
Multinomial Logit Bandit with Low Switching Cost

Kefan Dong 1 Yingkai Li 2 Qin Zhang 3 Yuan Zhou 4

Abstract
We study multinomial logit bandit with limited
adaptivity, where the algorithms change their ex-
ploration actions as infrequently as possible when
achieving almost optimal minimax regret. We
propose two measures of adaptivity: the assort-
ment switching cost and the more fine-grained
item switching cost. We present an anytime
algorithm (AT-DUCB) with O(N log T) assort-
ment switches, almost matching the lower bound
⌦(

N log T
log log T). In the fixed-horizon setting, our al-

gorithm FH-DUCB incurs O(N log log T) assort-
ment switches, matching the asymptotic lower
bound. We also present the ESUCB algorithm
with item switching cost O(N log

2 T).

1. Introduction
The dynamic assortment selection problem with the multi-
nomial logic (MNL) choice model, also called MNL-bandit,
is a fundamental problem in online learning and operations
research. In this problem we have N distinct items, each of
which is associated with a known reward ri and an unknown
preference parameter vi. In the MNL choice model, given a
subset S ✓ [N]

def
= {1, 2, 3, . . . , N}, the probability that a

user chooses i 2 S is given by

pi(S) =

8

<

:

vi
v
0

+

P

j2S vj
if i 2 S [{0}

0 otherwise
, (1)

where “0” stands for the case that the user does not choose
any item, and v

0

is the associated preference parameter. As
a convention (see, e.g. Agrawal et al., 2019), we assume

Author names are listed in alphabetical order. 1Institute for In-
terdisciplinary Information Sciences, Tsinghua University, Beijing,
China. 2Department of Computer Science, Northwestern Uni-
versity, Evanston, Illinois, USA. 3Computer Science Department,
Indiana University, Bloomington, Indiana, USA. 4Department of
ISE, University of Illinois at Urbana-Champaign, Urbana, Illinois,
USA. Correspondence to: Yuan Zhou <yuanz@illinois.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

that no-purchase is the most frequent choice, which is very
natural in retailing. W.l.o.g., we assume v

0

= 1, and vi  1

for all i 2 [N]. The expected reward of the set S under the
preference vector v = {v

0

, v
1

, . . . , vN} is defined to be

R(S,v) =
X

i2S

ripi(S) =
X

i2S

rivi
1 +

P

j2S vj
. (2)

For any online policy that selects a subset St ✓ [N]

(|St|  K, where K is a predefined capacity parameter) at
each time step t, observes the user’s choice at to gradually
learn the preference parameters {vi}, and runs for a horizon
of T time steps, we define the regret of the policy to be

RegT
def
=

T
X

t=1

(R(S?,v)�R(St,v)) , (3)

where S?
= argmaxS✓[N],|S|K R(S,v) is the optimal

assortment in hindsight. The goal is to find a policy to
minimize the expected regret E[RegT] for all MNL-bandit
instances.

To motivate the definition of the MNL-bandit problem, let us
consider a fast fashion retailer such as Zara or Mango. Each
of its product corresponds to an item in [N], and by selling
the i-th item the retailer takes a profit of ri. At each specific
time in each of its shops, the retailer can only present a
certain number of items (say, at most K) on the shelf due
to the space constraints. As a consequence, customers who
visit the store can only pick items from the presented as-
sortment (or, just buy nothing which corresponds to item
0), following a choice model. There has been a number of
choice models being proposed in the literature (see, e.g.,
(Train, 2009; Luce, 2012) for overviews), and the MNL
model is arguably the most popular one. The retailer cer-
tainly wants to maximize its profit by identifying the best
assortment S? to present. However, it does not know in
advance customers’ preferences to items in [N] (i.e., the
preference vector v), to get which it has to learn from cus-
tomers’ actual choices. More precisely, the retailer needs to
develop a policy to choose at each time step t an assortment
St ✓ [N] (|St|  K) based on the previous presented as-
sortments S

1

, . . . , St�1

and customers’ choices in the past
(t� 1) time steps. The retailer’s expected reward in a time
horizon T can be expressed by

PT
t=1

R(St,v), which is
typically reformulated as the regret compared with the best
policy in the form of (3).

Multinomial Logit Bandit with Low Switching Cost

The MNL-bandit problem has attracted quite some attention
in the past decade (Rusmevichientong et al., 2010; Sauré
& Zeevi, 2013; Agrawal et al., 2016; 2017; Chen & Wang,
2018). However, all these works do not consider an impor-
tant practical issue for regret minimization: in reality it is
often impossible to frequently change the assortment dis-
play. For example, in retail stores it may not be possible to
change the display in the middle of the day, not mentioning
doing it after each purchase. We thus hope to minimize the
number of assortment switches in the selling time horizon
without increasing the regret by much. Another advantage
of achieving a small number of assortment switches is that
such algorithms are easier to parallelize, which enables us to
learn users’ preferences much faster. This feature is particu-
larly useful in applications such as online advertising where
it is easy to show the same assortment (i.e., a set of ads) in
a large amount of end users’ displays simultaneously.

We are interested in two kinds of switching costs under a
time horizon T . The first is the assortment switching cost,
defined as

(asst)

T
def
=

T
X

t=1

I[St 6= St+1

].

