problems, 34(1):014004, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In European conference on
computer vision, pp. 630–645. Springer, 2016b.

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger,
K. Q. Deep networks with stochastic depth. In European
conference on computer vision, pp. 646–661. Springer,
2016.

Istrate, R., Malossi, A. C. I., Bekas, C., and Nikolopoulos,
D. Incremental training of deep convolutional neural
networks. arXiv preprint arXiv:1803.10232, 2018.

Jernite, Y., Grave, E., Joulin, A., and Mikolov, T. Variable
computation in recurrent neural networks. arXiv preprint
arXiv:1611.06188, 2016.

Jin, H., Song, Q., and Hu, X. Auto-keras: Efficient neu-
ral architecture search with network morphism. arXiv
preprint arXiv:1806.10282, 2018.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-
sive growing of gans for improved quality, stability, and
variation. arXiv preprint arXiv:1710.10196, 2017.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical report, University
of Toronto, 2009.

Liu, L., Liu, X., Gao, J., Chen, W., and Han, J. Under-
standing the difficulty of training transformers. ArXiv,
abs/2004.08249, 2020.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

Lu, Y., Zhong, A., Li, Q., and Dong, B. Beyond fi-
nite layer neural networks: Bridging deep architectures
and numerical differential equations. arXiv preprint
arXiv:1710.10121, 2017.

Lu, Y., Li, Z., He, D., Sun, Z., Dong, B., Qin, T., Wang, L.,
and Liu, T.-Y. Understanding and improving transformer
from a multi-particle dynamic system point of view. arXiv
preprint arXiv:1906.02762, 2019.

Lu, Y., Ma, C., Lu, Y., Lu, J., and Ying, L. A mean-field
analysis of deep resnet and beyond: Towards provable
optimization via overparameterization from depth, 2020.

Müller, J. On the space-time expressivity of resnets, 2019.

Qi, G.-J. Loss-sensitive generative adversarial networks on
lipschitz densities. International Journal of Computer
Vision, pp. 1–23, 2019.

Ruthotto, L. and Haber, E. Deep neural networks motivated
by partial differential equations. Journal of Mathematical
Imaging and Vision, pp. 1–13, 2018.

Sedghi, H., Gupta, V., and Long, P. M. The singular values
of convolutional layers. arXiv preprint arXiv:1805.10408,
2018.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Smith, L. N., Hand, E. M., and Doster, T. Gradual dropin of
layers to train very deep neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4763–4771, 2016.

Stanley, K. O. and Miikkulainen, R. Evolving neural net-
works through augmenting topologies. Evolutionary com-
putation, 10(2):99–127, 2002.

Thorpe, M. and van Gennip, Y. Deep limits of residual
neural networks, 2018.

Tsuzuku, Y., Sato, I., and Sugiyama, M. Lipschitz-margin
training: Scalable certification of perturbation invariance
for deep neural networks. In Advances in Neural Infor-
mation Processing Systems, pp. 6541–6550, 2018.

Wei, T., Wang, C., Rui, Y., and Chen, C. W. Network mor-
phism. In International Conference on Machine Learning,
pp. 564–572, 2016.

Wei, T., Wang, C., and Chen, C. W. Modularized morphing
of neural networks. arXiv preprint arXiv:1701.03281,
2017.

Weinan, E. A proposal on machine learning via dynamical
systems. Communications in Mathematics and Statistics,
5(1):1–11, 2017.

Wen, W., Yan, F., and Li, H. Autogrow: Automatic layer
growing in deep convolutional networks, 2019.

Yoshida, Y. and Miyato, T. Spectral norm regularization for
improving the generalizability of deep learning. arXiv
preprint arXiv:1705.10941, 2017.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016.