The second is the item switching cost, defined as

(item)

T
def
=

T
X

t=1

|St � St+1

| ,

where binary operator� computes the symmetric difference
of the two sets. In comparison, the item switching cost is
more fine-grained and put less penalty if two neighboring
assortments are “almost the same”. As a straightforward
observation, we always have that

(asst)

T  (item)

T  min{2K,N} · (asst)

T . (4)

Our results. In this paper we obtain the following results
for MNL-bandit with low switching cost. By default all
log’s are of base 2.

We first introduce an algorithm, AT-DUCB, that achieves
almost optimal regret (up to a logarithmic factor) and incurs
an assortment switching cost of O(N log T); this algorithm
is anytime, i.e., it does not need to know the time horizon
T in advance. We then show that the AT-DUCB algorithm
achieves almost optimal assortment switching cost. In par-
ticular, we prove that every anytime algorithm that achieves
almost optimal regret must incur an assortment switching
cost of at least ⌦(N log T/ log log(NT)). These results are
presented in Section 2.

When the time horizon is known beforehand, we obtain an
algorithm, FH-DUCB, that achieves almost optimal regret
(up to a logarithmic factor) and incurs an assortment switch-
ing cost of O(N log log T). We also prove the optimality of

this switching cost by establishing a matching lower bound.
See Section 3.

For item switches, while the trivial application of (4) leads
to O(N2

log T) and O(N2

log log T) item switching cost
bounds for AT-DUCB and FH-DUCB respectively, in Sec-
tion 4, we design a new algorithm, ESUCB, to achieve an
item switching cost of O(N log

2 T). In Appendix F, we
show that a more careful modification to the algorithm fur-
ther improves the item switching cost to O(N log T).

We make two interesting observations from the results
above: (1) there is a separation between the assortment
switching complexities when knowing the time horizon T
and when not; in other words, the time horizon T is use-
ful for achieving a smaller assortment switching cost; (2)
the item switching cost is only at most a logarithmic factor
higher than the assortment switching cost.

Technical contributions. We combine the epoch-based
offering algorithm for MNL-bandits (Agrawal et al., 2019)
and a natural delayed update policy in the design of AT-
DUCB. Although a similar delayed update rule has been re-
cently analyzed for multi-armed bandits and Q-learning (Bai
et al., 2019), and such a result does not seem surprising, we
present it in the paper as a warm-up to help the readers get
familiar with a few algorithmic techniques commonly used
for the MNL-bandit problem.

Our first main technical contribution comes from the design
of FH-DUCB algorithm, where we invent a novel delayed
update policy that uses the horizon information to improve
the switching cost from O(N log T) to O(N log log T). We
note that for the ordinary multi-armed bandit problem, re-
cent works (Gao et al., 2019) and (Simchi-Levi & Xu, 2019)
managed to show a similar O(N log log T) switching cost
with known horizon. However, their update rules do not
have to utilize the learned parameters for the arms, and a
straightforward conversion of such update rules to the MNL-
bandit problem does not produce the desired guarantees. In
contrast, our update rule, formally described in (6), care-
fully exploits the structure of the MNL-bandits and uses the
information of the partially learned preference parameters
(more specifically, v̂i,⌧i in (6)) to adaptively decide when to
switch to a different assortment.

Our second main technical contribution is the ESUCB algo-
rithm for the low item switching cost. The technical chal-
lenge here stems from the fact that the low item switching
cost is a much stronger requirement than the low assortment
switching cost, and simple lazy updates with the doubling
trick and the straightforward analysis will show that the item
switching cost is at most N times the assortment switch-
ing cost (see (4)), leading to a total item switching cost of
O(N2

log T). To reducing the extra factor N , we propose
the idea of decoupling the learning for the optimal revenue

Multinomial Logit Bandit with Low Switching Cost

and the assortment, so that the offering of the assortment
is decided via optimizing a new objective function based
on the (usually) fixed revenue estimate. Since the revenue
estimates are fixed, the offered assortments enjoy improved
stability, and the item switching cost can be upper bounded
by careful analysis.

We remark that the item switching cost is a particularly in-
teresting goal that arises in online learning problems when
the actions are sets of elements, which is very different
from traditional MAB and linear bandits. Thanks to our
novel technical ingredients, we are able to bring the item
switching cost down to almost the same order as the assort-
ment switching cost. We hope our results will inspire future
study of the switching costs in both settings for other online
learning problems with set actions.

Related work. MNL-bandit was first studied in (Rus-
mevichientong et al., 2010) and (Sauré & Zeevi, 2013),
where the authors took the “explore-then-commit” approach,
and proposed algorithms with regret O(N2

log

2 T) and
O(N log T) respectively under the assumption that the
gap between the best and second-to-the-best assortments
is known. (Agrawal et al., 2016) removed this assump-
tion using a UCB-type algorithm, which achieves a regret
of O(

p
NT log T). An almost tight regret lower bound

of ⌦(
p
NT) was later given by (Chen & Wang, 2018).

(Agrawal et al., 2017) proposed an algorithm using Thomp-
son Sampling, which achieves comparable regret bound
to the UCB-type algorithms while demonstrates a better
numerical performance.

Learning with low policy switches (also called learning in
the batched model or limited adaptivity) has recently been
studied in reinforcement learning for several other problems,
including stochastic multi-armed bandits (Perchet et al.,
2015; Jun et al., 2016; Agarwal et al., 2017; Gao et al.,
2019; Esfandiari et al., 2019; Simchi-Levi & Xu, 2019),
Q-learning (Bai et al., 2019), and online-learning (Cesa-
Bianchi et al., 2013). This research direction is motivated
by the fact that in many practical settings, the change of
learning policy is very costly. For example, in clinical trials,
every treatment policy switch would trigger a separate ap-
proval process. In crowdsourcing, it takes time for the crowd
to answer questions, and thus a small number of rounds of
interactions with the crowd is desirable. The performance
of the learning would be much better if the data is processed
in batches and during each batch the learning policy is fixed.

2. Warm-up: An anytime algorithm with
O(N log T) assortment switches

As a warm-up, we begin with a simple anytime algorithm us-
ing at most O(N log T) assortment switches. Our algorithm
combines the epoch-based offering framework introduce in

(Agrawal et al., 2016) and a deferred update policy. We will
first briefly explain the epoch-based offering procedure, and
then present and analyze our algorithm.

The epoch-based offering. In the epoch-based offering
framework, whenever we are to offer an assortment S, in-
stead of offering it for only one time period, we keep of-
fering S until a no-purchase decision (item 0) is observed,
and refer to all the consecutive time periods involved in this
procedure as an epoch. The detailed offering procedure is
described in Algorithm 1, where t is the global counter for
the time period, and {�i} records the number of purchases
made for each item i in the epoch.

Algorithm 1: EXPLORATION(S)

1 Initialize: �i 0 for all i 2 [N];
2 while TRUE do
3 t t+ 1;
4 Offer assortment S, and observe purchase decision at;
5 If at = 0 then return {�i};
6 �at �at + 1;

The following key observation for EXPLORATION(S) states
that {�i} forms an unbiased estimate for the utility parame-
ters of all items in S.
Observation 1. Let {�i} be returned by
EXPLORATION(S). For each i 2 S, �i is an in-
dependent geometric random variable with mean vi.
Moreover, one can verify that E[�i] = vi and

Pr[�i = k] =

✓

vi
1 + vi

◆k ✓
1

1 + vi

◆

, 8k 2 N.

At any time of the algorithm when an epoch has ended,
for each item i 2 [N], we let v̄i = ni/Ti where Ti is the
number of the past epochs in which i is included in the
offered assortment, and ni is the total number of purchases
for item i during all past epochs. By Observation 1, we
know that v̄i is also an unbiased estimate of vi. In (Agrawal
et al., 2016), the following upper confidence bound (UCB)
is constructed for each i 2 [N],

v̂i = v̄i +

s

48v̄i ln(
p
N`+ 1)

Ti
+

48 ln(

p
N`+ 1)

Ti
. (5)

We will compute the assortment for the next epoch based
on the vector of UCB values ˆv = (v̂

1

, v̂
2

, . . . , v̂n).

We describe our algorithm in Algorithm 2, which can be
seen as an adaptation of the one in (Agrawal et al., 2016).
The main difference from (Agrawal et al., 2016) is that the
UCB values (and hence the assortment) is updated only
when Ti reaches an integer power of 2 for any item i 2 [N].

Multinomial Logit Bandit with Low Switching Cost

Algorithm 2: Anytime Deferred Update UCB (AT-DUCB)
1 Initialize: v̂i 1, Ti 0 for all i 2 [N], t 0;
2 for ` 1, 2, 3, . . . , do
3 Compute S` = argmaxS✓[N]:|S|K R(S, ˆv);
4 {�i} EXPLORATION(S);
5 for i 2 S do
6 ni ni +�i and Ti Ti + 1;
7 if Ti = 2

k for some k 2 Z then
8 v̄i ni/Ti; v̂i min

�

v̂i, v̄i +
q

48v̄i ln(
p
N`+1)

Ti
+

48 ln(

p
N`+1)

Ti

;

This deferred update strategy is implemented in Line 7.
Also note that instead of directly evaluating (5), the update
in Line 8 makes sure that v̂i is non-increasing as the algo-
rithm proceeds. We comment that the optimization task in
Line 3 can be done efficiently, as studied in, for example,
(Rusmevichientong et al., 2010).
Theorem 2. For any time horizon T , the expect regret in-
curred by Algorithm 2 is

E [RegT] .
p

NT log T ,

and the expected number of assortment switches E[(asst)

T]

is O(N log T). 1

The proof of the regret upper bound in Theorem 2 is similar
to that of (Agrawal et al., 2016), except for a more careful
analysis about the deferred update rule. For completeness,
we prove this part in Appendix A.

Proof of the assortment switch upper bound in Theorem 2.
Let D(`)

i be the event that Line 8 is executed in Algorithm 2
for item i at the `-th epoch. Recall that the assortment S`

is computed by S` = argmaxS✓[N],|S|K R(S, ˆv), and ˆv

is updated after epoch ` only when D(`)
i happens for some

i 2 [N]. Let L be the total number of epochs at or before
time T ; we thus have

PL
`=1

I[D`
i]  log T . We then have

that

E[(asst)

T] = E
T�1

X

t=1

I[St 6= St+1

]


L
X

`=1

N
X

i=1

I[D(`)
i] =

N
X

i=1

L
X

`=1

I[D(`)
i] . N log T.

1For two sequences {an} and {bn}, we write an = O(bn) or
an . bn if there exists a universal constant C < 1 such that
lim supn!1 |an|/|bn|  C. Similarly, we write an = ⌦(bn)
or an & bn if there exists a universal constant c > 0 such that
lim infn!1 |an|/|bn| � c.

The lower bound. We complement our algorithmic result
with the following almost matching lower bound. The the-
orem states that the number of assortment switches has to
be ⌦(N log T/ log log(NT)), if the algorithm is anytime
and incurs only

p
NT ⇥ poly log(NT) regret. The proof

of Theorem 3 can be found in Appendix E.1.
Theorem 3. There exist universal constants d

0

, d
1

> 0

such that the following holds. For any constant C �
1, if an anytime algorithm A achieves expected regret
at most d

0

p
NT (ln(NT))C for all T and all instances

with N items, then for any N � 2, T
0

� N and T
0

greater than a sufficiently large constant that only de-
pends on C, there exists an instance with N items and
a time horizon T 2 [T

0

, T 2

0

], such that the expected
number of assortment switches before time T is at least
d
1

N log T/(C log log(NT)).

3. Achieving O(N log log T) assortment
switch with known horizons

When the time horizon is known to the algorithm, we can
exploit this advantage via more carefully designed update
policy to achieve only O(N log log T) assortment switches.
For the convenience of presentation, we first introduce a few
notations.

Algorithm 3: UPDATE(i)

1 ⌧i ⌧i + 1; T (⌧i)
i T (⌧i�1)

i + |T (i, ⌧i � 1)|;
2 n(⌧i)

i n(⌧i�1)

i + ni,⌧i�1

; v̄i,⌧i n(⌧i)
i /T (⌧i)

i ;

3 v̂i,⌧i min

n

v̂i,⌧i�1

, v̄i,⌧i +

r

48v̄i,⌧i ln(

p
NT 2

+1)

T
(⌧i)
i

+

48 ln(

p
NT 2

+1)

T
(⌧i)
i

o

;

For each item i 2 [N], we divide the time periods into
consecutive stages where the boundaries between any two
neighboring stages are marked by the UCB updates for item
i. Note that the division for the stages may be different for
different items. For any ⌧ 2 {1, 2, 3, . . . }, let T (i, ⌧) be
the set of epochs to offer item i, in stage ⌧ for the item.
Let T (⌧)

i =

P⌧�1

⌧ 0
=1

|T (i, ⌧ 0)| be the total number of epochs
to offer item i, before stage ⌧ for the item, and let n(⌧)

i
be the total number of purchases for item i in the epochs
counted by T (⌧)

i . We can therefore define v̄i,⌧
def
= n(⌧)

i /T (⌧)
i

as an unbiased estimate of vi based on the observations
before stage ⌧ . Similarly to (5), we can define v̂i,⌧ as a
UCB for vi. The UPDATE(i) procedure (formally described
in Algorithm 3) is invoked whenever the main algorithm
decides to conclude the current stage for item i and update
the UCB for vi together with the quantities defined above,
where ⌧i is the counter for the number of stages for item i,
and ni,⌧ is the number of purchases observed in stage ⌧ for

Multinomial Logit Bandit with Low Switching Cost

item i.

The key to the design of our main algorithm for the fixed
time horizon setting is a new trigger for updating the UCB
values. Let ⌧

0

= dlog log(T/N)+1e, for each item i 2 [N],
we will conclude the current stage ⌧i and invoke UPDATE(i)
whenever the following condition P(i, ⌧i) is satisfied. Note
that P(i, ⌧i) is adaptive to the estimated parameters v̂i,⌧i
to customize the number of epochs between assortment
switches for each item. More specifically, the smaller v̂i,⌧i
is, the less regret may be incurred by offering item i, and
therefore the longer we can offer item i without switching
and incurring too large regret, and this is reflected in the
design of P .

P(i, ⌧i)
def
=

8

>

>

>

<

>

>

>

:

|T (i, ⌧i)| � 1 +

q

T ·T (⌧i)
i
N if ⌧i < ⌧

0

|T (i, ⌧i)| � 1 +

r

T ·T (⌧i)
i

N ·v̂i,⌧i
and v̂i,⌧

0

> 1/
p
NT if ⌧i � ⌧

0

.

(6)

For each epoch `, we use ⌧i(`) to denote the stage (in terms
of item i) where epoch ` belongs to. We present the details
of our main algorithm in Algorithm 4. The algorithm is
terminated whenever the time step t reaches the horizon T .
Theorem 4. For any given time horizon T � N4, we have
the following upper bound for the expected regret:

E [RegT] .
q

NT ln(

p
NT 2

+ 1) · log log T,
and the following upper bound for the expected number of
assortment switches:

E
h

(asst)

T

i

. N log log T.

To prove Theorem 4, we first define the desired events. Let

E(1)

i,⌧
def
=

n

v̂i,⌧ � vi and v̂i,⌧  vi+
v

u

u

t

144vi ln(
p
NT 2

+ 1)

T (⌧)
i

+

144 ln(

p
NT 2

+ 1)

T (⌧)
i

o

,

and
E(1)

def
= \i,⌧E(1)

i,⌧ .

We also let

E(2)

i,⌧
def
=

n

ni,⌧ � 1

2

vi|T (i, ⌧)|,

if vi � 1

2

r

1

NT
and |T (i, ⌧)| � T

4N · vi
o

,

and
E(2)

def
= \i,⌧E(2)

i,⌧ .

Finally, let E = E(1) \ E(2). In Appendix B.1, we prove the
following lemma.

Algorithm 4: Deferred Update UCB for Fixed Time Hori-
zon (FH-DUCB)
Input :The time horizon T .

1 Initialize: ⌧i 1, v̂i,⌧i 1, ni,⌧i 0, T (i, ⌧i)
;, T (1)

i 0, n(1)

i 0 for all i 2 [N];
2 t 0, S

0

 [N];
3 for ` 1, 2, 3, . . . , do
4 S` S`�1

;
5 if 9i : P(i, ⌧i) holds then
6 UPDATE(i) for all i such that P(i, ⌧i) holds;
7 Compute S` argmaxS✓[N]:|S|K R(S, ˆv`)

where ˆv` = (v̂i,⌧i(`))i2[N]

;

8 {�i} EXPLORATION(S`);
9 for i 2 S do

10 ni,⌧i ni,⌧i +�i; Add ` to T (i, ⌧i);

Lemma 5. If T � N4 and T is greater than a large enough
universal constant, then Pr[E] � 1� 14

T .

Bounds for the stage lengths. When E happens, we can
infer the following useful lower bound for the lengths of the
stages after ⌧

0

. The lemma is proved in Appendix B.2.

Lemma 6. Assume that T � N4 and T is greater than a
sufficiently large universal constant. Conditioned on E(1),
for each i 2 [N], if ⌧

0

is not the last stage for item i, we

have that vi � 1

2

q

1

NT . Additionally, if v̂i,⌧
0

> 1/
p
NT ,

then for all ⌧ > ⌧
0

such that ⌧ is not the last stage for i, we
have that |T (i, ⌧)| � (T/(2Nvi))1�2

�⌧+⌧
0

+1

.

Upper bounding the number of assortment switches.
Suppose that there are L epochs before the algorithm ter-
minates. We only need to upper bound E

PN
i=1

⌧i(L)
which upper bounds the number of assortment switches
E[(asst)

T]. For each i 2 [N], if ⌧i(L) � ⌧
0

and
v̂i,⌧

0

 1/
p
NT , we easily deduce that ⌧i(L)  ⌧

0

+ 1

because of the condition P(i, ⌧
0

). Otherwise, assuming
that v̂i,⌧

0

> 1/
p
NT , by Lemma 6, conditioned on E(1),

we have that vi � 1

2

q

1

NT and |T (i, ⌧)| � T
4Nvi

for
all ⌧ 2 [⌧

0

+ log log

T
2Nvi

+ 1, ⌧i(L) � 1]. Because
of E(2), we have ni,⌧ � vi

2

· |T (i, ⌧)| � T
8N for all

⌧ 2 [⌧
0

+log log

T
2Nvi

+1, ⌧i(L)� 1]. Therefore, we know
that there are no more than 8N pairs of (i, ⌧) satisfying
⌧ 2 [⌧

0

+log log

T
2Nvi

+1, ⌧i(L)�1]. In total, conditioned
on E , we have that

E
N
X

i=1

⌧i(L)

Multinomial Logit Bandit with Low Switching Cost

. N⌧
0

+

N
X

i=1

I
h

v̂i,⌧
0

> 1/
p
NT

i

log log

T

2Nvi

+ E
N
X

i=1

max{⌧i(L)� ⌧
0

� log log

T

2Nvi
, 0}

. N log log T +

N
X

i=1

log log

T 3/2

N1/2
. N log log T, (7)

where the second inequality is because of Lemma 6. Finally,
since the contribution to the expected number of assortment
switches when E fails is at most Pr[E] · T  O(1) (because
of Lemma 5), we prove the upper bound for the number of
assortment switches in Theorem 4.

Upper bounding the expected regret. Let E(`) be the
length of epoch `, i.e., the number of time steps taken in
epoch `. Note that E(`) is a geometric random variable
with mean value (1 +

P

i2S`
vi). Also recall that there are

L epochs in total. Letting S⇤ be the optimal assortment,
conditioned on event E(1), we have that

E [RegT] = E
L
X

`=1

E(`)
(R(S?,v)�R(S`,v))

= E
L
X

`=1

1 +

X

i2S`

vi

!

(R(S?,v)�R(S`,v))

 E
L
X

`=1

X

i2S`

(v̂i,⌧i(`) � vi)

= E
N
X

i=1

X

`:i2S`

(v̂i,⌧i(`) � vi)

= E
N
X

i=1

⌧i(L)

X

⌧=1

X

`2T (i,⌧)

(v̂i,⌧ � vi), (8)

where the inequality is due to Lemma 17. In the next lemma,
we upper bound the contribution from each item i and stage
⌧ to the upper bound in (8). The lemma is proved in Ap-
pendix B.3.
Lemma 7. Conditioned on event E(1), for any item i and
any stage ⌧  ⌧i(L), we have that

X

`2T (i,⌧)

(v̂i,⌧ � vi) .
q

T ln(

p
NT 2

+ 1)/N.

Combining Lemma 5, Lemma 7, inequalities (7) and (8),
we have that

E [RegT]  T · Pr[E(1)

] + E
h

RegT

�

�

�

E(1)

i

.1 + E
N
X

i=1

⌧i(L)⇥
s

T ln(

p
NT 2

+ 1)

N

.
q

NT ln(

p
NT 2

+ 1) · log log T,
proving the expected regret upper bound in Theorem 4.

The lower bound. We prove the following matching
lower bound in Appendix E.2.
Theorem 8. For any constant C � 0 and time horizon T ,
if an algorithm A achieves expected regret E[RegT] at most

1

7525

·pNT (ln(NT))C for all N -item instances, then there
exists an N -item instance such that the expected number of
assortment switches is

E[(asst)

T] = ⌦(N log log T).

4. Optimizing the number of item switches
In this section, we study how to minimize the item switch
cost while still achieving ˜O(

p
NT) regret.

Algorithm 5: The Exponential Stride UCB algorithm
(ESUCB) for MNL-Bandit

1 Initialize: ˆ✓ 1, ✏
1

 1/3, c
1

 44840;
2 for ⌧ 1, 2, 3, . . . do
3 t

max

 c
1

N ln

3

(NT/�)/✏2⌧ ;
4 if CHECK(ˆ✓ � 3✏⌧ , ˆ✓ � ✏⌧ , tmax

) then ˆ✓ ˆ✓ � ✏⌧ ;
5 ✏⌧+1

 2

3

✏⌧ ;

We now propose a new algorithm, Exponential Stride UCB
(ESUCB), to achieve an item switching cost that is linear
with N and poly-logarithmic with T . The specific guarantee
of the ESUCB algorithm is presented in Theorem 10, the
main theorem of this section. The key idea of the algorithm
is to decouple the learning of the optimal expected revenue
and the optimal assortment, which is made possible by the
following lemma.

Lemma 9. Define G(✓)
def
= R(S✓,v), where S✓

def
=

argmaxS✓[N]:|S|K

�

P

i2S vi(ri � ✓)
�

. There exists a
unique ✓? such that

G(✓?) = ✓? = max

|S|K
R(S,v).

Moreover,

(1) for any ✓ < ✓?, we have that G(✓) > ✓, and

(2) for any ✓ > ✓?, we have that G(✓) < ✓.

The proof of Lemma 9 is deferred to Appendix D.1. Moti-
vated by the lemma, we present our ESUCB algorithm in
Algorithm 5. The algorithm learns the optimal revenue ✓?

in the main loop, using a sequence of exponentially decreas-
ing learning step size ✏⌧ . For each estimate ˆ✓, the CHECK

Multinomial Logit Bandit with Low Switching Cost

procedure (Algorithm 6) learns the assortment S
ˆ✓ via the

UCB method with deferred updates. (More precisely speak-
ing, the algorithm learns S

ˆ✓�✏⌧
and S

ˆ✓�3✏⌧
, and at Line 4,

chooses one of them based on the UCB estimation ⇢̂ for
the expected revenue of S

ˆ✓�✏⌧
.) In the CHECK procedure,

the variable t keeps the count of time steps and is updated
in EXPLORATION. We also make the following notes: 1)
The ESUCB algorithm needs the horizon T as input, and
uses a confidence parameter �, which is usually set as 1/T .
The whole algorithm terminates whenever the horizon T
is reached. 2) At the optimization steps (Lines 6 and 9 of
Algorithm 6), we have to adopt a deterministic tie breaking
rule, e.g., we let the argmax operator to return the S such
that

P

i2S 2

i is minimized among multiple maximizers.
Theorem 10. Setting � = 1/T , we have the following upper
bound for the expected regret of ESUCB:

E [RegT] .
p
NT · log1.5(NT),

and the item switching cost for ESUCB is

E
h

(item)

T

i

. N log

2 T.

To prove Theorem 10, we upper bound the item switching
cost and the expected regret separately.

Upper bounding the item switch cost. Since the es-
timate of ✓? is fixed in CHECK, the outcome of
argmaxS:|S|K

P

i2S v̂i(ri � ✓) (corresponding to Lines
6 and 9 of Algorithm 6) becomes more stable compared
to that of argmaxS:|S|K R(S, v̂) in previous algorithms.
Exploiting this advantage, we upper bound the number of
item switches incurred by each call of CHECK as follows.
The lemma is proved in Appendix D.2.
Lemma 11. The item switch cost incurred by any invocation
CHECK(✓l, ✓r, tmax

) is O(N log T).

Since the ⌧ loop in Algorithm 5 iterates for only O(log T)
times, Lemma 11 easily implies an O(N log

2 T) item
switching cost upper bound for ESUCB. We also note that
this bound can be improved to O(N log T) via a slight mod-
ification to the algorithm which is elaborated in Appendix F.

Upper bounding the expected regret. We first provide
the following guarantees for CHECK.
Lemma 12 (Main Lemma for CHECK). For any invocation
CHECK(✓l, ✓r, tmax

), with probability at least (1 � �/T),
the following statements hold.

(a) If CHECK returns true, then G(✓r) < ✓r.

(b) If CHECK returns false, then

✓? � ✓r� 2

t
max

c
2

r

Nt
max

ln

3

NT

�
+ c

3

N ln

3

NT

�

!

.

Algorithm 6: CHECK(✓l, ✓r, tmax

)

1 Initialize: v̂i 1, Ti 0, ni 0 for all i 2 [N],
c
2

 688, c
3

 21732;
2 ⇢ 0, ⇢̂ 1, b false, t 0;
3 for ` 1, 2, 3, . . . do
4 if ⇢̂ < ✓r then
5 b true;
6 S` argmaxS✓[N],|S|K

�P
i2S v̂i(ri � ✓l)

�
;

7 {�i} EXPLORATION(S`);

8 else
9 S` argmaxS✓[N],|S|K

�P
i2S v̂i(ri � ✓r)

�
;

10 {�i} EXPLORATION(S`);
11 ⇢ ⇢+

P

i2S`
�i · ri; ⇢̂ 1

t

�

⇢+

c
2

q

Nt
max

ln

3

(NT/�) + c
3

N ln

3

(NT/�)
�

;

12 if t � t
max

then return b;
13 for i 2 S` do
14 ni ni +�i, Ti Ti + 1;
15 if Ti = 2

k for some k 2 Z then
16 v̄i ni/Ti; v̂i min

�

v̂i, v̄i +
q

196v̄i log(NT/�+1)

Ti
+

292 log(NT/�+1)

Ti

;

(c) Let r(t)CHECK be the reward at time step t in this invoca-
tion. If ✓l  ✓?, then we have that

t
max

✓l � E

"

t
max

X

t=1

r(t)CHECK

#

.
q

Nt
max

ln

3

(NT/�) +N ln

3

(NT/�).

Proof of Lemma 12 is built upon Lemma 9 and deferred to
Appendix D.3.

Let Q⌧ be the event that the statements (a)�(c) hold for the
invocation of CHECK at iteration ⌧ of Algorithm 5, and let
Q be the event that Q⌧ holds every all ⌧ . By Lemma 12 and
a union bound, we immediately have that Pr[Q] � 1 � �.
The next lemma, built upon Lemma 9 and Lemma 12, shows
that ˆ✓ in Algorithm 5 is always an upper confidence bound
for the true parameter ✓?, and converges to ✓? with a decent
rate.

Lemma 13. Let ˆ✓(⌧) be the value of ˆ✓ at the beginning of
iteration ⌧ of Algorithm 5. Conditioned on event Q, for any
iteration ⌧ = 1, 2, 3, . . . , we have that ˆ✓(⌧) � 3✏⌧  ✓? 
ˆ✓(⌧).

Proof. Recall that for every ⌧ = 1, 2, 3, . . . , we need to
prove

ˆ✓(⌧) � 3✏⌧  ✓?  ˆ✓(⌧). (9)

Multinomial Logit Bandit with Low Switching Cost

We prove this by induction. For iteration ⌧ = 1, (9) trivially
holds since 0  ri  1 and therefore 0  ✓?  1.

Now suppose (9) holds for iteration ⌧ , we will estab-
lish (9) for iteration (⌧ + 1). Consider the invocation of
CHECK(✓l, ✓r, tmax

) at iteration ⌧ , where ✓l = ˆ✓(⌧) � 3✏⌧
and ✓r =

ˆ✓(⌧) � ✏⌧ . We discuss the following two cases.

Case 1. When the CHECK procedure returns true, by
Lemma 12 we have that G(✓r) < ✓r. By Lemma 9, we
have that ✓r > ✓?. Therefore, by Line 4 and the induction
hypothesis we have that ˆ✓(⌧+1)

=

ˆ✓(⌧)� ✏⌧ = ✓r > ✓?, and
ˆ✓(⌧+1) � 3✏⌧+1

= ✓r � 2✏⌧ =

ˆ✓(⌧) � 3✏⌧  ✓?, proving
(9).

Case 2. When the CHECK procedure returns false, by
Lemma 12, we have that

✓? � ✓r�
1

t
max

(c

2

+ 8)

r
Nt

max

ln

3

NT

�
+ c

3

N ln

3

NT

�

!
.

Recall that at Line 3 we set t
max

= c
1

N ln

3

(NT/�)/✏2⌧ .
For large enough c

1

, this implies that

✓? � ✓r � ✏⌧ =

ˆ✓(⌧) � 2✏⌧ =

ˆ✓(⌧+1) � 3✏⌧+1

.

By Line 4 and the induction hypothesis we have that
ˆ✓(⌧+1)

=

ˆ✓(⌧) � ✓?, finishing the proof of (9).

Finally we upper bound the expected regret of Algorithm 5.

Lemma 14. With probability at least 1 � �, the expected
regret incurred by Algorithm 5 is O(

p
NT log

1.5
(NT/�)).

Therefore, if we set � = 1/T , we have that

E[RegT] .
p
NT log

1.5
(NT).

Proof. Throughout the proof we condition on the event Q,
which happens probability at least (1� �). We first prove
that at iteration ⌧ of Algorithm 5, the expected regret for
this iteration is bounded by ˜O(N/✏⌧). Consider the invoca-
tion CHECK(✓l, ✓r, tmax

) at Line 4. Recall that we define
t
max

= c
1

N ln

3

(NT/�)/✏2⌧ . Combining with statement (c)
of Lemma 12 and Lemma 13, the expected regret of this
invocation is bounded by (where the O(N) term is due to
the last epoch that might run over time t

max

),

E

"

✓? · t
max

�
t
max

X

t=1

r(t)CHECK

#

+O(N)

. t
max

(✓? � ✓l) + E

"

✓l · tmax

�
t
max

X

t=1

r(t)CHECK

#

+O(N)

. t
max

(✓? � ✓l) +N ln

3

(NT/�)/✏⌧ . (10)

By Lemma 13, we have that ✓? � ✓l . ✏⌧ . Therefore, (10)
is upper bounded by O(N ln

3

(NT/�)/✏⌧).

Since CHECK(✓l, ✓r, tmax

) runs for at least t
max

time steps,
the second to the last iteration (⌧

max

� 1) satisfies that
c
1

N ln

3

(NT/�)/✏2⌧
max

�1

 T , which means that

✏⌧
max

&
q

N log

3

(NT/�)/T .

Since ✏⌧ is an exponential sequence, the overall expected
regret is bounded by the order of

⌧
max

X

⌧=1

N log

3

(NT/�)/✏⌧ .
q

NT log

3

(NT/�).

Refined and non-trivial item switching cost upper
bound for the AT-DUCB algorithm. Since an assort-
ment switch may incur at most 2K item switches, The-
orem 2 trivially implies that Algorithm 2 (AT-DUCB) in-
curs at most O(KN log T) item switches, which is upper
bounded by O(N2

log T) since K = O(N).

In Appendix C, we present a refined analysis showing
that the item switching cost of AT-DUCB is at most
O(N1.5

log T). While it is not clear to us whether the de-
pendence on N delivered by this analysis is optimal, we
also discuss the relationship between the analysis and an
extensively studied (but not yet fully resolved) geometry
problem, namely the maximum number of planar K-sets.
We hope that further study of this relationship might lead to
improvement of both upper and lower bounds of the item
switching cost of AT-DUCB. Please refer to Appendix C for
more details.

5. Conclusion
In this paper, we present algorithms for MNL-bandits that
achieve both almost optimal regret and assortment switching
cost, in both anytime and fixed-horizon settings. We also
design the ESUCB algorithm that achieves the almost opti-
mal regret and item switching cost O(N log

2 T). For future
directions, it is interesting to study whether it is possible to
achieve an item switching cost of O(N log T) in the any-
time setting and O(N log log T) in the fixed-horizon setting.
Also, as mentioned in Section 4 (and Appendix C), given
the simplicity of our AT-DUCB algorithm, it is worthwhile
to further refine the bounds for its item switching cost.

Acknowledgement
Part of the work done while Kefan Dong was a visiting stu-
dent at UIUC. Kefan Dong and Yuan Zhou were supported
in part by a Ye Grant and a JPMorgan Chase AI Research
Faculty Research Award. Qin Zhang was supported in part
by NSF IIS-1633215, CCF-1844234 and CCF-2006591.

Multinomial Logit Bandit with Low Switching Cost

References
Agarwal, A., Agarwal, S., Assadi, S., and Khanna, S. Learn-

ing with limited rounds of adaptivity: Coin tossing, multi-
armed bandits, and ranking from pairwise comparisons.
In COLT, pp. 39–75, 2017.

Agrawal, S., Avadhanula, V., Goyal, V., and Zeevi, A. A
near-optimal exploration-exploitation approach for assort-
ment selection. In EC, pp. 599–600, 2016.

Agrawal, S., Avadhanula, V., Goyal, V., and Zeevi, A.
Thompson sampling for the MNL-bandit. In Proceedings
of the 30th Conference on Learning Theory, COLT 2017,
Amsterdam, The Netherlands, 7-10 July 2017, pp. 76–78,
2017.

Agrawal, S., Avadhanula, V., Goyal, V., and Zeevi, A. MNL-
bandit: A dynamic learning approach to assortment selec-
tion. Operations Research, 67(5):1453–1485, 2019.

Bai, Y., Xie, T., Jiang, N., and Wang, Y.-X. Provably ef-
ficient q-learning with low switching cost. In NeurIPS,
2019.

Cesa-Bianchi, N., Dekel, O., and Shamir, O. Online learning
with switching costs and other adaptive adversaries. In
NIPS, pp. 1160–1168, 2013.

Chen, X. and Wang, Y. A note on a tight lower bound
for capacitated MNL-bandit assortment selection models.
Oper. Res. Lett., 46(5):534–537, 2018.

Dey, T. K. Improved bounds for planar k-sets and related
problems. Discrete & Computational Geometry, 19(3):
373–382, 1998.

Esfandiari, H., Karbasi, A., Mehrabian, A., and Mirrokni,
V. S. Batched multi-armed bandits with optimal regret.
CoRR, abs/1910.04959, 2019.

Gao, Z., Han, Y., Ren, Z., and Zhou, Z. Batched multi-
armed bandits problem. In NeurIPS, 2019.

Jin, Y., Li, Y., Wang, Y., and Zhou, Y. On asymptotically
tight tail bounds for sums of geometric and exponen-
tial random variables. arXiv preprint arXiv:1902.02852,
2019.

Jun, K., Jamieson, K. G., Nowak, R. D., and Zhu, X. Top
arm identification in multi-armed bandits with batch arm
pulls. In AISTATS, pp. 139–148, 2016.

Luce, R. D. Individual choice behavior: A theoretical
analysis. Courier Corporation, 2012.

Perchet, V., Rigollet, P., Chassang, S., and Snowberg, E.
Batched bandit problems. In COLT, pp. 1456, 2015.

Pinsker, M. S. Information and information stability of
random variables and processes. Holden-Day, 1964.

Rusmevichientong, P., Shen, Z. M., and Shmoys, D. B.
Dynamic assortment optimization with a multinomial
logit choice model and capacity constraint. Operations
Research, 58(6):1666–1680, 2010.

Sauré, D. and Zeevi, A. Optimal dynamic assortment plan-
ning with demand learning. Manufacturing & Service
Operations Management, 15(3):387–404, 2013.

Simchi-Levi, D. and Xu, Y. Phase transitions and cyclic
phenomena in bandits with switching constraints. In
NeurIPS, 2019.

Tóth, G. Point sets with many k-sets. Discrete & Computa-
tional Geometry, 26(2):187–194, 2001.

Train, K. E. Discrete Choice Methods with Simulation.
Cambridge university press, 2009.

